[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Horizontal ribs

MedGen UID:
812840
Concept ID:
C3806510
Finding
HPO: HP:0000888

Definition

A horizontal (flat) conformation of the ribs, the long curved bones that form the rib cage and normally progressively oblique (slanted) from ribs 1 through 9, then less slanted through rib 12. [from HPO]

Term Hierarchy

Conditions with this feature

Ellis-van Creveld syndrome
MedGen UID:
8584
Concept ID:
C0013903
Disease or Syndrome
Ellis-van Creveld syndrome is an autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly, and dysplastic nails and teeth. Congenital cardiac defects, most commonly a defect of primary atrial septation producing a common atrium, occur in 60% of affected individuals (summary by Ruiz-Perez et al., 2000). The clinical features of the Ellis-van Creveld syndrome appear to be identical regardless of whether the disorder is caused by mutation in the EVC gene (604831) or in the EVC2 gene (607261) (Ruiz-Perez et al., 2003, Galdzicka et al., 2002).
Short-rib thoracic dysplasia 6 with or without polydactyly
MedGen UID:
44252
Concept ID:
C0024507
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500).
Asphyxiating thoracic dystrophy 3
MedGen UID:
19860
Concept ID:
C0036069
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500).
Achondrogenesis type II
MedGen UID:
66315
Concept ID:
C0220685
Congenital Abnormality
Achondrogenesis type II (ACG2) is characterized by severe micromelic dwarfism with small chest and prominent abdomen, incomplete ossification of the vertebral bodies, and disorganization of the costochondral junction. ACG2 is an autosomal dominant trait occurring mostly as new mutations. However, somatic and germline mosaicism have been reported (summary by Comstock et al., 2010).
Type IV short rib polydactyly syndrome
MedGen UID:
96578
Concept ID:
C0432198
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). Patients with a clinical diagnosis of Beemer-Langer syndrome have been found to carry mutations in the IFT80 gene (611177); see SRTD2, 611263. For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500).
Thoracolaryngopelvic dysplasia
MedGen UID:
349978
Concept ID:
C1861197
Disease or Syndrome
A short-rib dysplasia with characteristics of thoracic dystrophy, laryngeal stenosis and a small pelvis. Less than 10 cases have been reported in the literature so far. Patients present with severe respiratory distress (requiring intubation) during the neonatal period. The rib shortening is less severe than in Jeune syndrome and the thorax is characteristically small, narrow and bell-shaped. The pelvis is reduced in all dimensions and the combination of the thorax anomalies and the small pelvis give the appearance of a protruding abdomen. Subglottic stenosis has also been described but it remains unclear whether this is a congenital anomaly or is secondary to long-term intubation. Transmission is autosomal dominant.
Cranioectodermal dysplasia 2
MedGen UID:
462224
Concept ID:
C3150874
Disease or Syndrome
Cranioectodermal dysplasia (CED) is a ciliopathy with skeletal involvement (narrow thorax, shortened proximal limbs, syndactyly, polydactyly, brachydactyly), ectodermal features (widely spaced hypoplastic teeth, hypodontia, sparse hair, skin laxity, abnormal nails), joint laxity, growth deficiency, and characteristic facial features (frontal bossing, low-set simple ears, high forehead, telecanthus, epicanthal folds, full cheeks, everted lower lip). Most affected children develop nephronophthisis that often leads to end-stage kidney disease in infancy or childhood, a major cause of morbidity and mortality. Hepatic fibrosis and retinal dystrophy are also observed. Dolichocephaly, often secondary to sagittal craniosynostosis, is a primary manifestation that distinguishes CED from most other ciliopathies. Brain malformations and developmental delay may also occur.
Methylmalonic acidemia with homocystinuria, type cblJ
MedGen UID:
766829
Concept ID:
C3553915
Disease or Syndrome
Combined methylmalonic aciduria (MMA) and homocystinuria is a genetically heterogeneous metabolic disorder of cobalamin (cbl; vitamin B12) metabolism, which is essential for hematologic and neurologic function. Biochemically, the defect causes decreased levels of the coenzymes adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl), which results in decreased activity of the respective enzymes methylmalonyl-CoA mutase (MUT; 609058) and methyltetrahydrofolate:homocysteine methyltransferase, also known as methionine synthase (MTR; 156570). The cblJ type is phenotypically and biochemically similar to the cblF type (MAHCF; 277380) (summary by Coelho et al., 2012).
Short-rib thoracic dysplasia 11 with or without polydactyly
MedGen UID:
816530
Concept ID:
C3810200
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500).
Short-rib thoracic dysplasia 13 with or without polydactyly
MedGen UID:
898712
Concept ID:
C4225378
Disease or Syndrome
An asphyxiating thoracic dystrophy that has material basis in homozygous mutation in the CEP120 gene on chromosome 5q23.
Short-rib thoracic dysplasia 15 with polydactyly
MedGen UID:
934691
Concept ID:
C4310724
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). SRTD15 is characterized by narrow thorax, oral and cardiovascular anomalies, short long bones, and postaxial polydactyly, in addition to other congenital anomalies. Considerable variability in features and in severity has been reported, with some affected individuals succumbing shortly after birth and others living to adulthood, even within the same family. For a discussion of genetic heterogeneity of short-rib thoracic dysplasia with or without polydactyly, see SRTD1 (208500).
Short-rib thoracic dysplasia 17 with or without polydactyly
MedGen UID:
1372794
Concept ID:
C4479416
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia with or without polydactyly, see SRTD1 (208500).
Asphyxiating thoracic dystrophy 1
MedGen UID:
1648057
Concept ID:
C4551856
Congenital Abnormality
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). Genetic Heterogeneity of Asphyxiating Thoracic Dysplasia SRTD1 has been mapped to chromosome 15q13. See also SRTD2 (611263), caused by mutation in the IFT80 gene (611177); SRTD3 (613091), caused by mutation in the DYNC2H1 gene (603297); SRTD4 (613819), caused by mutation in the TTC21B gene (612014); SRTD5 (614376), caused by mutation in the WDR19 gene (608151); SRTD6 (263520), caused by mutation in the NEK1 gene (604588); SRTD7 (614091), caused by mutation in the WDR35 gene (613602); SRTD8 (615503), caused by mutation in the WDR60 gene (615462); SRTD9 (266920), caused by mutation in the IFT140 gene (614620); SRTD10 (615630), caused by mutation in the IFT172 gene (607386); SRTD11 (615633), caused by mutation in the WDR34 gene (613363); SRTD13 (616300), caused by mutation in the CEP120 gene (613446); SRTD14 (616546), caused by mutation in the KIAA0586 gene (610178); SRTD15 (617088), caused by mutation in the DYNC2LI1 gene (617083); SRTD16 (617102), caused by mutation in the IFT52 gene (617094); SRTD17 (617405), caused by mutation in the TCTEX1D2 gene (617353); SRTD18 (617866), caused by mutation in the IFT43 gene (614068); SRTD19 (617895), caused by mutation in the IFT81 gene (605489); SRTD20 (617925), caused by mutation in the INTU gene (610621); and SRTD21 (619479), caused by mutation in the KIAA0753 gene (617112). See also SRTD12 (Beemer-Langer syndrome; 269860).
Short-rib thoracic dysplasia 19 with or without polydactyly
MedGen UID:
1635837
Concept ID:
C4693524
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia with or without polydactyly, see SRTD1 (208500).
Short-rib thoracic dysplasia 20 with polydactyly
MedGen UID:
1634931
Concept ID:
C4693616
Disease or Syndrome
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330).
Regressive spondylometaphyseal dysplasia
MedGen UID:
1648288
Concept ID:
C4747922
Disease or Syndrome
Rhizomelic skeletal dysplasia with or without Pelger-Huet anomaly (SKPHA) is an autosomal recessive disorder characterized by rhizomelic skeletal dysplasia of variable severity with or without abnormal nuclear shape and chromatin organization in blood granulocytes (Hoffmann et al., 2002; Borovik et al., 2013; Collins et al., 2020). Initial skeletal features may improve with age (Sobreira et al., 2014).

Recent clinical studies

Etiology

Pasha S
BMC Musculoskelet Disord 2019 Aug 22;20(1):384. doi: 10.1186/s12891-019-2754-2. PMID: 31438927Free PMC Article
Taylor SP, Dantas TJ, Duran I, Wu S, Lachman RS; University of Washington Center for Mendelian Genomics Consortium, Nelson SF, Cohn DH, Vallee RB, Krakow D
Nat Commun 2015 Jun 16;6:7092. doi: 10.1038/ncomms8092. PMID: 26077881Free PMC Article
Saletti D, Grigio TR, Tonelli D, Ribeiro Júnior OD, Marini F
Rev Bras Anestesiol 2012 May-Jun;62(3):424-31. doi: 10.1016/S0034-7094(12)70142-3. PMID: 22656687
Nair V, Prakash KL, Bhat BV
Indian J Pediatr 2007 Nov;74(11):1029-31. doi: 10.1007/s12098-007-0189-5. PMID: 18057685
Myong NH, Park JW, Chi JG
J Korean Med Sci 1998 Apr;13(2):201-6. doi: 10.3346/jkms.1998.13.2.201. PMID: 9610623Free PMC Article

Diagnosis

Inubashiri E, Kuroki K, Maeda N, Kawai K, Akutagawa N, Sugawara M, Imai S, Minami K, Nomura Y
J Med Ultrason (2001) 2015 Apr;42(2):281-5. Epub 2014 Nov 22 doi: 10.1007/s10396-014-0597-x. PMID: 26576586
Başgül Yiğiter A, Güdücü N, Kavak ZN, Işçi H, Elçioğlu N
Genet Couns 2012;23(2):231-7. PMID: 22876582
Saletti D, Grigio TR, Tonelli D, Ribeiro Júnior OD, Marini F
Rev Bras Anestesiol 2012 May-Jun;62(3):424-31. doi: 10.1016/S0034-7094(12)70142-3. PMID: 22656687
Nair V, Prakash KL, Bhat BV
Indian J Pediatr 2007 Nov;74(11):1029-31. doi: 10.1007/s12098-007-0189-5. PMID: 18057685

Prognosis

Pasha S
BMC Musculoskelet Disord 2019 Aug 22;20(1):384. doi: 10.1186/s12891-019-2754-2. PMID: 31438927Free PMC Article

Clinical prediction guides

Pasha S
BMC Musculoskelet Disord 2019 Aug 22;20(1):384. doi: 10.1186/s12891-019-2754-2. PMID: 31438927Free PMC Article
Saletti D, Grigio TR, Tonelli D, Ribeiro Júnior OD, Marini F
Rev Bras Anestesiol 2012 May-Jun;62(3):424-31. doi: 10.1016/S0034-7094(12)70142-3. PMID: 22656687

Supplemental Content

Table of contents

    Clinical resources

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...