More Web Proxy on the site http://driver.im/
The Greenland Shark (Somniosus microcephalus) is the most common bycatch in the Greenland halibut (Reinhardtius hippoglossoides) bottom longline fishery in Cumberland Sound, Canada. Historically, this inshore fishery has been prosecuted through the ice during winter but winter storms and unpredictable landfast ice conditions since the mid-1990s have led to interest in developing a summer fishery during the ice-free season. However, bycatch of Greenland shark was found to increase substantially with 570 sharks captured during an experimental Greenland halibut summer fishery (i.e., mean of 6.3 sharks per 1,000 hooks set) and mortality was reported to be about 50% due in part to fishers killing sharks that were severely entangled in longline gear. This study investigated whether the SMART (Selective Magnetic and Repellent-Treated) hook technology is a practical deterrent to Greenland shark predation and subsequent bycatch on bottom longlines. Greenland shark feeding behavior, feeding kinematics, and variables affecting entanglement/disentanglement and release are also described. The SMART hook failed to deter Greenland shark predation, i.e., all sharks were captured on SMART hooks, some with more than one SMART hook in their jaw. Moreover, recently captured Greenland sharks did not exhibit a behavioral response to SMART hooks. In situ observations of Greenland shark feeding show that this species uses a powerful inertial suction mode of feeding and was able to draw bait into the mouth from a distance of 25-35 cm. This method of feeding is suggested to negate the potential deterrent effects of electropositive metal and magnetic alloy substitutions to the SMART hook technology. The number of hooks entangled by a Greenland shark and time to disentangle and live-release a shark was found to increase with body length.
Keywords: Bycatch mitigation; Feeding behavior; Feeding kinematics; Greenland shark; Inertial suction; Longlines; Shark deterrent technology.