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The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to
annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying
genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order
to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has
become desirable to build a version of RAST that is both customizable and extensible. In this paper, we
describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom
annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as
well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch
submission of genomes and the ability to customize annotation protocols for batch submissions. This is the
first major software restructuring of RAST since its inception.

T
he last two decades of research have brought vast changes to the field of genomics. The sequencing of a
genome and the subsequent annotation of gene functions that were originally performed by teams of researchers
expending thousands of man-hours of labor has become a standard laboratory technique that can be performed

by a single person in one day. As sequencing technology has advanced and the cost has dropped, the number of
genomes being deposited into the public databases has outpaced Moore’s Law1,2. This has shifted the bottlenecks in
genomic analysis from the sequencing per se to the tools that are used for annotation and genomic analysis.

In 2008, the RAST server (Rapid Annotation using Subsystem Technology) was developed to annotate micro-
bial genomes3,4. It works by projecting manually curated gene annotations from the SEED database onto newly
submitted genomes5–7. The key to the consistency and accuracy of the RAST algorithm has been the carefully
structured annotation data in the SEED, which are organized into subsystems (sets of logically related functional
roles)5. As a result, RAST has become one of the most popular sources for consistent and accurate annotations for
microbial genomes. The RAST community currently consists of ,10,000 active users who have contributed an
average of 1,170 microbial genomes per week in the last year. It is also being used as the foundation for main-
taining consistency for automated metabolic modeling in the ModelSEED8 and KBase (kbase.us), and for com-
parative genomics in the bacterial pathogen database, PATRIC9,10.

RAST and other annotation engines encapsulate software for identifying and annotating specific genomic
features into a standard annotation pipeline11–16. This approach has several advantages including offering speed,
convenience and consistency to the user. In order to annotate with RAST, users submit their contigs to the server
where the computation is performed. This frees users from having to download and install multiple programs, or
to perform intensive computations. However, despite these advantages, this approach also has limitations. For
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instance, the default pipeline may not always be the best choice for a
given genome. It is also difficult for researchers to customize annota-
tion pipelines by choosing different tools and adding their own fea-
tures and annotations. Until recently, it has also been difficult to
submit batches of genomes, and demand has been increasing for a
version of RAST that can accommodate custom batch submissions.

In this paper, we describe a new modular implementation of
RAST, which we call the RAST tool kit (RASTtk). RASTtk allows
users to build their own annotation pipelines with a choice of gene
calling algorithms, annotation scripts, and output formats. It also
provides a framework for users to add features and annotations to
a processed RAST job. RASTtk can handle batch submissions of
genomes, as well as the batch submission with custom annotation
pipelines. RASTtk can be used on both the RAST website (http://rast.
nmpdr.org) and the command line.

Results and Discussion
Accessing RASTtk. In order to make RAST more flexible and to keep
pace with advancements that are being made in bioinformatics, we

have separated the individual steps of the RAST annotation pipeline
to provide a version that is modular, extensible and customizable.

RASTtk exists as a set of advanced options on the RAST web server
(http://rast.nmpdr.org) (Figure 1). It has also been made available as
a set of stand-alone scripts in the Interactive Remote Invocation
Service (IRIS) environment (http://iris.theseed.org/). IRIS is a web
application that functions like a command line window. Through
IRIS, users can use the latest RASTtk scripts to build and compare
custom annotation pipelines. In addition, RASTtk scripts can be
installed and run locally using the RASTtk.app DMG (Mac only)
(https://github.com/TheSEED/RASTtk-Distribution/releases/). In-
dividual scripts are also available through the KBase GitHub page
(https://github.com/kbase/genome_annotation). Tutorials for using
the RASTtk scripts can be found on the SEED website (http://
tutorial.theseed.org).

The RASTtk Default Pipeline. During an annotation job, the data
from individual scripts must be collected and integrated into a
coherent picture of the genome as a whole. The abstract layout of a
RASTtk pipeline is described below:

Figure 1 | RASTtk options that are available on the RAST website (http://rast.nmpdr.org). A table of options is displayed when the user selects the

RASTtk annotation scheme and clicks the checkbox for ‘‘Customize’’. Individual steps can be turned off and on using the check boxes. Parameters and

conditions can be changed or added as needed. Dragging and dropping table rows will change the order of the steps.
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1. An initial tool converts a set of contigs (with a minimal amount
of metadata) into a special file format called a Genome Typed
Object (GTO). A GTO is a Java Script Object Notation (JSON)
formatted file that is human-readable and allows for easy
exchange of data objects [www.json.org].

2. Each step in the pipeline transforms an input GTO into an
enhanced GTO. For example, calling genes with Prodigal uses
the command ‘‘rast-call-features-CDS-prodigal’’ to add gene
calls to an input GTO, which produces an expanded GTO (see
Table 1 for a list of the commands implementing the current set
of supported transformation tools).

3. A user can export data from a GTO. Generally, the final product
of a sequence of transformation commands would be used to
export a tab-delimited spreadsheet or GenBank entry17; numer-
ous alternative export formats are also supported.

We offer a default pipeline for RASTtk, which represents our
recommendation for a rapid and accurate annotation workflow.
This workflow differs slightly from the ‘‘classic’’ RAST pipeline
(Figure 2). For instance, we have added Prodigal18 as an additional
gene caller because of its improved accuracy with short genes and
start positions, and because it is more robust to differences in G1C
content12. We have also rewritten several of the core RAST algo-
rithms, including the tools that find rRNA genes and resolve over-
lapping features. We have included a new version of the k-mer-based

annotation algorithm19 and scripts that find repeat regions, CRISPRs,
insertion sequences, and Streptococcus repeats.

Calling ribosomal RNAs. Many tools exist for finding and curating
collections of rRNAs13,20, but we needed a program that is simple,
lightweight and fast. The current RAST rRNA finder is a custom
script that uses hand-curated and phylogenetically diverse set of
representative sequences of the 23S (currently 81 representatives),
16S (currently 120 representatives) and 5S (currently 292 represen-
tatives) rRNAs. These sets represent the diversity of genomes in the
SEED and have been curated for the correct endpoints. The rRNAs of
a new genome are simply found using a BLASTN21 search against this
curated set. This script also reports partial length matches because
genome assemblies with incomplete rRNA operons have become
common.

Calling tRNAs. In order to find the tRNAs, we currently use tRNAscan-
SE, a tool that was written by Lowe and Eddy22. It uses a secondary
structure based searching method to find the tRNA genes.

Calling large repeat regions. The annotation of genomic regions that
have been acquired by horizontal gene transfer remains a major
challenge to maintaining consistency and accuracy in RAST.
Repeat regions are often indicative of horizontal gene transfer and
are hallmarks of insertion sequences and other mobile elements.
Because of this, we have added a new script to the default RASTtk

Table 1 | Characteristics of the RASTtk scripts

Tool Feature Type Annotated Input file type Output file type Default Citation

RASTtk default pipeline scripts
rast-create-genome n/a Contigs in FASTA

format
GTO yes This study

rast-process-genome CDS, RNA, Repeat Regions, CRISPRS GTO GTO yes This study
rast-export-genome All feature types GTO FASTA, Genbank, feature

table etc.
yes This study

RASTtk individual scripts
rast-add-features user-defined tab-delimited text GTO no This study
rast-annotate-proteins-kmer-v1 CDS GTO GTO yes [3,19]
rast-annotate-proteins-kmer-v2 CDS GTO GTO yes This study
rast-annotate-proteins-similarity CDS GTO GTO no This study
rast-call-features-CDS-genemark CDS GTO GTO no [29]
rast-call-features-CDS-glimmer3 CDS GTO GTO yes [28]
rast-call-features-CDS-prodigal CDS GTO GTO yes [18]
rast-call-features-crispr CRISPR array, CRISPR repeat and

CRISPR spacer
GTO GTO yes This study

rast-call-features-insertion-sequences IS elements GTO GTO no This study
rast-call-features-prophage-phispy Prophage GTO GTO no [31]
rast-call-features-pyrrolysoprotein CDS GTO GTO yes [4]
rast-call-features-repeat-region-SEED Repeat regions GTO GTO yes This study
rast-call-features-rRNA-SEED RNA (rRNA) GTO GTO yes This study
rast-call-features-selenoprotein CDS GTO GTO yes [4]
rast-call-features-strep-pneumo-repeat Repeat regions GTO GTO conditional [24]
rast-call-features-strep-suis-repeat Repeat regions GTO GTO conditional [24]
rast-call-features-tRNA-trnascan RNA (tRNA) GTO GTO yes [22]
rast-resolve-overlapping-features n/a GTO GTO yes This study
rast-update-annotations n/a GTO GTO no This study
Batch annotation scripts
rast-set-metadata n/a GTO GTO no This study
rast-process-genome-batch CDS, RNA, Repeat Regions, CRISPRS,

IS elements
GTO n/a no This study

rast-query-genome-batch n/a n/a n/a no This study
rast-download-genome-batch n/a n/a GTO no This study
Additional analysis tools
rast-call-features-ProtoCDS-kmer-v1 n/a GTO GTO no This study
rast-call-features-ProtoCDS-kmer-v2 n/a GTO GTO no This study
rast-compute-special-proteins n/a GTO tab-delimited text no [33]
rast-enumerate-special-protein-

databases
n/a n/a n/a no This study
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pipeline that performs a BLASTN21 search of the genome against
itself, and reports any region occurring more than once with $

95% nucleotide identity. These precomputed repeat regions can then
be used for comparative analyses and as supporting data for more
detailed annotation of mobile elements.

Calling seleno- and pyrrolysylproteins. Selenoproteins are widespread
among the sequenced bacterial and archaeal genomes occurring in
,25% of the genomes in the CoreSEED (a collection of ,1000 highly
curated diverse bacterial and archaeal genomes utilized by RAST).
They contain the rare amino acid selenocysteine, which is incorpo-
rated at a UGA stop codon in frame23. In order to find these proteins,
a hand-curated set of known selenoproteins is kept in a BLAST
database21. When a match to a potential selenoprotein is found
within a genome, it is then searched for the in-frame stop codon. If
the stop is found, then the protein is annotated as a selenoprotein.

Pyrrolysylproteins are less common among the currently sequenced
genomes, occurring in ,1% of the sequenced bacterial and archaeal
genomes in the CoreSEED. Similar to selenocysteine, pyrrolysine is
incorporated at a UAG stop codon23. We search for pyrrolysylpro-
teins using the same strategy.

Calling Streptococcus repeat elements. Streptococcus species contain
small interspersed repeats that may modulate gene expression and
can be used for epidemiological typing24,25. We have added tools
created by Croucher et al. for finding these elements24. When the
user specifies the metadata for the genome, these scripts will be run if
the genus is Streptococcus. In the future, we anticipate adding other
species-specific annotation tools and their conditional usage in
RASTtk will mirror that of the Streptococcus repeat finder.

Calling CRISPR elements. CRISPRs, clustered regularly interspaced
short palindromic repeats, are a special type of repeat region found in
many bacterial and archaeal genomes. The CRISPR array contains
spacer regions matching foreign DNA that are regularly spaced and
bounded by repeat regions. The DNA of the spacer region is tran-
scribed and used to interfere with incoming foreign DNA. Because of
their importance in horizontal gene transfer and in biotech-
nology26,27, we have added a script to the RASTtk pipeline that finds
CRISPR elements. This script works by using a Perl regular express-
ion search [Wall, L., Christiansen, T. & Orwant, J. Programming perl.
(O’Reilly Media, Inc., 2004)] to find recurring direct repeats of at
least 24 nucleotides in length and spaced at regular intervals. The
output of the script is three new feature types: the entire CRISPR
array, the CRISPR spacer, and the CRISPR repeat.

Calling genes. RASTtk offers the option to call the open reading
frames with Glimmer328, GeneMarkS29, and Prodigal18. The original
web-based version of RAST used Glimmer3, and our current default
RASTtk pipeline uses both Prodigal and Glimmer3. The output of
both programs is added to the GTO file, and then an optimal set of
calls is chosen in the overlap resolution step (described below).

Annotating proteins with k-mers. Historically, RAST has made heavy
use of the FIGfam collection maintained within the SEED project6.
FIGfams are protein families in which it is believed that all members
of the same family share an identical function and were derived from
a common ancestor (i.e., they are all isofunctional homologs). The
original implementation of the k-mer-based assignment of function
was based on the use of signature k-mers3,19. A signature k-mer is
defined as an 8-mer amino acid sequence in which the vast majority
(over 80%) of occurrences are found within FIGfams sharing a com-
mon function, and that do not occur in any FIGfam with a different
function. For example, a k-mer for which 93% of the occurrences
within the FIGfam collection were in families implementing the
function SSU ribosomal protein S13p (S18e) would be considered a
‘‘signature of function’’. In this case, the signatures depend critically
on the FIGfams.

Once we had modestly consistent collections of sequences in the
SEED, we introduced a version of k-mer analysis that was not based
on FIGfams. The notion of signature k-mer was modified to an 8-mer
amino acid sequence in which the vast majority (over 80%) of occur-
rences were within sequences assigned an identical function. This
version depends on the collection of protein sequences with consist-
ent annotations. Currently, we base this version on a collection of
about 1000 representative genomes present in a subset of the SEED
called the CoreSEED (core.theseed.org). The CoreSEED represents
our best attempt at annotation consistency and is currently the main
focus of our manual annotation efforts.

The CoreSEED database attempts to provide the most consistent
manual annotations for the core metabolic and house keeping func-
tions in a relatively small and diverse set of the bacteria and archaea,
whereas the PubSEED database (from which the FIGfam collection is
generated) attempts to absorb new annotations from the academic

Figure 2 | The RAST workflow. Each individual step is bounded by a

box, and steps are connected by arrows. New RASTtk steps are indicated by

red boxes and arrows. Improvements in the original steps are indicated

in red text. Steps that are no longer part of the RASTtk pathway are

indicated by gray arrows.
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community for many genomes. The default RASTtk workflow first
searches against the limited number of more stable annotation-based
k-mers from the CoreSEED, and then if an annotation cannot be
found it searches against the larger collection of FIGfam based k-
mers from the PubSEED.

In addition to these two k-mer based gene-function assignment
tools, there are also two analogous tools that use these k-mer sets to
search for function-containing regions of DNA that do not require
gene calls. They are useful for searching for genes in regions where
calls may have been missed and for assessing functions in un-
assembled sequence data.

Annotating proteins missed by k-mers. If no function can be found for
a protein-encoding gene during the k-mer analysis, a final search that
uses a combination of BLAT30 and BLASTP21 is performed against a
set of non-redundant genus-specific protein databases for the organ-
ism’s genus and, when available, closest relatives. If a matching pro-
tein is found with an e-value ,5 1e-5 and a percent identity .5

50%, then the function from the protein in the database is assigned to
the gene.

Resolving Overlapping Calls. After using different tools to call open
reading frames and annotate features, we try to resolve the results
into a coherent picture. To resolve overlapping features, we use a
dynamic programming algorithm that resembles the scoring algo-
rithm in Prodigal18. It works by scanning the genome and generating
a score for each alternative combination of feature calls for tRNA,
rRNA and protein-encoding genes. In general, for a given location on
the contig, tRNA and rRNA receive a higher score than protein
encoding genes, and large overlaps receive a negative score based
on the length of the overlap. Large gaps between genes also result
in negative scores. After considering all of the combinations calls, the
genomic arrangement with the highest score is chosen. User-defined
features are exempt from consideration by this algorithm.

Additional Analysis Scripts. Customizing and updating an
annotation job. Users can run custom analysis jobs locally on
the command line or in IRIS and then add their own features
to an annotation job. In order to input specialty features, the
user must create a tab-delimited text file, which contains a
unique identifier, the location, feature type and function. These
are then added to the GTO file and can be exported in a variety of
formats. Users can also update functions directly by providing a
tab-delimited file with the identifier and the new function. The
update is then logged in the GTO file.

Batch genome submissions. RASTtk supports the ability to upload a
directory of GTO files either using IRIS or the RASTtk.app DMG.
When a batch upload is performed, the entire directory is uploaded
to the RAST server and placed into the queue. A job identifier is
returned to the user and this is used to check the status of the job
and to download the job when it is completed. A custom RASTtk
pipeline can be invoked by adding a special JSON formatted work-
flow file along with the directory of genomes. For more information
on using RASTtk in batch mode, please refer to the RASTtk tutorials
(http://tutorial.theseed.org).

Calling prophage elements. In order to find potential prophage ele-
ments we have added PhiSpy31. PhiSpy uses a combination of several
independent heuristic methods to identify regions in the genome,
which may be derived from phages or mobile elements.

Finding insertion sequences. We have added a new tool that uses a
reference set of end sequences and transposase proteins from the
SEED and ISfinder databases3,32 to search the genome for IS ele-
ments. Matches are found by using a combination of BLASTN for
the end regions and BLASTX for the proteins21.

Identifying special gene sets. The PATRIC project is an integration of
data and tools for studying bacterial pathogens. In order for RASTtk
to support PATRIC, it was necessary to improve the identification of
genes relating to virulence and drug development33. RASTtk now
offers an analysis script for this purpose. It searches against custom
BLAST databases that have been built from ARDB34 and CARD35 for
finding potential antibiotic resistance genes; DrugBank36 and TTD37

for finding potential drug targets; VFDB38, Victors39 and the PATRIC
virulence factors10,33 for finding potential virulence factors; and the
human reference genome sequence40 for finding potential human
homologs, which is an important step in drug screening analyses.

Future Directions. RASTtk enables users to optimize and customize
the annotation steps for a given genome, and to apply these pipelines
to sets of genomes as customized batch submissions. The modularity
of RASTtk also makes it much easier to develop and incorporate
software for improving genome annotations, and we anticipate
adding tools to RASTtk as they become needed. We also expect the
utilization of RASTtk to result in the community development of
annotation pipelines aimed at solving more specialized annotation
problems, such as more accurate gene calling in prophages, and
eukaryotes. We also anticipate providing specialty scripts that
improve the accuracy for gene families that are currently difficult
to annotate, such as pathogenicity-related genes, transporters and
mobile elements.
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