[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques

Neuro Oncol. 2016 Mar;18(3):417-25. doi: 10.1093/neuonc/nov127. Epub 2015 Jul 16.

Abstract

Background: MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB).

Methods: One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients.

Results: Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy.

Conclusions: By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood-brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients.

Keywords: glioblastoma; imaging; machine learning; predict; survival.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Algorithms
  • Blood-Brain Barrier
  • Brain Neoplasms / pathology*
  • Brain Neoplasms / physiopathology
  • Cohort Studies
  • Female
  • Glioblastoma / genetics
  • Glioblastoma / mortality*
  • Glioblastoma / pathology*
  • Humans
  • Image Interpretation, Computer-Assisted* / methods
  • Machine Learning
  • Magnetic Resonance Imaging / methods
  • Male
  • Middle Aged