More Web Proxy on the site http://driver.im/
From unicellular to multicellular organisms, cell-cycle progression is tightly coupled to biosynthetic and bioenergetic demands. Accumulating evidence has demonstrated the G1/S-phase transition as a key checkpoint where cells respond to their metabolic status and commit to replicating the genome. However, the mechanism underlying the coordination of metabolism and the G2/M-phase transition in mammalian cells remains unclear. Here, we show that the activation of AMP-activated protein kinase (AMPK), a highly conserved cellular energy sensor, significantly delays mitosis entry. The cell-cycle G2/M-phase transition is controlled by mitotic cyclin-dependent kinase complex (CDC2-cyclin B), which is inactivated by WEE1 family protein kinases and activated by the opposing phosphatase CDC25C. AMPK directly phosphorylates CDC25C on serine 216, a well-conserved inhibitory phosphorylation event, which has been shown to mediate DNA damage-induced G2-phase arrest. The acute induction of CDC25C or suppression of WEE1 partially restores mitosis entry in the context of AMPK activation. These findings suggest that AMPK-dependent phosphorylation of CDC25C orchestrates a metabolic checkpoint for the cell-cycle G2/M-phase transition.
Keywords: AMP-activated kinase (AMPK); CDC25C; cell cycle; metabolic checkpoint; metabolic regulation; mitosis; protein phosphorylation.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.