Productivity of sunflower (Helianthus annuus L.), the fourth most important oilseed crop, is strongly dependent on water availability. To search for genetic variation in the ability of roots to grow into drying soil, 16 sunflower lines were screened in 2 years field experiments by imposing drought stress at flowering stage. The results differentiated RGK 21 and BGK 329 as the most sensitive and tolerant lines respectively. The time course physiological assay of these lines at seedling stage revealed roots as the most affected organ 6 days after imposing drought stress. A proteomics approach was adapted for investigating of differential changes in roots proteome under contrasting moisture regimes. Protein spots with significant changes in protein abundance were identified by nano LC-MS/MS. The results indicated that under drought stress relative abundance of metabolism related proteins were decreased in both sensitive and tolerant lines. Abundance of energy and disease/defence related proteins were decreased in the sensitive but increased in the tolerant line. The results indicate that changes in energy usage, water transport and ROS scavenging are important mechanisms for maintaining root growth as the soil dries.