More Web Proxy on the site http://driver.im/
Oncolytic virotherapy is a promising alternative to conventional treatment, yet systemic delivery of these viruses to tumors remains a major challenge. In this regard, mesenchymal stem cells (MSC) with well-established tumor-homing property could serve as a promising systemic delivery tool. We showed that MSCs could be effectively infected by hepatocellular carcinoma (HCC)-targeted oncolytic adenovirus (HCC-oAd) through modification of the virus' fiber domain and that the virus replicated efficiently in the cell carrier. HCC-targeting oAd loaded in MSCs (HCC-oAd/MSC) effectively lysed HCC cells in vitro under both normoxic and hypoxic conditions as a result of the hypoxia responsiveness of HCC-oAd. Importantly, systemically administered HCC-oAd/MSC, which were initially infected with a low viral dose, homed to HCC tumors and resulted in a high level of virion accumulation in the tumors, ultimately leading to potent tumor growth inhibition. Furthermore, viral dose reduction and tumor localization of HCC-oAd/MSC prevented the induction of hepatotoxicity by attenuating HCC-oAd hepatic accumulation. Taken together, these results demonstrate that MSC-mediated systemic delivery of oAd is a promising strategy for achieving synergistic antitumor efficacy with improved safety profiles. SIGNIFICANCE: Mesenchymal stem cells enable delivery of an oncolytic adenovirus specifically to the tumor without posing any risk associated with systemic administration of naked virions to the host.
©2019 American Association for Cancer Research.