The quality of harvested wheat grain can deteriorate markedly during the post-harvest management stages. Biotic factors, such as grain type and ripeness, coupled with the prevailing abiotic factors, such as water content and temperature, and also preservative concentration will influence the safe storage life and the level of contamination with mycotoxins. These mycotoxins include deoxynivalenol (DON) produced pre-harvest and zearalenone (ZEA) produced post-harvest by Fusarium graminearum and Fusarium poae, respectively, ochratoxin (OTA) produced by Penicillium verrucosum post-harvest in cool damp northern European climates, and perhaps T-2 and HT-2 toxins produced by Fusarium langsethiae. This review presents recent data on the relationship between dry matter losses caused by F. graminearum under different environmental regimes (water activities, temperatures) and the level of contamination with DON. This is important as poor post-harvest drying and storage management may exacerbate DON contamination already present pre-harvest. It is thus critical to relate the environmental factors in stored wheat grain during storage, especially of intergranular relative humidity (RH) and temperature, to safe storage periods without spoilage or risk from increased DON contamination. The growth/no growth and DON/no DON (F. graminearum) and OTA/no toxin production (P. verrucosum) have been used to build a model with a simple interface to link temperature and RH values to the potential risk level which may allow growth or toxin production. This paper also considers the use of modified atmospheres, preservatives and biocontrol to minimise DON and OTA in moist wheat grain. These approaches together with clear monitoring criteria and hygiene could contribute to better post-harvest management of stored temperate cereals and ensure that mycotoxin contamination is minimised during this key phase in the food/feed chain.