Familial hypokalemia-hypomagnesemia- MedGen UID:
- 75681
- •Concept ID:
- C0268450
- •
- Disease or Syndrome
Gitelman syndrome (GTLMNS) is an autosomal recessive renal tubular salt-wasting disorder characterized by hypokalemic metabolic alkalosis with hypomagnesemia and hypocalciuria. It is the most common renal tubular disorder among Caucasians (prevalence of 1 in 40,000). Most patients have onset of symptoms as adults, but some present in childhood. Clinical features include transient periods of muscle weakness and tetany, abdominal pains, and chondrocalcinosis (summary by Glaudemans et al., 2012). Gitelman syndrome is sometimes referred to as a mild variant of classic Bartter syndrome (607364).
For a discussion of genetic heterogeneity of Bartter syndrome, see 607364.
Infantile neuroaxonal dystrophy- MedGen UID:
- 82852
- •Concept ID:
- C0270724
- •
- Disease or Syndrome
PLA2G6-associated neurodegeneration (PLAN) comprises a continuum of three phenotypes with overlapping clinical and radiologic features: Infantile neuroaxonal dystrophy (INAD). Atypical neuroaxonal dystrophy (atypical NAD). PLA2G6-related dystonia-parkinsonism. INAD usually begins between ages six months and three years with psychomotor regression or delay, hypotonia, and progressive spastic tetraparesis. Many affected children never learn to walk or lose the ability shortly after attaining it. Strabismus, nystagmus, and optic atrophy are common. Disease progression is rapid, resulting in severe spasticity, progressive cognitive decline, and visual impairment. Many affected children do not survive beyond their first decade. Atypical NAD shows more phenotypic variability than INAD. In general, onset is in early childhood but can be as late as the end of the second decade. The presenting signs may be gait instability, ataxia, or speech delay and autistic features, which are sometimes the only evidence of disease for a year or more. Strabismus, nystagmus, and optic atrophy are common. Neuropsychiatric disturbances including impulsivity, poor attention span, hyperactivity, and emotional lability are also common. The course is fairly stable during early childhood and resembles static encephalopathy but is followed by neurologic deterioration between ages seven and 12 years. PLA2G6-related dystonia-parkinsonism has a variable age of onset, but most individuals present in early adulthood with gait disturbance or neuropsychiatric changes. Affected individuals consistently develop dystonia and parkinsonism (which may be accompanied by rapid cognitive decline) in their late teens to early twenties. Dystonia is most common in the hands and feet but may be more generalized. The most common features of parkinsonism in these individuals are bradykinesia, resting tremor, rigidity, and postural instability.
Autosomal dominant hypophosphatemic rickets- MedGen UID:
- 83346
- •Concept ID:
- C0342642
- •
- Disease or Syndrome
Autosomal dominant hypophosphatemic rickets (ADHR) is characterized by isolated renal phosphate wasting, hypophosphatemia, and inappropriately normal 1,25-dihydroxyvitamin D3 (calcitriol) levels. Patients frequently present with bone pain, rickets, and tooth abscesses. In contrast to X-linked dominant hypophosphatemic rickets (XLH; 307800), ADHR shows incomplete penetrance, variable age at onset (childhood to adult), and resolution of the phosphate-wasting defect in rare cases (Econs et al., 1997).
See also hypophosphatemic bone disease (146350).
Genetic Heterogeneity of Hypophosphatemic Rickets
Other forms of hypophosphatemic rickets include autosomal recessive forms, i.e., ARHR1 (241520), caused by mutation in the DMP1 gene (600980) on chromosome 4q21, and ARHR2 (613312), caused by mutation in the ENPP1 gene (173335) on chromosome 6q23. An X-linked dominant form (XLHR; 307800) is caused by mutation in the PHEX gene (300550), and an X-linked recessive form (300554) is caused by mutation in the CLCN5 gene (300008).
Clinical Variability of Hypophosphatemic Rickets
Hypophosphatemic rickets can be caused by disorders of vitamin D metabolism or action (see VDDR1A, 264700). A form of hypophosphatemic rickets with hypercalciuria (HHRH; 241530) is caused by mutation in the SLC34A3 gene (609826), and there is evidence that a form of hypophosphatemic rickets with hyperparathyroidism (612089) may be caused by a translocation that results in an increase in alpha-klotho levels (KLOTHO; 604824).
Eichsfeld type congenital muscular dystrophy- MedGen UID:
- 98047
- •Concept ID:
- C0410180
- •
- Disease or Syndrome
Rigid spine muscular dystrophy (RSMD) is a form of congenital muscular dystrophy. Disorders in this group cause muscle weakness and wasting (atrophy) beginning very early in life. In particular, RSMD involves weakness of the muscles of the torso and neck (axial muscles). Other characteristic features include spine stiffness and serious breathing problems.\n\nIn RSMD, muscle weakness is often apparent at birth or within the first few months of life. Affected infants can have poor head control and weak muscle tone (hypotonia), which may delay the development of motor skills such as crawling or walking. Over time, muscles surrounding the spine atrophy, and the joints of the spine develop deformities called contractures that restrict movement. The neck and back become stiff and rigid, and affected children have limited ability to move their heads up and down or side to side. Affected children eventually develop an abnormal curvature of the spine (scoliosis). In some people with RSMD, muscles in the inner thighs also atrophy, although it does not impair the ability to walk.\n\nA characteristic feature of RSMD is breathing difficulty (respiratory insufficiency) due to restricted movement of the torso and weakness of the diaphragm, which is the muscle that separates the abdomen from the chest cavity. The breathing problems, which tend to occur only at night, can be life-threatening. Many affected individuals require a machine to help them breathe (mechanical ventilation) during sleep.\n\nThe combination of features characteristic of RSMD, particularly axial muscle weakness, spine rigidity, and respiratory insufficiency, is sometimes referred to as rigid spine syndrome. While these features occur on their own in RSMD, they can also occur along with additional signs and symptoms in other muscle disorders. The features of rigid spine syndrome typically appear at a younger age in people with RSMD than in those with other muscle disorders.
Severe X-linked myotubular myopathy- MedGen UID:
- 98374
- •Concept ID:
- C0410203
- •
- Congenital Abnormality
X-linked myotubular myopathy (X-MTM), also known as myotubular myopathy (MTM), is characterized by muscle weakness that ranges from severe to mild. Approximately 80% of affected males present with severe (classic) X-MTM characterized by polyhydramnios, decreased fetal movement, and neonatal weakness, hypotonia, and respiratory failure. Motor milestones are significantly delayed and most individuals fail to achieve independent ambulation. Weakness is profound and often involves facial and extraocular muscles. Respiratory failure is nearly uniform, with most individuals requiring 24-hour ventilatory assistance. It is estimated that at least 25% of boys with severe X-MTM die in the first year of life, and those who survive rarely live into adulthood. Males with mild or moderate X-MTM (~20%) achieve motor milestones more quickly than males with the severe form; many ambulate independently, and may live into adulthood. Most require gastrostomy tubes and/or ventilator support. In all subtypes of X-MTM, the muscle disease is not obviously progressive. Female carriers of X-MTM are generally asymptomatic, although manifesting heterozygotes are increasingly being identified. In affected females, symptoms range from severe, generalized weakness presenting in childhood, with infantile onset similar to affected male patients, to mild (often asymmetric) weakness manifesting in adulthood. Affected adult females may experience progressive respiratory decline and ultimately require ventilatory support.
Congenital myopathy with fiber type disproportion- MedGen UID:
- 108177
- •Concept ID:
- C0546264
- •
- Disease or Syndrome
Congenital fiber-type disproportion is a condition that primarily affects skeletal muscles, which are muscles used for movement. People with this condition typically experience muscle weakness (myopathy), particularly in the muscles of the shoulders, upper arms, hips, and thighs. Weakness can also affect the muscles of the face and muscles that control eye movement (ophthalmoplegia), sometimes causing droopy eyelids (ptosis). Individuals with congenital fiber-type disproportion generally have a long face, a high arch in the roof of the mouth (high-arched palate), and crowded teeth.\n\nIndividuals with congenital fiber-type disproportion may have joint deformities (contractures) and an abnormally curved lower back (lordosis) or a spine that curves to the side (scoliosis). Approximately 30 percent of people with this disorder experience mild to severe breathing problems related to weakness of muscles needed for breathing. Some people who experience these breathing problems require use of a machine to help regulate their breathing at night (noninvasive mechanical ventilation), and occasionally during the day as well. About 30 percent of affected individuals have difficulty swallowing due to muscle weakness in the throat. Rarely, people with this condition have a weakened and enlarged heart muscle (dilated cardiomyopathy).\n\nThe severity of congenital fiber-type disproportion varies widely. It is estimated that up to 25 percent of affected individuals experience severe muscle weakness at birth and die in infancy or childhood. Others have only mild muscle weakness that becomes apparent in adulthood. Most often, the signs and symptoms of this condition appear by age 1. The first signs of this condition are usually decreased muscle tone (hypotonia) and muscle weakness. In most cases, muscle weakness does not worsen over time, and in some instances it may improve. Although motor skills such as standing and walking may be delayed, many affected children eventually learn to walk. These individuals often have less stamina than their peers, but they remain active. Rarely, people with this condition have a progressive decline in muscle strength over time. These individuals may lose the ability to walk and require wheelchair assistance.
Brown-Vialetto-van Laere syndrome 1- MedGen UID:
- 163239
- •Concept ID:
- C0796274
- •
- Disease or Syndrome
Brown-Vialetto-Van Laere syndrome is a rare autosomal recessive neurologic disorder characterized by sensorineural hearing loss and a variety of cranial nerve palsies, usually involving the motor components of the seventh and ninth to twelfth (more rarely the third, fifth, and sixth) cranial nerves. Spinal motor nerves and, less commonly, upper motor neurons are sometimes affected, giving a picture resembling amyotrophic lateral sclerosis (ALS; 105400). The onset of the disease is usually in the second decade, but earlier and later onset have been reported. Hearing loss tends to precede the onset of neurologic signs, mostly progressive muscle weakness causing respiratory compromise. However, patients with very early onset may present with bulbar palsy and may not develop hearing loss until later. The symptoms, severity, and disease duration are variable (summary by Green et al., 2010).
Genetic Heterogeneity of Brown-Vialetto-Van Laere Syndrome
See also BVVLS2 (614707), caused by mutation in the SLC52A2 gene (607882) on chromosome 8q.
Renal hypomagnesemia 2- MedGen UID:
- 320542
- •Concept ID:
- C1835171
- •
- Disease or Syndrome
Autosomal dominant renal hypomagnesium wasting (HOMG2) is characterized by hypomagnesemia due to renal magnesium loss and is associated with hypocalciuria. Patients may have convulsions and muscle cramps, but they may also be asymptomatic except for the development of chondrocalcinosis at an adult age (summary by Knoers, 2009 and de Baaij et al., 2015).
For a discussion of genetic heterogeneity of renal hypomagnesemia, see 602014.
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 2- MedGen UID:
- 322925
- •Concept ID:
- C1836460
- •
- Disease or Syndrome
Progressive external ophthalmoplegia is characterized by multiple mitochondrial DNA deletions in skeletal muscle. The most common clinical features include adult onset of weakness of the external eye muscles and exercise intolerance. Both autosomal dominant and autosomal recessive inheritance can occur; autosomal recessive inheritance is usually more severe (Filosto et al., 2003; Luoma et al., 2004).
PEO caused by mutations in the POLG gene are associated with more complicated phenotypes than those forms caused by mutations in the ANT1 or C10ORF2 genes (Lamantea et al., 2002).
For a general phenotypic description and a discussion of genetic heterogeneity of autosomal dominant progressive external ophthalmoplegia, see PEOA1 (157640).
Familial pseudohyperkalemia- MedGen UID:
- 324588
- •Concept ID:
- C1836705
- •
- Disease or Syndrome
'Familial pseudohyperkalemia' (PSHK) is a term that was coined to describe conditions in which a patient presents with pseudohyperkalemia as a result of a temperature-based abnormality in the transport of potassium (K) and sodium (Na) across the red cell membrane, in association with essentially normal hematology. PSHK can be considered to be the clinically benign, nonhemolytic cousin of hereditary stomatocytic leaky-cell, congenital hemolytic anemias (see 194380) (summary by Gore et al., 2002).
For a discussion of clinical and genetic heterogeneity of the hereditary stomatocytoses, see 194380.
Myosin storage myopathy- MedGen UID:
- 374868
- •Concept ID:
- C1842160
- •
- Disease or Syndrome
Autosomal dominant myosin storage congenital myopathy-7A (CMYO7A) is a skeletal muscle disorder with wide phenotypic variability. The age at symptom onset can range from early childhood to late adulthood. Affected individuals have proximal muscle weakness affecting the upper and lower limbs and distal muscle weakness of the lower limbs, resulting in gait difficulties and scapular winging (scapuloperoneal myopathy). Additional features may include thin habitus, high-arched palate, foot drop, pes cavus, calf pseudohypertrophy, and decreased reflexes. The severity is also variable: some patients develop respiratory insufficiency, joint contractures, and scoliosis in the first decades, whereas others are clinically unaffected, but show subtle signs of the disorder on examination. Serum creatine kinase may be normal or elevated. The disease is usually slowly progressive and most patients remain ambulatory. Skeletal muscle biopsy can show different abnormalities, including hyaline bodies, type 1 fiber predominance, congenital fiber-type disproportion (CFTD), and nonspecific myopathic changes with myofibrillar disarray. Intrafamilial variability is common (Dye et al., 2006; Pegoraro et al., 2007; review by Tajsharghi and Oldfors, 2013).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis- MedGen UID:
- 375302
- •Concept ID:
- C1843851
- •
- Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Bartter disease type 3- MedGen UID:
- 335399
- •Concept ID:
- C1846343
- •
- Disease or Syndrome
Bartter syndrome refers to a group of disorders that are unified by autosomal recessive transmission of impaired salt reabsorption in the thick ascending loop of Henle with pronounced salt wasting, hypokalemic metabolic alkalosis, and hypercalciuria. Clinical disease results from defective renal reabsorption of sodium chloride in the thick ascending limb (TAL) of the Henle loop, where 30% of filtered salt is normally reabsorbed (Simon et al., 1997).
Patients with antenatal (or neonatal) forms of Bartter syndrome (e.g., BARTS1, 601678) typically present with premature birth associated with polyhydramnios and low birth weight and may develop life-threatening dehydration in the neonatal period. Patients with classic Bartter syndrome present later in life and may be sporadically asymptomatic or mildly symptomatic (summary by Simon et al., 1996 and Fremont and Chan, 2012).
Genetic Heterogeneity of Bartter Syndrome
Antenatal Bartter syndrome type 1 (601678) is caused by loss-of-function mutations in the butmetanide-sensitive Na-K-2Cl cotransporter NKCC2 (SLC12A1; 600839). Antenatal Bartter syndrome type 2 (241200) is caused by loss-of-function mutations in the ATP-sensitive potassium channel ROMK (KCNJ1; 600359). One form of neonatal Bartter syndrome with sensorineural deafness, Bartter syndrome type 4A (602522), is caused by mutation in the BSND gene (606412). Another form of neonatal Bartter syndrome with sensorineural deafness, Bartter syndrome type 4B (613090), is caused by simultaneous mutation in both the CLCNKA (602024) and CLCNKB (602023) genes.
Also see autosomal dominant hypocalcemia-1 with Bartter syndrome (601198), which is sometimes referred to as Bartter syndrome type 5 (Fremont and Chan, 2012), caused by mutation in the CASR gene (601199).
See Gitelman syndrome (GTLMN; 263800), which is often referred to as a mild variant of Bartter syndrome, caused by mutation in the thiazide-sensitive sodium-chloride cotransporter SLC12A3 (600968).
Muscular dystrophy-dystroglycanopathy type B5- MedGen UID:
- 335764
- •Concept ID:
- C1847759
- •
- Disease or Syndrome
MDDGB5 is an autosomal recessive congenital muscular dystrophy with impaired intellectual development and structural brain abnormalities (Brockington et al., 2001). It is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies' (Mercuri et al., 2006).
For a discussion of genetic heterogeneity of congenital muscular dystrophy-dystroglycanopathy type B, see MDDGB1 (613155).
Nemaline myopathy 2- MedGen UID:
- 342534
- •Concept ID:
- C1850569
- •
- Disease or Syndrome
Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014).
Genetic Heterogeneity of Nemaline Myopathy
See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5A (605355), also known as Amish nemaline myopathy, NEM5B (620386), and NEM5C (620389), all caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001).
Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006).
Congenital multicore myopathy with external ophthalmoplegia- MedGen UID:
- 340597
- •Concept ID:
- C1850674
- •
- Disease or Syndrome
Congenital myopathy-1B (CMYO1B) is an autosomal recessive disorder of skeletal muscle characterized by severe hypotonia and generalized muscle weakness apparent soon after birth or in early childhood with delayed motor development, generalized muscle weakness and atrophy, and difficulty walking or running. Affected individuals show proximal muscle weakness with axial and shoulder girdle involvement, external ophthalmoplegia, and bulbar weakness, often resulting in feeding difficulties and respiratory insufficiency. Orthopedic complications such as joint laxity, distal contractures, hip dislocation, cleft palate, and scoliosis are commonly observed. Serum creatine kinase is normal. The phenotype is variable in severity (Jungbluth et al., 2005; Bharucha-Goebel et al., 2013). Some patients show symptoms in utero, including reduced fetal movements, polyhydramnios, and intrauterine growth restriction. The most severely affected patients present in utero with fetal akinesia, arthrogryposis, and lung hypoplasia resulting in fetal or perinatal death (McKie et al., 2014). Skeletal muscle biopsy of patients with recessive RYR1 mutations can show variable features, including multiminicores (Ferreiro and Fardeau, 2002), central cores (Jungbluth et al., 2002), congenital fiber-type disproportion (CFTD) (Monnier et al., 2009), and centronuclear myopathy (Wilmshurst et al., 2010).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Myopathy, proximal, and ophthalmoplegia- MedGen UID:
- 381340
- •Concept ID:
- C1854106
- •
- Disease or Syndrome
Congenital myopathy-6 with ophthalmoplegia (CMYO6) is a relatively mild muscle disorder characterized by childhood onset of symptoms. The disorder is either slowly progressive or nonprogressive, and affected individuals retain ambulation, although there is variable severity. CMYO6 can show both autosomal dominant and autosomal recessive inheritance; the phenotype is similar in both forms (summary by Lossos et al., 2005 and Tajsharghi et al., 2014).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Bartter disease type 2- MedGen UID:
- 343428
- •Concept ID:
- C1855849
- •
- Disease or Syndrome
Bartter syndrome refers to a group of disorders that are unified by autosomal recessive transmission of impaired salt reabsorption in the thick ascending loop of Henle with pronounced salt wasting, hypokalemic metabolic alkalosis, and hypercalciuria. Clinical disease results from defective renal reabsorption of sodium chloride in the thick ascending limb (TAL) of the Henle loop, where 30% of filtered salt is normally reabsorbed (Simon et al., 1997).
Patients with antenatal forms of Bartter syndrome typically present with premature birth associated with polyhydramnios and low birth weight and may develop life-threatening dehydration in the neonatal period. Patients with classic Bartter syndrome (see BARTS3, 607364) present later in life and may be sporadically asymptomatic or mildly symptomatic (summary by Simon et al., 1996 and Fremont and Chan, 2012).
For a discussion of genetic heterogeneity of Bartter syndrome, see 607364.
Sengers syndrome- MedGen UID:
- 395228
- •Concept ID:
- C1859317
- •
- Disease or Syndrome
Sengers syndrome is an autosomal recessive mitochondrial disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Mental development is normal, but affected individuals may die early from cardiomyopathy (summary by Mayr et al., 2012). Skeletal muscle biopsies of 2 affected individuals showed severe mtDNA depletion (Calvo et al., 2012).
Congenital myasthenic syndrome 5- MedGen UID:
- 400481
- •Concept ID:
- C1864233
- •
- Disease or Syndrome
Congenital myasthenic syndromes (CMS) are a group of inherited disorders affecting the neuromuscular junction. Patients present clinically with onset of variable muscle weakness between infancy and adulthood. These disorders have been classified according to the location of the defect: presynaptic, synaptic, and postsynaptic. Endplate acetylcholinesterase deficiency is an autosomal recessive congenital myasthenic syndrome characterized by a defect within the synapse at the neuromuscular junction (NMJ). Mutations in COLQ result in a deficiency of acetylcholinesterase (AChE), which causes prolonged synaptic currents and action potentials due to extended residence of acetylcholine in the synaptic space. Treatment with ephedrine may be beneficial; AChE inhibitors and amifampridine should be avoided (summary by Engel et al., 2015).
For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Bartter disease type 1- MedGen UID:
- 355727
- •Concept ID:
- C1866495
- •
- Disease or Syndrome
Bartter syndrome refers to a group of disorders that are unified by autosomal recessive transmission of impaired salt reabsorption in the thick ascending loop of Henle with pronounced salt wasting, hypokalemic metabolic alkalosis, and hypercalciuria. Clinical disease results from defective renal reabsorption of sodium chloride in the thick ascending limb (TAL) of the Henle loop, where 30% of filtered salt is normally reabsorbed (Simon et al., 1997).
Patients with antenatal forms of Bartter syndrome typically present with premature birth associated with polyhydramnios and low birth weight and may develop life-threatening dehydration in the neonatal period. Patients with classic Bartter syndrome (see BARTS3, 607364) present later in life and may be sporadically asymptomatic or mildly symptomatic (summary by Simon et al., 1996 and Fremont and Chan, 2012).
For a discussion of genetic heterogeneity of Bartter syndrome, see 607364.
Mitochondrial trifunctional protein deficiency- MedGen UID:
- 370665
- •Concept ID:
- C1969443
- •
- Disease or Syndrome
Long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency and trifunctional protein (TFP) deficiency are caused by impairment of mitochondrial TFP. TFP has three enzymatic activities – long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase, and long-chain 3-ketoacyl-CoA thiolase. In individuals with LCHAD deficiency, there is isolated deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase, while deficiency of all three enzymes occurs in individuals with TFP deficiency. Individuals with TFP deficiency can present with a severe-to-mild phenotype, while individuals with LCHAD deficiency typically present with a severe-to-intermediate phenotype. Neonates with the severe phenotype present within a few days of birth with hypoglycemia, hepatomegaly, encephalopathy, and often cardiomyopathy. The intermediate phenotype is characterized by hypoketotic hypoglycemia precipitated by infection or fasting in infancy. The mild (late-onset) phenotype is characterized by myopathy and/or neuropathy. Long-term complications include peripheral neuropathy and retinopathy.
Early-onset myopathy with fatal cardiomyopathy- MedGen UID:
- 435983
- •Concept ID:
- C2673677
- •
- Disease or Syndrome
Salih myopathy is characterized by muscle weakness (manifest during the neonatal period or in early infancy) and delayed motor development; children acquire independent walking between ages 20 months and four years. In the first decade of life, global motor performance is stable or tends to improve. Moderate joint and neck contractures and spinal rigidity may manifest in the first decade but become more obvious in the second decade. Scoliosis develops after age 11 years. Cardiac dysfunction manifests between ages five and 16 years, progresses rapidly, and leads to death between ages eight and 20 years, usually from heart rhythm disturbances.
Congenital generalized lipodystrophy type 4- MedGen UID:
- 412871
- •Concept ID:
- C2750069
- •
- Disease or Syndrome
Congenital generalized lipodystrophy type 4 (CGL4) combines the phenotype of classic Berardinelli-Seip lipodystrophy (608594) with muscular dystrophy and cardiac conduction anomalies (Hayashi et al., 2009).
For a general description and a discussion of genetic heterogeneity of congenital generalized lipodystrophy, see CGL1 (608594).
Muscular dystrophy-dystroglycanopathy (congenital without intellectual disability), type B4- MedGen UID:
- 413465
- •Concept ID:
- C2751052
- •
- Disease or Syndrome
MDDGB4 is a rare autosomal recessive congenital muscular dystrophy that is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies.' In contrast to most dystroglycanopathies, impaired intellectual development is not a feature of MDDGB4 (Godfrey et al., 2007).
For a discussion of genetic heterogeneity of congenital muscular dystrophy-dystroglycanopathy type B, see MDDGB1 (613155).
Myofibrillar myopathy 6- MedGen UID:
- 414119
- •Concept ID:
- C2751831
- •
- Disease or Syndrome
Myofibrillar myopathy-6 is an autosomal dominant severe neuromuscular disorder characterized by onset in the first decade of rapidly progressive generalized and proximal muscle weakness, respiratory insufficiency, cardiomyopathy, and skeletal deformities related to muscle weakness. Muscle biopsy shows fiber-type grouping, disruption of the Z lines, and filamentous inclusions, and sural nerve biopsy shows a neuropathy, often with giant axonal neurons. Most patients are severely affected by the second decade and need cardiac transplant, ventilation, and/or a wheelchair (summary by Jaffer et al., 2012).
For a phenotypic description and a discussion of genetic heterogeneity of myofibrillar myopathy (MFM), see MFM1 (601419).
Congenital myasthenic syndrome 1A- MedGen UID:
- 419336
- •Concept ID:
- C2931107
- •
- Disease or Syndrome
Congenital myasthenic syndromes (CMS) are a group of inherited disorders affecting the neuromuscular junction (NMJ). Patients present clinically with onset of variable muscle weakness between infancy and adulthood. These disorders have been classified according to the location of the defect: presynaptic, synaptic, and postsynaptic, as well as by pathologic mechanism and electrophysiologic studies (i.e., acetylcholine receptor (AChR) deficiency, slow-channel or fast-channel kinetic defects at the AChR) (summary by Engel et al., 2003; Engel et al., 2015). Approximately 10% of CMS cases are presynaptic, 15% are synaptic, and 75% are postsynaptic, the majority of which are caused by AChR deficiency (Engel et al., 2003).
Slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the postsynaptic NMJ characterized by early-onset progressive muscle weakness. The disorder results from kinetic abnormalities of the AChR channel, specifically prolonged opening and activity of the channel, which causes prolonged synaptic currents resulting in a depolarization block. This is associated with calcium overload, which may contribute to subsequent degeneration of the endplate and postsynaptic membrane. Treatment with quinine, quinidine, or fluoxetine may be helpful; acetylcholinesterase inhibitors and amifampridine should be avoided (summary by Engel et al., 2015).
Genetic Heterogeneity of Congenital Myasthenic Syndromes
Recessive mutations in subunits of the acetylcholine receptor are the most common cause of CMS (Harper, 2004). CMS1A and CMS1B (608930) are caused by mutation in the CHRNA1 gene (100690); CMS2A (616313) and CMS2C (616314) are caused by mutation in the CHRNB1 gene (100710) on 17p12; CMS3A (616321), CMS3B (616322), and CMS3C (616323) are caused by mutation in the CHRND gene (100720) on 2q33; and CMS4A (605809), CMS4B (616324), and CMS4C (608931) are caused by mutation in the CHRNE gene (100725) on 17p13.
CMS5 (603034) is caused by mutation in the COLQ gene (603033) on 3p25; CMS6 (254210) is caused by mutation in the CHAT gene (118490) on 10q; CMS7 (616040) is caused by mutation in the SYT2 gene (600104) on 1q32; CMS8 (615120) is caused by mutation in the AGRN gene (103320) on 1p; CMS9 (616325) is caused by mutation in the MUSK gene (601296) on 9q31; CMS10 (254300) is caused by mutation in the DOK7 gene (610285) on 4p; CMS11 (616326) is caused by mutation in the RAPSN gene (601592) on 11p11; CMS12 (610542) is caused by mutation in the GFPT1 gene (138292) on 2p14; CMS13 (614750) is caused by mutation in the DPAGT1 gene (191350) on 11q23; CMS14 (616228) is caused by mutation in the ALG2 gene (607905) on 9q22; CMS15 (616227) is caused by mutation in the ALG14 gene (612866) on 1p21; CMS16 (614198) is caused by mutation in the SCN4A gene (603967) on 17q; CMS17 (616304) is caused by mutation in the LRP4 gene (604270) on 11p12; CMS18 (616330) is caused by mutation in the SNAP25 gene (600322) on 20p11; CMS19 (616720) is caused by mutation in the COL13A1 gene (120350) on 10q22; CMS20 (617143) is caused by mutation in the SLC5A7 gene (608761) on 2q12; CMS21 (617239) is caused by mutation in the SLC18A3 gene (600336) on 10q11; CMS22 (616224) is caused by mutation in the PREPL gene (609557) on 2p21; CMS23 (618197) is caused by mutation in the SLC25A1 gene (190315) on 22q11; CMS24 (618198) is caused by mutation in the MYO9A gene (604875) on 15q22; and CMS25 (618323) is caused by mutation in the VAMP1 gene (185880) on 12p13.
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B2- MedGen UID:
- 461766
- •Concept ID:
- C3150416
- •
- Disease or Syndrome
MDDGB2 is an autosomal recessive congenital muscular dystrophy associated with impaired intellectual development and mild structural brain abnormalities (Yanagisawa et al., 2007). It is part of a group of similar disorders, collectively known as 'dystroglycanopathies,' resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239) (Godfrey et al., 2007).
For a discussion of genetic heterogeneity of congenital muscular dystrophy-dystroglycanopathy type B, see MDDGB1 (613155).
Mitochondrial DNA depletion syndrome 4b- MedGen UID:
- 462264
- •Concept ID:
- C3150914
- •
- Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Autosomal recessive limb-girdle muscular dystrophy type 2Q- MedGen UID:
- 462339
- •Concept ID:
- C3150989
- •
- Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-17 (LGMDR17) is characterized by early childhood onset of proximal muscle weakness and atrophy without skin involvement. One family has shown rapid progression of the disorder in adolescence (summary by Gundesli et al., 2010).
For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A3- MedGen UID:
- 462869
- •Concept ID:
- C3151519
- •
- Disease or Syndrome
An autosomal recessive muscular dystrophy caused by mutations in the POMGNT1 gene. It is associated with characteristic brain and eye malformations, profound mental retardation, and death usually in the first years of life.
Congenital myopathy 10b, mild variant- MedGen UID:
- 762102
- •Concept ID:
- C3541476
- •
- Disease or Syndrome
Congenital myopathy-10B (CMYO10B) is an autosomal recessive skeletal muscle disorder characterized by infantile- or childhood-onset myopathy, areflexia, dysphagia, and respiratory distress that usually requires nocturnal ventilation. Other common features include facial and neck muscle weakness, feeding difficulties, contractures, scoliosis, high-arched palate, hyporeflexia, and difficulties walking. The disorder is slowly progressive and most patients follow a chronic course. Muscle biopsy shows variable findings, including type 1 fiber predominance, minicore lesions, and myofibrillar disorganization (Boyden et al., 2012; Harris et al., 2018).
Patients with missense mutations affecting conserved cysteine residues in the EGF-like domain show the mild variant phenotype (CMYO10B) with later onset of respiratory failure and minicores on muscle biopsy, whereas patients with more damaging mutations, including nonsense or frameshift null mutations, show the severe variant phenotype (CMYO10A) (Croci et al., 2022).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Actin accumulation myopathy- MedGen UID:
- 777997
- •Concept ID:
- C3711389
- •
- Disease or Syndrome
Congenital myopathy-2A (CMYO2A) is an autosomal dominant disorder of the skeletal muscle characterized by infantile- or childhood-onset myopathy with delayed motor milestones and nonprogressive muscle weakness. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype (CMYO2C; 620278). Some patients with de novo mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation. Less frequently, autosomal dominant transmission of the disorder within a family may occur when the ACTA1 mutation produces a phenotype compatible with adult life. Of note, intrafamilial variability has also been reported: a severely affected proband may be identified and then mildly affected or even asymptomatic relatives are found to carry the same mutation. The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021).
The most common histologic finding on muscle biopsy in patients with ACTA1 mutations is the presence of 'nemaline rods,' which represent abnormal thread- or rod-like structures ('nema' is Greek for 'thread'). However, skeletal muscle biopsy from patients with mutations in the ACTA1 gene can show a range of pathologic phenotypes. These include classic rods, intranuclear rods, clumped filaments, cores, or fiber-type disproportion, all of which are nonspecific pathologic findings and not pathognomonic of a specific congenital myopathy. Most patients have clinically severe disease, regardless of the histopathologic phenotype (Nowak et al., 2007; Sewry et al., 2019). ACTA1 mutations are the second most common cause of congenital myopathies classified histologically as 'nemaline myopathy' after mutations in the NEB gene (161650). ACTA1 mutations are overrepresented in the severe phenotype with early death (Laing et al., 2009).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030).
Multiple mitochondrial dysfunctions syndrome 3- MedGen UID:
- 815495
- •Concept ID:
- C3809165
- •
- Disease or Syndrome
Multiple mitochondrial dysfunctions syndrome-3 (MMDS3) is an autosomal recessive severe neurodegenerative disorder characterized by loss of previously acquired developmental milestones in the first months or years of life. Some affected patients have normal development in early infancy before the onset of symptoms, whereas others show delays from birth. Features included loss of motor function, spasticity, pyramidal signs, loss of speech, and cognitive impairment. The disease course is highly variable: some patients die of respiratory failure early in childhood, whereas some survive but may be bedridden with a feeding tube. Less commonly, some patients may survive and have a stable course with motor deficits and mild or even absent cognitive impairment, although there may be fluctuating symptoms, often in response to infection. Other variable features include visual problems and seizures. Brain imaging shows diffuse leukodystrophy in the subcortical region, brainstem, cerebellum, and spinal cord. Laboratory studies tend to show increased lactate and CSF glycine, and decreased activity of mitochondrial complexes I and II, although these findings are also variable. There may be additional biochemical evidence of mitochondrial dysfunction (summary by Liu et al., 2018).
For a general description and a discussion of genetic heterogeneity of multiple mitochondrial dysfunctions syndrome, see MMDS1 (605711).
Ehlers-Danlos syndrome, musculocontractural type 2- MedGen UID:
- 816175
- •Concept ID:
- C3809845
- •
- Disease or Syndrome
The musculocontractural type of Ehlers-Danlos syndrome (EDSMC2) is characterized by progressive multisystem fragility-related manifestations, including joint dislocations and deformities; skin hyperextensibility, bruisability, and fragility, with recurrent large subcutaneous hematomas; cardiac valvular, respiratory, gastrointestinal, and ophthalmologic complications; and myopathy, featuring muscle hypoplasia, muscle weakness, and an abnormal muscle fiber pattern in histology in adulthood, resulting in gross motor developmental delay (summary by Muller et al., 2013).
For a discussion of genetic heterogeneity of the musculocontractural type of Ehlers-Danlos syndrome, see EDSMC1 (601776).
Myopathy, tubular aggregate, 2- MedGen UID:
- 862994
- •Concept ID:
- C4014557
- •
- Disease or Syndrome
Any tubular aggregate myopathy in which the cause of the disease is a mutation in the ORAI1 gene.
Nemaline myopathy 10- MedGen UID:
- 863797
- •Concept ID:
- C4015360
- •
- Disease or Syndrome
Nemaline myopathy-10 (NEM10) is an autosomal recessive severe congenital myopathy characterized by early-onset generalized muscle weakness and hypotonia with respiratory insufficiency and feeding difficulties. Many patients present antenatally with decreased fetal movements, and most die of respiratory failure in early infancy (summary by Yuen et al., 2014). Patients with a stable and much milder disease course have been described (Schatz et al., 2018).
For a discussion of genetic heterogeneity of nemaline myopathy, see NEM3 (161800).
Congenital myasthenic syndrome 11- MedGen UID:
- 902189
- •Concept ID:
- C4225367
- •
- Disease or Syndrome
Congenital myasthenic syndrome associated with AChR deficiency is a disorder of the postsynaptic neuromuscular junction (NMJ) clinically characterized by early-onset muscle weakness with variable severity. Electrophysiologic studies show low amplitude of the miniature endplate potential (MEPP) and current (MEPC) resulting from deficiency of AChR at the endplate. Treatment with cholinesterase inhibitors or amifampridine may be helpful (summary by Engel et al., 2015).
For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Congenital myasthenic syndrome 9- MedGen UID:
- 895641
- •Concept ID:
- C4225368
- •
- Disease or Syndrome
Congenital myasthenic syndrome associated with AChR deficiency is a disorder of the postsynaptic neuromuscular junction (NMJ) clinically characterized by early-onset muscle weakness with variable severity. Electrophysiologic studies show low amplitude of the miniature endplate potential (MEPP) and current (MEPC) resulting from deficiency of AChR at the endplate. Patients may show a favorable response to amifampridine (summary by Engel et al., 2015).
For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Congenital myasthenic syndrome 3A- MedGen UID:
- 898378
- •Concept ID:
- C4225372
- •
- Disease or Syndrome
Slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the postsynaptic neuromuscular junction (NMJ) characterized by early-onset progressive muscle weakness. The disorder results from kinetic abnormalities of the AChR channel, specifically from prolonged opening and activity of the channel, which causes prolonged synaptic currents resulting in a depolarization block. This is associated with calcium overload, which may contribute to subsequent degeneration of the endplate and postsynaptic membrane. Treatment with quinine, quinidine, or fluoxetine may be helpful; acetylcholinesterase inhibitors and amifampridine should be avoided (summary by Engel et al., 2015).
For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Myasthenic syndrome, congenital, 1B, fast-channel- MedGen UID:
- 909200
- •Concept ID:
- C4225405
- •
- Disease or Syndrome
Fast-channel congenital myasthenic syndrome (FCCMS) is a disorder of the postsynaptic neuromuscular junction (NMJ) characterized by early-onset progressive muscle weakness. The disorder results from kinetic abnormalities of the acetylcholine receptor (AChR) channel, specifically from abnormally brief opening and activity of the channel, with a rapid decay in endplate current and a failure to reach the threshold for depolarization. Treatment with pyridostigmine or amifampridine may be helpful; quinine, quinidine, and fluoxetine should be avoided (summary by Sine et al., 2003 and Engel et al., 2015).
For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Combined oxidative phosphorylation defect type 8- MedGen UID:
- 1377817
- •Concept ID:
- C4518839
- •
- Disease or Syndrome
Combined oxidative phosphorylation deficiency-8 (COXPD8) is an autosomal recessive disorder caused by dysfunction of the mitochondrial respiratory chain. The main clinical manifestation is a lethal infantile hypertrophic cardiomyopathy, but there may also be subtle skeletal muscle and brain involvement. Biochemical studies show combined respiratory chain complex deficiencies in complexes I, III, and IV in cardiac muscle, skeletal muscle, and brain. The liver is not affected (summary by Gotz et al., 2011).
For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Pontocerebellar hypoplasia, type 1D- MedGen UID:
- 1648387
- •Concept ID:
- C4748058
- •
- Disease or Syndrome
Pontocerebellar hypoplasia type 1D (PCH1D) is a severe autosomal recessive neurologic disorder characterized by severe hypotonia and a motor neuronopathy apparent at birth or in infancy. Patients have respiratory insufficiency, feeding difficulties, and severely delayed or minimal gross motor development. Other features may include eye movement abnormalities, poor overall growth, contractures. Brain imaging shows progressive cerebellar atrophy with relative sparing of the brainstem (summary by Burns et al., 2018).
For a general phenotypic description and a discussion of genetic heterogeneity of PCH, see PCH1A (607596).
Congenital myopathy with reduced type 2 muscle fibers- MedGen UID:
- 1672638
- •Concept ID:
- C5193081
- •
- Disease or Syndrome
Congenital myopathy-14 (CMYO14) is an autosomal recessive skeletal muscle disorder characterized by onset of severe muscle weakness apparent at birth and sometimes in utero. Affected infants have difficulty breathing independently and usually require mechanical ventilation for variable lengths of time. Other features include delayed motor development with delayed walking, hypo- or areflexia, and high-arched palate. Skeletal muscle biopsy shows variation in fiber size with specific atrophy of the fast-twitch type II fibers. Cardiac muscle is not affected (summary by Ravenscroft et al., 2018).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Dyskinesia with orofacial involvement, autosomal dominant- MedGen UID:
- 1790407
- •Concept ID:
- C5551343
- •
- Disease or Syndrome
ADCY5 dyskinesia is a hyperkinetic movement disorder (more prominent in the face and arms than the legs) characterized by infantile to late-adolescent onset of chorea, athetosis, dystonia, myoclonus, or a combination of these. To date, affected individuals have had overlapping (but not identical) manifestations with wide-ranging severity. The facial movements are typically periorbital and perioral. The dyskinesia is prone to episodic or paroxysmal exacerbation lasting minutes to hours, and may occur during sleep. Precipitating factors in some persons have included emotional stress, intercurrent illness, sneezing, or caffeine; in others, no precipitating factors have been identified. In some children, severe infantile axial hypotonia results in gross motor delays accompanied by chorea, sometimes with language delays. The overall tendency is for the abnormal movements to stabilize in early middle age, at which point they may improve in some individuals; less commonly, the abnormal movements are slowly progressive, increasing in severity and frequency.
Myopathy, myofibrillar, 12, infantile-onset, with cardiomyopathy- MedGen UID:
- 1794147
- •Concept ID:
- C5561937
- •
- Disease or Syndrome
Infantile-onset myofibrillar myopathy-12 with cardiomyopathy (MFM12) is a severe autosomal recessive disorder affecting both skeletal and cardiac muscle tissue that is apparent in the first weeks of life. Affected infants show tremor or clonus at birth, followed by onset of rapidly progressive generalized muscle weakness and dilated cardiomyopathy and cardiac failure, usually resulting in death by 6 months of age. Skeletal and cardiac muscle tissues show hypotrophy of type I muscle fibers and evidence of myofibrillar disorganization (summary by Weterman et al., 2013).
For a discussion of genetic heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Spinocerebellar ataxia, autosomal recessive 33- MedGen UID:
- 1824070
- •Concept ID:
- C5774297
- •
- Disease or Syndrome
Autosomal recessive spinocerebellar ataxia-33 (SCAR33) is a neurologic disorder characterized by delayed motor development apparent in infancy, unsteady ataxic gait, intention tremor, nystagmus, and speech delay with dysarthria. Some patients have seizures and/or learning difficulties. Brain imaging shows cerebellar hypoplasia (Elsaid et al., 2017).
Congenital myopathy 4B, autosomal recessive- MedGen UID:
- 1840525
- •Concept ID:
- C5829889
- •
- Disease or Syndrome
Congenital myopathy-4B (CMYO4B) is an autosomal recessive disorder of the skeletal muscle characterized by the onset of muscle weakness in infancy or early childhood. The severity and pattern of muscle weakness varies, but most affected individuals show congenital contractures, delayed motor development, hypotonia, generalized muscle weakness, and weakness of the proximal limb muscles and neck muscles, resulting in difficulty walking or inability to walk. Affected individuals have respiratory insufficiency due to muscle weakness, which may be life-threatening. Other common features include myopathic facies, chest deformities, distal joint laxity, and scoliosis. Variable histologic findings on skeletal muscle biopsy are observed, including nemaline rods, type 1 fiber predomination, and centralized nuclei (Tan et al., 1999; Lehtokari et al., 2008).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Congenital myopathy 2b, severe infantile, autosomal recessive- MedGen UID:
- 1840936
- •Concept ID:
- C5830300
- •
- Disease or Syndrome
Autosomal recessive congenital myopathy-2B (CMYO2B) is a disorder of the skeletal muscle characterized by severe hypotonia with lack of spontaneous movements and respiratory insufficiency, usually leading to death in infancy or early childhood (Agrawal et al., 2004). However, longer survival has also been reported, likely due to the type of mutation and extent of its impact (O'Grady et al., 2015).
Mutations in the ACTA1 gene can cause a range of skeletal muscle diseases. About 90% of patients with ACTA1 mutations carry heterozygous mutations, usually de novo (CMYO2A; 161800), whereas 10% of patients carry biallelic ACTA1 mutations (CMYO2B) (Nowak et al., 2007).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Congenital myopathy 2c, severe infantile, autosomal dominant- MedGen UID:
- 1840969
- •Concept ID:
- C5830333
- •
- Disease or Syndrome
Congenital myopathy-2C (CMYO2C) is an autosomal dominant disorder of the skeletal muscle characterized by severe congenital weakness usually resulting in death from respiratory failure in the first year or so of life. Patients present at birth with hypotonia, lack of antigravity movements, poor head control, and difficulties feeding or breathing, often requiring tube-feeding and mechanical ventilation. Decreased fetal movements may be observed in some cases. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype. Some patients with heterozygous mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation (CMYO2A; 161800). The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Amyotrophic lateral sclerosis 27, juvenile- MedGen UID:
- 1840995
- •Concept ID:
- C5830359
- •
- Disease or Syndrome
Juvenile amyotrophic lateral sclerosis-27 (ALS27) is an autosomal dominant disorder characterized by early childhood-onset lower extremity spasticity manifesting as toe walking and gait abnormalities, followed by progressive lower motor neuron-mediated weakness without sensory signs or symptoms (Mohassel et al., 2021).
For a discussion of genetic heterogeneity of amyotrophic lateral sclerosis, see ALS1 (105400).
Congenital myopathy 22A, classic- MedGen UID:
- 1841089
- •Concept ID:
- C5830453
- •
- Disease or Syndrome
Classic congenital myopathy-22A (CMYO22A) is an autosomal recessive muscle disorder characterized by onset of muscle weakness in utero or soon after birth. Early features may include fetal hypokinesia, breech presentation, and polyhydramnios. Affected individuals are born with severe hypotonia and require respiratory and feeding assistance. Those who survive the neonatal period show a 'classic' phenotype of congenital myopathy with delayed motor development, difficulty walking, proximal muscle weakness of the upper and lower limbs, facial and neck muscle weakness, easy fatigability, and mild limb contractures or foot deformities. Some have persistent respiratory insufficiency; dysmorphic facial features may be present (Zaharieva et al., 2016).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Central core myopathy- MedGen UID:
- 1841337
- •Concept ID:
- C5830701
- •
- Disease or Syndrome
Congenital myopathy-1A (CMYO1A) with susceptibility to malignant hyperthermia is an autosomal dominant disorder of skeletal muscle characterized by muscle weakness primarily affecting the proximal muscles of the lower limbs beginning in infancy or early childhood, although later onset of symptoms has been reported. There is significant phenotypic variability, even within families, and the wide clinical diversity most likely depends on the severity of the RYR1 mutation. The disorder is static or slowly progressive; affected individuals typically show delayed motor development and usually achieve independent walking, although many have difficulty running or climbing stairs. Additional features often include mild facial weakness, joint laxity, shoulder girdle weakness, and skeletal manifestations, such as dislocation of the hips, foot deformities, scoliosis, and Achilles tendon contractures. Some patients present with orthopedic deformities. Serum creatine kinase is usually not elevated. Respiratory involvement is rare and there is no central nervous system or cardiac involvement. Patients with dominant mutations in the RYR1 gene are at risk for malignant hyperthermia and both disorders may segregate in the same family. Historically, patients with congenital myopathy due to RYR1 mutations were diagnosed based on the finding of pathologic central cores (central core disease; CCD) on muscle biopsy, which represent areas that lack oxidative enzymes and mitochondrial activity in type 1 muscle fibers. However, additional pathologic findings may also be observed, including cores and rods, central nuclei, fiber type disproportion, multiminicores, and uniform type 1 fibers. These histopathologic features are not always specific to RYR1 myopathy and often change over time (Quinlivan et al., 2003; Jungbluth et al., 2007; Klein et al., 2012; Ogasawara and Nishino, 2021). Some patients with RYR1 mutations have pathologic findings on muscle biopsy, but are clinically asymptomatic (Shuaib et al., 1987; Quane et al., 1993).
Rare patients with a more severe phenotype have been found to carry a heterozygous mutation in the RYR1 gene inherited from an unaffected parent. However, in these cases, there is a possibility of recessive inheritance (CMYO1B; 255320) with either a missed second RYR1 mutation in trans or a genomic rearrangement on the other allele that is undetectable on routine genomic sequencing, since the RYR1 gene is very large and genetic analysis may be difficult (Klein et al., 2012).
Genetic Heterogeneity of Congenital Myopathy
See also CMYO1B (255320), caused by mutation in the RYR1 gene (180901) on chromosome 19q13; CMYO2A (161800), CMYO2B (620265), and CMYO2C (620278), caused by mutation in the ACTA1 gene (102610) on chromosome 1q42; CMYO3 (602771), caused by mutation in the SELENON gene (606210) on chromosome 1p36; CMYO4A (255310) and CMYO4B (609284), caused by mutation in the TPM3 gene (191030) on chromosome 1q21; CMYO5 (611705), caused by mutation in the TTN gene (188840) on chromosome 2q31; CMYO6 (605637), caused by mutation in the MYH2 gene (160740) on chromosome 17p13; CMYO7A (608358) and CMYO7B (255160), caused by mutation in the MYH7 gene (160760) on chromosome 14q11; CMYO8 (618654), caused by mutation in the ACTN2 gene (102573) on chromosome 1q43; CMYO9A (618822) and CMYO9B (618823), caused by mutation in the FXR1 gene (600819) on chromosome 3q28; CMYO10A (614399) and CMYO10B (620249), caused by mutation in the MEGF10 gene (612453) on chromosome 5q23; CMYO11 (619967), caused by mutation in the HACD1 gene (610467) on chromosome 10p12; CMYO12 (612540), caused by mutation in the CNTN1 gene (600016) on chromosome 12q12; CMYO13 (255995), caused by mutation in the STAC3 gene (615521) on chromosome 12q13; CMYO14 (618414), caused by mutation in the MYL1 gene (160780) on chromosome 2q34; CMYO15 (620161), caused by mutation in the TNNC2 gene (191039) on chromosome 20q13; CMYO16 (618524), caused by mutation in the MYBPC1 gene (160794) on chromosome 12q23; CMYO17 (618975), caused by mutation in the MYOD1 gene (159970) on chromosome 11p15; CMYO18 (620246), caused by mutation in the CACNA1S gene (114208) on chromosome 1q32; CMYO19 (618578), caused by mutation in the PAX7 gene (167410) on chromosome 1p36; CMYO20 (620310), caused by mutation in the RYR3 gene (180903) on chromosome 15q13; CMYO21 (620326), caused by mutation in the DNAJB4 gene (611327) on chromosome 1p31; CMYO22A (620351) and CMYO22B (620369), both caused by mutation in the SCN4A gene (603967) on chromosome 17q23; CMYO23 (609285), caused by mutation in the TPM2 gene (190990) on chromosome 9p13; and CMYO24 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21.
Ullrich congenital muscular dystrophy 1B- MedGen UID:
- 1859300
- •Concept ID:
- C5935582
- •
- Disease or Syndrome
Ullrich congenital muscular dystrophy-1 (UCMD1) is characterized by generalized muscle weakness and striking hypermobility of distal joints in conjunction with variable contractures of more proximal joints and normal intelligence. Additional findings may include kyphoscoliosis, protruded calcanei, and follicular hyperkeratosis. Some patients manifest at birth and never achieve independent ambulation, whereas others maintain ambulation into adulthood. Progressive scoliosis and deterioration of respiratory function is a typical feature (summary by Kirschner, 2013).
For general phenotypic information and a discussion of genetic heterogeneity of Ullrich congenital muscular dystrophy, see UCMD1A (254090).