Hyaluronic acid (HA) exists naturally as an important component of the extracellular matrix (ECM) in the human body. In recent decades, HA has been widely used in bone regeneration, and is currently a popular topic, particularly in the craniofacial and dental fields. From maxilla augmentation to craniofacial bone trauma, there is now a large demand for bone regenerative therapy. Serving as a cell-seeding scaffold or a carrier for bioactive components, hyaluronic acid-incorporated scaffolds and carriers in bone regeneration can be fabricated into either rigid or colloidal forms. Since the type of material used is a critical factor in the biological properties of a scaffold, HA derivatives or HA-incorporated composite scaffolds have shown excellent potential for improving osteogenesis and mineralization. Furthermore, in order to better enhance osteogenesis, local delivery carriers based on hyaluronic acid derivatives, rather than specifically serving as scaffolds, can be established by loading different osteoinductive or osteogenetic components and acquiring different release patterns. Such osteoinductive carriers immobilized on implant surfaces are also effective in improving osseointegration. Thus, as such a competent biomaterial, hyaluronic acid should be considered a promising tool in bone regeneration.
Keywords: Bone regeneration; Hyaluronic acid; Osteogenesis.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.