Reconstituted skim milk at pH from 6.5 to 7.1 was unheated, preheated (68 degrees C/20 min), or heated at 90 degrees C for 20-30 min. On preheating, the size of the casein micelles decreased by about 5-20 nm, with a greater effect at higher pH. The casein micelle size of the heated milk at pH 6.5 increased by about 30 nm when compared to that of the unheated or preheated milk. As the pH was increased before heating, the particle size gradually decreased so that, at pH 7.1, the size was markedly smaller than that for the unheated milk and slightly smaller than that for the preheated milk. High levels (about 85%) of denatured whey protein associated with the casein micelles at pH 6.5, and this level decreased as the pH increased so that, at pH 7.1, low levels (about 15%) were associated with the micelles. Low levels of alphaS-casein and beta-casein were found in the serum regardless of the heat treatment or the pH of the milk. At pH 6.5, low levels (about 10%) of kappa-casein were also found in the milk serum. In the unheated milk, the level of serum kappa-casein increased slightly with increasing pH; in the heated samples, the level of serum kappa-casein increased markedly and linearly with increasing pH so that, at pH 7.1, about 70% of the kappa-casein was in the serum phase. The results of this study indicate that the pH dependence of the levels of serum phase kappa-casein may be responsible for the change in distribution of the whey proteins between the colloidal and serum phases. This is the first report to demonstrate significant levels of dissociation of kappa-casein from the micelles at pH between 6.5 and 6.7, although this dissociation phenomenon is well known on heating milk at high temperatures at pH above 6.7.