More Web Proxy on the site http://driver.im/
The Sigma-1 receptor (Sig-1R) has been described as a pluripotent modulator of distinct physiological functions and its involvement in various central and peripheral pathological disorders has been demonstrated. However, further investigations are required to understand the complex role of the Sig-1R as a molecular chaperon. A specific PET radioligand would provide a powerful tool in Sig-1R related studies. As part of our efforts to develop a Sig-1R PET radioligand that shows antagonistic properties, we investigated the suitability of 1-(4-(6-methoxynaphthalen-1-yl)butyl)-4-methylpiperidine (designated PB212) for imaging Sig-1R. PB212 is a Sig-1R antagonist and exhibits subnanomolar affinity (Ki = 0.030 nM) towards Sig-1R as well as good to excellent selectivity over Sig-2R. The radiolabelling of [11C]PB212 was accomplished by O-methylation of the phenolic precursor using [11C]MeI. In vitro autoradiography with [11C]PB212 on WT and Sig-1R KO mouse brain tissues revealed high non-specific binding, however using rat spleen tissues from CD1 mice and Wistar rats, high specific binding was observed. The spleen is known to have a high expression of Sig-1R. In vivo PET experiments in Wistar rats also showed high accumulation of [11C]PB212 in the spleen. Injection of Sig-1R binding compounds, haloperidol (1 mg/kg) or fluspidine (1 mg/kg) shortly before [11C]PB212 administration induced a drastic reduction of radiotracer accumulation, confirming the specificity of [11C]PB212 towards Sig-1R in the spleen. The results obtained herein indicate that although [11C]PB212 is not suitable for imaging Sig-1R in the brain, it is a promising candidate for the detection and quantification of Sig-1Rs in the periphery.
Keywords: PB212; PET imaging; sigma-1 receptor.