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Protein engineering has nearly limitless applications across chemistry,
energy and medicine, but creating new proteins withimproved or novel
functions remains slow, labor-intensive and inefficient. Here we present

the Self-driving Autonomous Machines for Protein Landscape Exploration
(SAMPLE) platform for fully autonomous protein engineering. SAMPLE
isdriven by anintelligent agent that learns protein sequence-function
relationships, designs new proteins and sends designs to a fully automated
robotic system that experimentally tests the designed proteins and provides
feedback toimprove the agent’s understanding of the system. We deploy
four SAMPLE agents with the goal of engineering glycoside hydrolase
enzymes with enhanced thermal tolerance. Despite showing individual
differencesin their search behavior, all four agents quickly converge on
thermostable enzymes. Self-driving laboratories automate and accelerate
the scientific discovery process and hold great potential for the fields of
protein engineering and synthetic biology.

Humanresearchers engineer biological systems through the discovery-
driven process of hypothesis generation, designing experiments to test
hypotheses, performing these experiments in a wet laboratory, and
interpreting the resulting data to refine understanding of the system.
This processis iterated to converge on knowledge of biological mecha-
nisms and design new systems withimproved properties and behaviors.
However, despite notable achievements inbiological engineering and
synthetic biology, this process remains highly inefficient, repetitive
and laborious, requiring multiple cycles of hypothesis generation and
testing that can take years to complete.

Robot scientists and self-driving laboratories combine automated
learning, reasoning and experimentation to accelerate scientific dis-
covery and design new molecules, materials and systems. Intelligent
robotic systems are superior to humans in their ability to learn across
disparate data sources and data modalities, make decisions under
uncertainty, operate continuously without breaks, and generate highly
reproducible datawith full metadata tracking and real-time data shar-
ing. Autonomous and semi-autonomous systems have been applied
to gene identification in yeast', new chemical synthesis method-
ologies*® and the discovery of new photocatalysts’, photovoltaics®,
adhesive materials’ and thin-film materials'®. Self-driving laboratories

hold great promise for the fields of protein engineering and synthetic
biology" ", but these applications are challenging because biological
phenotypes are complex and nonlinear, genomic search spaces are
high-dimensional, and biological experiments require multiple hands-
on processing steps that are error-prone and difficult to automate.
There are examples of automated workflows for synthetic biology
that require some human input and manual sample processing'*"”,
but these are not fully autonomous in their ability to operate without
humanintervention.

Inthis Article we introduce the Self-driving Autonomous Machines
for Protein Landscape Exploration (SAMPLE) platformto rapidly engi-
neer proteins without human intervention, feedback or subjectivity.
SAMPLEisdrivenby anintelligent agent thatlearns protein sequence-
function relationships from data and designs new proteins to test
hypotheses. The agent interacts with the physical world though a fully
automated robotic system that experimentally tests the designed
proteins by synthesizing genes, expressing proteins and performing
biochemical measurements of enzyme activity. Seamless integration
between the intelligent agent and experimental automation enables
fully autonomous design-test-learncyclestounderstand and optimize
the sequence-function landscape.
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We deployed four independent SAMPLE agents to navigate the
glycoside hydrolase landscape and discover enzymes with enhanced
thermaltolerance. The agents’ optimization trajectories started with
exploratory behavior to understand the broad landscape structure
and then quickly converged on highly stable enzymes that were at
least12 °C more stable than the initial starting sequences. We observed
notable differences in the individual agents’ search behavior arising
from experimental measurement noise, yet all agents robustly iden-
tified thermostable designs while searching less than 2% of the full
landscape. SAMPLE agents continually refine their understanding of
the landscape through active information acquisition to efficiently
discover optimized proteins. SAMPLE is a general-purpose protein
engineering platform that can be broadly applied across biological
engineering and synthetic biology.

Results
A fully autonomous system for protein engineering
We sought to build a fully autonomous system to mimic the human bio-
logical discovery and design process. Humanresearchers can be viewed
asintelligentagents that performactionsinalaboratory environment
andreceive dataas feedback. Through repeated interactions with the
laboratory environment, human agents develop an understanding of
thesystem and learnbehaviors to achieve an engineering goal. SAMPLE
consists of anintelligent agent that autonomously learns, makes deci-
sionsand takes actionsin alaboratory environment to explore protein
sequence-function relationships and engineer proteins (Fig. 1a).

Theproteinfitness landscape describesthe mapping fromsequence
tofunctionand canbeimagined asaterrestrial landscape of peaks, val-
leys and ridges™. The SAMPLE agent aims to identify high-activity fitness
peaks (that is, top performing sequences) from an initially unknown
sequence-function landscape. The agent actively queries the environ-
mentto gatherinformationand constructaninternal perception ofthe
landscape. The agent must allocate resources between exploration, to
understand thelandscape structure, and exploitation, to utilize current
landscape knowledge to identify optimal sequence configurations. We
pose the agent’s protein engineering task as a Bayesian optimization
(BO) problem that seeks to optimize an unknown objective function
and must efficiently trade offbetween exploration and exploitation''%,

The SAMPLE agent uses a Gaussian process (GP) model to build
an understanding of the fitness landscape from limited experimen-
tal observations. The model must consider the protein function of
interest, in addition to inactive ‘holes’ in the landscape arising from
destabilization of the protein structure'®*. We use a multi-output GP
that simultaneously models whether a protein sequence is active/
inactive and a continuous protein property of interest (Methods).
We benchmarked our modeling approach on previously published
cytochrome P450 data consisting of 331 inactive sequences and 187
active sequences with thermostability labels***. The multi-output GP
showed excellent predictive ability with an 83% active/inactive clas-
sification accuracy and, for the subset of sequences that are active,
predicts the thermostability with r = 0.84 (Fig. 1b).

The GP model trained on sequence-function data represents
the SAMPLE agent’s current knowledge, and, from here, the agent
must decide which sequences to evaluate next to achieve the protein

engineering goal. BO techniques address this problem of sequential
decision-making under uncertainty. The upper confidence bound (UCB)
algorithmiteratively samples points with the largest upper confidence
bound (predictive mean plus predictioninterval) andis proven torapidly
converge to the optimal point with high sample efficiency****. How-
ever, naive implementation of UCB for protein engineering is limited,
because theinactive ‘holes’in the landscape provide no informationto
improve the model. We devised two heuristic BO methods that consider
the output of the active/inactive GP classifier (P,.;,.) to focus sampling
toward functional sequences. The ‘UCB positive’method only considers
the subset of sequences that are predicted to be active by the GP classi-
fier (P,.q. > 0.5) and selects the sequence with the top UCB value. The
‘Expected UCB’ method takes the expected value of the UCB score by
multiplying by the GP classifier P,.;,. and selects the sequence with the
top expected UCB value. We tested these methods by running 10,000
simulated protein engineering experiments with the cytochrome P450
data(Fig.1c,d). Onaverage, the UCB positive and Expected UCB methods
found thermostable P450s with only 26 measurements and required
three- to fourfold fewer samples than the standard UCB and random
methods. We also tested the BO methods in abatch setting where multi-
plesequencesaretested in parallel and found aslight benefit to running
experiments in smaller batches (Supplementary Fig.1).

The agent designs proteins and sends them to the SAMPLE labora-
tory environment to provide experimental feedback (Supplementary
Video1). We developed a highly streamlined, robust and general pipe-
line for automated gene assembly, cell-free protein expression and bio-
chemical characterization. Our procedure assembles pre-synthesized
DNA fragments using Golden Gate cloning® to produce a full intact
gene and the necessary 5’/3’ untranslated regions for T7-based protein
expression. The assembled expression cassette is then amplified via
polymerase chain reaction (PCR) and the product is verified using
the fluorescent dye EvaGreen to detect double-stranded DNA (Sup-
plementary Fig. 2). The amplified expression cassette is then added
directly to T7-based cell-free protein expression reagents to produce
the target protein. Finally, the expressed proteinis characterized using
colorimetric/fluorescent assays to evaluate its biochemical activity and
properties (Supplementary Fig. 3).

For this work we focused on glycoside hydrolase enzymes and
their tolerance to elevated temperatures. We tested the reproducibil-
ity of our automated experimental pipeline on four diverse glycoside
hydrolase family 1(GH1) enzymes from Streptomyces species (Fig. 1e).
The systemreliably measured the thermostability (T5,, defined in the
section Thermostability assay) of the enzymes with an error less than
1.6 °C. The procedure takes ~1 h for gene assembly, 1 h for PCR, 3 h for
protein expression, 3 h to measure thermostability, and 9 h overall to
go from a requested protein design to a physical protein sample to a
corresponding data point.

We added multiple layers of exception handling and data qual-
ity control to further increase the reliability of the SAMPLE platform
(Fig. 1f). The system checks whether (1) the gene assembly and PCR
has worked by assaying double-stranded DNA with EvaGreen, (2) the
enzymereaction progress curveslook as expected, and theactivity asa
function of temperature canbe fit using a sigmoid function, and (3) the
observed enzyme activity is above the background hydrolase activity

Fig.1|SAMPLE is a fully autonomous system for protein engineering.

a, SAMPLE consists of an intelligent agent that learns sequence-function
relationships and designs proteins to test hypotheses. The agent sends designed
proteins to alaboratory environment that performs fully automated gene
assembly, protein expression and biochemical characterization, and sends

the resulting databack to the agent, which refines its understanding of the
system and repeats the process.b, The multi-output GP model classifies active/
inactive P450s with 83% accuracy and predicts P450 thermostability with
r=0.84 using tenfold cross-validation. ¢, The performance of four sequential
design strategies using P450 sequence-function data. The lines show the

maximum observed thermostability for a given number of sequence evaluations,
averaged over 10,000 simulated protein engineering trials. d, The number of
evaluations needed for the design strategies to discover sequences within 90%
of the maximum thermostability (>61.9 °C) using 10,000 simulated protein
engineering trials. e, The reproducibility of the fully automated gene assembly,
protein expression and thermostability characterization pipeline on four diverse
GH1enzymes from Streptomyces species. The curves’ small shoulder centered
around 60 °Cis the result of background enzyme activity present in the E. coli
cellextracts. f, The pipeline has multiple layers of exception handling and data
quality control for failed experimental steps.
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Fig.2| GH1 combinatorial sequence space. a, ADNA assembly graph defines
which sequence elements have compatible overhangs and can be joined to
produce a valid gene sequence. Any path from the Start codon to the Stop codon
(forexample, the red line) is a full gene sequence that can be assembled using
Golden Gate cloning. Our GH1sequence space has a total of 1,352 paths from
Start to Stop representing unique protein sequences. b, Sequences within the

designed GH1sequence space differ by 116 amino-acid substitutions on average
and by at least 16 amino acids. ¢, Sequences within this space sample amino-acid
diversity across the protein structure. Sampling diversity is scattered across

the protein structure and not focused on a particular domain. The structural
illustration is adapted from Protein Data Bank ID 1IGNX (-glucosidase from
Streptomyces sp).

fragments. Combinatorial sequence spaces leverage exponential scal-
ing to broadly sample the protein fitness landscape from a limited set
of gene fragments. We define a combinatorial sequence space using
aDNA assembly graph that specifies which sequence elements can
be joined to generate a valid gene sequence (Fig. 2a). We designed a
glycoside hydrolase (GH1) combinatorial sequence space composed
of sequence elements from natural GH1 family members, elements
designed using Rosetta®®, and elements designed using evolutionary
information”. The fragments were designed to sample broad sequence
diversity and were notintended to target or enhance a particular func-
tion (for example, thermostability). All designed sequence fragments
areprovidedinSupplementary Data 5. The full combinatorial sequence
space contains 1,352 unique GH1 sequences that differ by 116 muta-
tions on average and by at least 16 mutations (Fig. 2b). The sequences
introduce diversity throughout the GH1 TIM barrel fold and sample up
to six unique amino acids at each site (Fig. 2c).

Autonomous cloud-based design of glycoside hydrolases

We applied SAMPLE with the goal of navigating and optimizing the GH1
thermostability landscape. We implemented our experimental pipeline
onthe Strateos Cloud Lab for enhanced scalability and accessibility by
other researchers®. We deployed four independent SAMPLE agents that
were each seeded with the same six natural GHl sequences. The agents
designed sequences according to the Expected UCB criterion, chose

three sequences per round, and ran for a total of 20 rounds (Fig. 3a).
The four agents’ optimization trajectories showed a gradual climb of
thelandscape, with early phases characterized by exploratory behavior
and later rounds consistently sampling thermostable designs. There
were two instances where the quality filters missed faulty data and
incorrectly assigned a thermostability value to an inactive sequence
(Agent1linround10 and Agent 3 inround 5). We intentionally did not
correct these erroneous data points to observe how the agents recover
from the error as they acquire more landscape information. There
were alarge number of inconclusive experiments as noted by question
marks along the bottom of Fig. 3a. A majority of these were the result
ofinactive enzymes that the agent must test twice to assign asinactive
(Fig.1f). Approximately 9% of the experiments failed, presumably due
to liquid-handing errors.

Each agent discovered GH1 sequences that were at least 12 °C
more stable than the six initial natural sequences. The agentsidentify
these sequences while searchingless than 2% of the full combinatorial
landscape. We visualized the agents’ search trajectory and found that
each agent broadly explored the sequence space before converging
on the same global fitness peak (Fig. 3b). All four agents arrived at
similar regions of the landscape, but the top sequence discovered
by each agent was unique. The thermostable sequences tended to be
composed of the P6F0Q, P1F2 or P5SF2, and P1F3 gene fragments, suggest-
ing the corresponding amino-acid segments may contain stabilizing
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Fig.3| Autonomous exploration of the GH1landscape. a, Protein optimization
trajectories of four independent SAMPLE agents. Inconclusive experiments,
defined asin Fig. 1f, are marked with a‘?”. There were two instances of inactive
sequences that were incorrectly classified as active enzymes with thermostability
values (Agent1linround 10 and Agent 3 inround 5). b, Visualization of

the landscape search. The 1,352 possible sequences were arranged using
multidimensional scaling and colored according to their predicted
thermostability from the unified landscape model. The center left yellow cluster
corresponds to the landscape’s fitness peak. The search trajectory is plotted as
the most stable sequence from each round.

residues and/or interactions. We believe the agents have identified the
global fitness peak of the 1,352-member combinatorial sequence space,
because all four agents converged to the same peak, and a GP model
trained onall data collected by all agents (the unified landscape model
discussed in the following section) predicts top sequences similar to
those discovered by the agents.

The agents’ search trajectory and landscape ascent varied sub-
stantially, despite being seeded with the same six sequences and fol-
lowingidentical optimization procedures. Agent 3 found thermostable
sequences by round 7, whereas Agent 1 took 17 rounds to identify
similarly stable sequences. Agent 2 did not discover any functional
sequences until round 8. The divergence in behaviors can be traced
to the first decision-making step, where the four agents designed
different sequences to test in round 1. These initial differences arose
due to experimental noise in characterizing the six seed sequences,
which gave rise to slightly different landscape models that altered
eachagent’s subsequent decisions. The stochastic deviation between
agents propagated further over the rounds to produce highly varied
landscape searches, but these were ultimately steered back to the same
globalfitness peak.

SAMPLE agents actively acquire landscape information
SAMPLE agents efficiently and robustly discovered thermostable GH1
enzymes. We analyzed the four agents’ internal landscape perception
and decision-making behavior to reveal how they navigate the protein
fitnesslandscape. We plotted each agent’smodel predictionsforall 1,352
combinatorial sequences over the course of the optimization (Fig. 4a).
The agents’ perception of the landscape changed over time, and impor-
tantevents, suchas observing new stable sequences or erroneous data
points, resulted inlarge landscape reorganization, asindicated by the
crossinglinesin Fig.4a. Many eventual top sequences were ranked near
thebottomin early rounds.

To obtain an estimated ‘ground truth’ landscape, we trained a GP
model onall sequence-function datafromall agents, which we refer to

asthe ‘unified landscape model’ (Supplementary Fig. 4). We analyzed
how eachagent’slandscape perception correlates with the unified land-
scape model and found agents’ understanding became progressively
refined andimproved as they acquired sequence-functioninformation
(Fig. 4b). Notably, most agents discovered thermostable sequences
by rounds 11 or 12, when their understanding of the landscape was
stillincomplete, as indicated by a moderate Pearson correlation of
~0.5. We also analyzed the different agents’ degree of agreement on
the underlying landscape structure (Fig. 4c). All four agents started
with correlated landscape perceptions because they were initialized
from the same six sequences, but the landscape consistency quickly
dropped, withsome agents even displaying negative correlations. The
early disagreement arose because each agent pursued a unique search
trajectory and thus specialized on different regions of the landscape.
The correlation between agents’ perceived landscapes eventually
increased as more information was acquired. Again, it is notable how
the agents tended to discover thermostable sequences by rounds11-12,
whilelargely disagreeing on the fulllandscape structure. BO algorithms
are efficient because they focus on understanding the fitness peaks,
while devoting less effort to regions known to be suboptimal. After
round 20, we found the four agents were more confident on the top
thermostable sequences and had greater uncertainty associated with
lower fitness regions of the landscape (Fig. 4d).

The SAMPLE agents designed sequences accordingto the expected
UCB criterion, which considers the thermostability prediction, the
model uncertainty and the probability an enzyme is active (P,q.). We
wanted to understand the interplay of these three factors and how they
influenced each agent’s decision-making. We looked at the sequences
chosenineachround andtheir percentile rank for thermostability pre-
diction, model uncertainty and P, (Fig. 4e). The agents prioritized
the thermostability prediction throughout the optimization, and
tended to sample uncertain sequencesin early phases, while emphasiz-
ing P,..ve in the later phases. Agent 3 prioritized P, earlier than the
otheragents, which seemsto be the result of discovering thermostable
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Fig.4|SAMPLE agents’ landscape search behavior. a, Agents’ landscape
perception over the course of the optimization. The light gray lines show the
agents’ thermostability predictions for all 1,352 sequences, and the bold colored
lines show sequences that were ultimately discovered to be thermostable by each
agent. b, Pearson correlation between the agents’ predicted thermostability
landscape and the unified landscape model that incorporates all data
retrospectively. ¢, Pearson correlation between different agents’ thermostability
landscapes over the course of the optimization. d, Average model uncertainty

as afunction of the landscape thermostability. The GP uncertainty (sigma) was
averaged over all sequences falling within a10 °Csliding window across the full

Predicted thermostability (°C) Predicted thermostability (°C)

Tsorange predicted by the unified landscape model. e, The chosen sequences’
percentile ranks for four key factors: the expected upper confidence bound
(expected UCB), the thermostability model’s mean prediction (GP stability),
the thermostability model’s predictive uncertainty (GP uncertainty) and the
active/inactive classifier’s predicted probability a sequence is active (P,e)-
The percentile ranks were averaged over the three sequences in the batch.
Apercentile rank approaching oneindicates the chosen sequences were
exceptional for agiven factor. f, The agents’ view of the landscape after the 20
rounds of optimization, with expected UCB overlaid to highlight which factors
are contributing to the expected UCB.

sequences early and putting less emphasis on exploration. We also
analyzed the agents’ final perception of thermostability, P, and
expected UCB, and found the agents specialized on different factors
resulting from their past experiences (Fig. 4f). Agent 4’s expected UCB

is dictated by its large P,.... range, and Agent 2’s is determined by its
predicted thermostability. Meanwhile, Agent 3 still has considerable
landscape uncertainty, as indicated by the high expected UCB points
with moderate thermostability and P, . predictions.
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Human characterization of machine-designed proteins

The SAMPLE system was given a protein engineering objective, rea-
gents and DNA components, and autonomously proceeded to search
the fitness landscape and discover thermostable GH1 enzymes. We
experimentally characterized the top sequence discovered by each
agentto validate the SAMPLE system’s findings using standard human
protocols. We expressed the enzymes in Escherichia coliand performed
lysate-based thermostability assays (Methods). We found that all four
machine-designed enzymes were substantially more thermostable
than the top natural sequence (Bgl3), and the designs from Agents 1
and 4 were nearly 10 °C more stable (Fig. 5a). The human-measured
thermostability values and thermostability differences were not as
large as observed using our automated experimental set-up, whichisa
result of the different protein expression and assay conditions. We also
tested the enzymes’ Michaelis—-Menten kinetic properties and found
thatall designs displayed similar reaction kinetics with wild-type Bgl3
(Fig.4b) and the other wild-type input sequences (Supplementary Fig.
5).0ur proteinengineering search did not explicitly consider reaction
kinetics, butit seemsthat the enzyme catalytic activity was maintained
by utilizing an activity-based thermostability assay.

Discussion

Self-driving laboratories automate and accelerate the scientific dis-
covery process and hold great potential to revolutionize the fields of
proteinengineering and synthetic biology. Automating the biological
design process remains challenging due to the scale and complexity of
biologicalfitness landscapes and the specialized operations required
for wet laboratory experiments. In this work we have developed the
SAMPLE platform for fully autonomous protein engineering. SAM-
PLE tightly integrates automated learning, decision-making, protein
design and experimentation to explore fitness landscapes and dis-
cover optimized proteins. We deployed SAMPLE agents with the goal
of engineering glycoside hydrolase (GH1) enzymes with enhanced
thermal tolerance. The agents efficiently and robustly searched the
landscape to identify thermostable enzymes that were at least 12 °C
more stable than the initial starting sequences. These gains are larger
than achieved in other GH1 thermostability engineering work using
Rosetta?” and high-throughput screening™.

SAMPLE is a general protein engineering platform that can be
broadly applied to diverse protein engineering targets and functions.
Althoughwe only demonstrated thermostability engineering, the same
generalapproach could engineer enzyme activity, specificity and even
new-to-nature chemical reactions. Like directed evolution, the system
doesnotrequire prior knowledge of protein structure or mechanism,
butinstead takes an unbiased approach that examines how sequence
changes impact function. The greatest barrier to establishing SAM-
PLE for a new protein function is the required biochemical assay. The
robotic systemsusedinthis work had access toamicroplatereaderand
thusrequired acolorimetric or fluorescence-based assay. In principle,
more advanced analytical instruments, such as liquid chromatography-
mass spectrometry or NMR spectroscopy, could be integrated into
automationsystems to expand the types of protein functions that could
beengineered. Finally, we implemented our full experimental pipeline
on the Strateos Cloud Lab to produce a cost-effective and accessible
system that can be adopted by other synthetic biology researchers.

SAMPLE has the potential to streamline and accelerate the process
of protein engineering. The experimental side of the system is the major
throughput bottleneck that limits the overall process. A single round
of experimental testing takes 9 h on our Tecan automation system
or 10 h split over two days (5 h x 2 days) on the Strateos Cloud Lab. At
theserates, with continuous operation, the system could get through
20 design-test-learncyclesinjust 1-2 weeks. In practice, the process
was much slower due to system downtime, robotic malfunctions and
time needed for restocking reagents. Our 20 rounds of GH1 optimiza-
tion took just under six months, which included a single 2.5-month

pause caused by shipping delays. Even this six-month duration com-
pares favorably to human researchers, which we estimate may take
6-12monthsto performsimilar experiments using standard molecular
biology and protein engineering workflows. Learning from previous
delays, and with better planning, we estimate that SAMPLE could per-
form 20 design-test-learn cycles in two months using the Strateos
Cloud Lab. We estimate the cost to perform a SAMPLE run of 20 rounds
with a batch size of 3 is US$5,200 (US$2,400 for the DNA fragments,
US$1,300 for all the reagents and US$1,500 for the Strateos Cloud Lab).

We deployed four identical SAMPLE agents and observed nota-
ble differences in their search behavior and landscape optimization
efficiency. The agents explored distinct regions of sequence space,
specialized on different tasks such as classifying active/inactive
enzymes versus predicting thermostability, and Agent 3 discovered
thermostable enzymes with ten fewer rounds than Agent 1. The initial
divergencein behavior arises from experimental measurement noise,
whichinfluences the agents’ decisions, which then further propagates
differences between agents. There is also an element of luck that is
compounded with positive feedback: an agent may happen to search
inaparticular region and come acrossimproved sequences, which then
drives the search upward in favorable directions. These observations
have interesting parallels with human researchers, where success or
failure could be influenced by seemingly inconsequential experimental
outcomes and the resulting decisions. The SAMPLE agents explored
distinct regions of the landscape and specialized on unique tasks, which
indicates a potential to coordinate multiple agents towards a single
protein engineering goal. The decentralized and on-demand nature
of cloud laboratory environments would further assist multi-agent
coordination systems.

Other research groups have developed automated pipelines
and semi-autonomous systems for biological systems engineering.
Carbonell and colleagues developed an automated design-build-
test-learn pipeline that searches over gene regulatory elements such
as promoters and operon configurations to optimize biosynthetic
pathway titers'. They demonstrated their pipeline by performing two
design-build-test-learn cycles to optimize flavonoid and alkaloid
production in E. coli. Each step of this pipeline utilized automation,
but the entire procedure was not fully integrated to enable autono-
mous operation. HamediRad and colleagues developed an automated
design-build-test-learn system to optimize biosynthetic pathways by
searching over promoters and ribosome binding sites”. They applied
their systemto enhance lycopene productionin£. coliand performed
three design-build-test-learn cycles. The most notable difference
between SAMPLE and these earlier demonstrations is SAMPLE’s high
level of autonomy, which allowed us to perform four independent tri-
als of 20 design-test-learn cycles each. High autonomy enables more
experimental cycles without the need for slow human intervention.

The protein engineering set-up for this initial SAMPLE demon-
stration was relatively simple compared to most directed evolution
campaigns. First, the search space of 1,352 is small and, for some assays,
could be fully evaluated using high/medium-throughput screening.
The ssize the combinatorial sequence spaceis determined by the num-
ber of gene fragments (in our case we used 34) and could be scaled
massively using oligonucleotide pools. Even a small pool 0of 1,000 oli-
gos could be splitinto 250 fragment options for four segments across
agene and could be assembled into nearly four billion (250*) unique
sequences. Another simple aspect of our SAMPLE demonstration was
the thermostability engineering goal. Protein thermostability is fairly
wellunderstood and there are already computational tools to predict
stabilizing mutations with moderate success. SAMPLE is certainty not
restricted to thermostability, and similar classes of machine learning
models have been used to model complex protein properties such as
enzymeactivity”’, substrate specificity, light sensitivity of channelrho-
dopsins®, in vivo titer in metabolic pathways*” and adeno-associated
virus capsid viability®’, among others. Our initial work demonstrates
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Fig. 5| Thermostability and kinetic properties of the designed GH1s.

a, Enzyme inactivation as a function of temperature. Each measurement was
performed in quadruplicate, and shifted sigmoid functions were fit to the average
over replicates. The Ty, parameter is the midpoint of the sigmoid function and is
defined as the temperature where 50% of the enzyme s irreversibly inactivated
in10 min. The enzyme variant s specified by the sequence of its four constituent
fragments, for example 6151 corresponds to P6F0-P1F1-P5F2-P1F3.b, Enzyme
reaction velocity as a function of substrate concentration. Each measurement
was performed in triplicate, and the Michaelis-Menten equation was fit to the
average over replicates to determine the kinetic constants. Bgl3 is the most active
wild-type input sequence, and the kinetics for the other wild-type sequences are
provided in Supplementary Fig. 5

ageneralizable protein engineering platform whose scope and power
will continuously expand with future development.

Itwas notable that our combinatorial sequence space consisted of
natural-sequence, Rosetta-designed and evolution-design fragments,
but the top designs were composed purely of natural sequence ele-
ments. The agents collectively tested seven designs with Rosetta- or
evolution-designed fragments, and only two showed any enzyme
activity, with very low thermostability. Our unified landscape model
(Supplementary Fig. 4) predicts most of these designed fragments
to negatively impact the probability an enzyme is active (P,.), ther-
mostability, or both. These fragments probably failed because the
designs were too aggressive by introducing many sequence changes.
Future work could focus on more conservative designs with two to five
mutations per fragment and the latest protein design methods (such
as ProteinMPNN**).

Our combinatorial sequence space was designed to generate
sequence diversity in a function-agnostic manner, but we see great
future potential of using more advanced design algorithms to tailor
the sequence space toward desired molecular functions. CADENZ is
arecent atomistic and machine learning design approach to gener-
ate diverse, low-energy enzymes for combinatorial assembly of gene
fragments® and would readily integrate with SAMPLE’s gene assembly
procedure. SAMPLE’s sequence space design provides an opportu-
nity for humans to propose multiple different molecular hypotheses,

whichthe agent can then systematically explore to refine mechanistic
understanding and discover new molecular behaviors. This human-
robot collaboration would combine human intuition and creativity
withintelligent autonomous systems’ ability to execute experiments,
interpret data and efficiently search large hypothesis spaces, leading
torapid progress in molecular design and discovery.

The powerful combination of artificial intelligence and automa-
tion is disrupting nearly every industry, from manufacturing and
food preparation to pharmaceutical discovery, agriculture and waste
management. Self-driving laboratories will revolutionize the fields
of biomolecular engineering and synthetic biology by automating
highly inefficient, time-consuming and laborious protein engineering
campaigns, enabling rapid turnaround and allowing researchers to
focus onimportant downstream applications. Intelligent autonomous
systems for scientific discovery will become increasingly powerful
with continued advances in deep learning, robotic automation and
high-throughput instrumentation.

Methods

Benchmarking BO methods on P450 data

We compiled a cytochrome P450 dataset to benchmark the modeling
and BO methods. The dataset consists of 518 data points with binary
active/inactive data from ref. 22 and thermostability measurements
fromref. 21. We tested the multi-output GP model by performing ten-
fold cross-validation, where a GP classifier was trained on binary active/
inactive dataand a GP regression model was trained on thermostability
data. The models used alinear Hamming kernel (sklearn® DotProduct
with sigma_0 =1) with an additive noise term (sklearn WhiteKernel
noise_level =1). For the test-set predictions, we categorized sequences
as either true negative (TN), false negative (FN), false positive (FP) or
true positive (TP), and for true positives we calculated the Pearson
correlation between predicted thermostability and true thermosta-
bility values.

We used the cytochrome P450 datato benchmark the BO methods.
The random method randomly selects a sequence from the pool of
untested sequences. The UCB method chooses the sequence with the
largest upper confidence bound (GP thermostability model mean + 95%
prediction interval) from the pool of untested sequences. The UCB
method does not have an active/inactive classifier and, if it observes
an inactive sequence, it does not update the GP regression model.
The UCB positive method incorporates the active/inactive classifier
and only considers the subset of sequences that are predicted to be
active by the GP classifier (P, > 0.5). From this subset of sequences
it selects the sequence with the top UCB (GP thermostability model
mean +95% predictioninterval) value. The expected UCB method takes
the expected value of the UCB score by (1) subtracting the minimum
value from all thermostability predictions to set the baseline to zero,
(2) adding the 95% predictioninterval and (3) multiplying by the active/
inactive classifier P,... The sequence with the top expected UCB value
ischosen from the pool of untested sequences.

We tested the performance of these four methods by running
10,000 simulated protein engineering trials using the cytochrome
P450 data. For each simulated protein engineering trial, the first
sequence was chosen randomly, and subsequent experiments were
chosen according to the different BO criteria. A trial’s performance
atagiven round is the maximum observed thermostability from that
round and all prior rounds. We averaged each performance profile over
the 10,000 simulated trials.

We also developed and tested batch methods that select multiple
sequences each round. For the batch methods we use the same UCB
variants described above to choose the first sequence in the batch,
then we update the GP model assuming the chosen sequence is equal
toits predicted mean, and then we select the second sequence accord-
ing to the specified UCB criteria. We continue to select sequences and
update the GP model until the target batch size is met. We assessed
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how the batch size affects performance by running 10,000 simulated
protein engineering trials at different batch sizes and evaluating how
many learning cycles were needed to reach 90% of the maximum
thermostability.

Glycoside hydrolase combinatorial sequence space design

We designed a combinatorial glycoside hydrolase family 1 (GH1)
sequence space composed of sequence elements from natural GH1
family members, elements designed using Rosetta®, and elements
designed using evolutionary information?. The combinatorial
sequence space mixes and matches these sequence elements to cre-
ate new sequences. The sequences are assembled using Golden Gate
cloningandthusrequire commonfour-base-pair overhangs to facilitate
assembly between adjacent elements.

We chose six natural sequences by running a BLAST search on
Bgl3* and selecting five additional sequences that fell within the
70-80% sequence identity range (Supplementary Fig. 3). We aligned
these six natural sequences and chose breakpoints using SCHEMA
recombination®®*’ with the wild-type Bgl3 crystal structure (PDB1GNX).
The breakpoints for the Rosetta and evolution-designed sequence
fragments were chosen to interface with the natural fragments and
alsointroduce new breakpoints to promote further sequence diversity.
For the Rosetta fragments, we started with the crystal structure of
wild-type Bgl3 (PDB1GNX), relaxed the structure using FastRelax, and
used RosettaDesign to design a sequence segment for agiven fragment
while leaving the remainder of the sequence and structure as wild-type
Bgl3. At each position, we only allowed residues that were observed
within the six aligned natural sequences. For the evolution-designed
fragments, we used Jackhmmer* to build a large family of multiple
sequence alignmentand designed sequence segments containing the
most frequent amino acid fromresidues that were observed withinthe
six natural sequences. The GH1family’s active site involves aglutamic
acid catalytic nucleophile around position 360 and a glutamic acid
general acid/base catalyst around position180. As all fragments were
designed based on aligned sequences, these conserved active-site resi-
dueswill all fall within the same fragment position. The Glu nucleophile
ispresentinblocks P1F3, P2F3, P3F3, P4F3, P5F3, P6F3, PrF6 and PcFé6.
The Glu general acid/base is present in blocks P1F1, P2F1, P3F1, P4F1,
P5F1, P6F1, PrF4, PcF4, PrF5and PcF5.

We designed DNA constructs to assemble sequences fromthe com-
binatorial sequence space using Golden Gate cloning. The designed
amino-acid sequence elements were reverse-translated using the Twist
codonoptimization tool, and the endpoints were fixed to preserve the
correct Golden Gate overhangs. We added Bsal sites to both ends to
allowrestriction digestion and ordered the 34 gene fragments cloned
into the pTwist Amp High Copy vector. Each sequence element’s amino
acid and gene sequence are given in Supplementary Data 5.

Automated gene assembly, expression and characterization

We implemented our fully automated protein testing pipeline on an
in-house Tecan liquid-handling system and the Strateos Cloud Lab. The
systemwas initialized with a plate of the 34 gene fragments (5 ng pl™),
an NEB Golden Gate Assembly Kit (E1601L) diluted to a 2x stock solu-
tion, a 2 pM solution of forward and reverse PCR primers, Phusion
2X Master Mix (ThermoFisher F531L), 2x EvaGreen stock solution,
Bioneer AccuRapid Cell Free Protein Expression Kit (Bioneer K-7260)
Master Mix diluted in water to 0.66x%, AccuRapid E. coli extract with
added 40 pM fluorescein, a fluorogenic substrate master mix (139 pM
4-methylumbelliferyl-a-D-glucopyranoside, 0.278% vol/vol dimethyl-
sulfoxide (DMSO), 11 mM phosphate and 56 mM NaCl, pH 7.0) and water.

Golden Gate assembly of DNA fragments. For agiven assembly, 5 pl
of each DNA fragment were mixed and 10 pl of the resultant mixture was
then combined with 10 pl of 2x Golden Gate Assembly Kit. Thisreaction
mix was heated at 37 °Cfor1h, followed by a5-mininactivation at 55 °C.

PCR amplification of assembled genes. A10-pl volume of the Golden
Gate assembly product was combined with 90 pl of the PCR primers
stock, and 10 pl of this mixture was then added to 10 pl Phusion 2X
Master Mix. PCR was carried out with a 5-min melt at 98 °C, followed
by 35cyclesof 56 °C anneal for 30 s, 72 °C extension for 60 s,and 95 °C
melt for 30 s. This was followed by one final extension for 5 minat 72 °C.

Verification of PCR amplification. A10-pl volume of the PCR product
was combined with 90 pl of water, and 50 pl of this mixture was then
combined with 50 pl 2x EvaGreen. The fluorescence of the sample was
read onamicroplate reader (excitation, 485 nm; emission, 535 nm) and
the signal was compared to previous positive/negative control PCRs to
determine whether PCR amplification was successful.

Cell-free protein expression. A30-pl volume of the 10x PCR dilution
fromthe previous step was added to 40 pl of AccuRapid E. coli extract
and mixed with 80 pl of AccuRapid Master Mix. The protein expression
reactionwas incubated at 30 °Cfor 3 h.

Thermostability assay. We used T, measurements to assess GH1ther-
mostability. Ty, is defined as the temperature where 50% of the enzyme
isirreversibly inactivated in 10 minand is measured by heating enzyme
samples across a range of temperatures, evaluating residual enzyme
activity, and fitting a sigmoid function to the temperature profile to
obtain the curve midpoint. Ts, represents the fractional activity lost
asafunction oftemperature andis therefore independent of absolute
enzyme concentration and expression level.

A70-plvolume of the expressed protein was diluted with 600 pl of
water, and 70-pl aliquots of this diluted protein were added to a column
ofa96-well PCR plate for temperature gradient heating. The plate was
heated for 10 min on a gradient thermocycler such that each protein
sample experienced a differentincubation temperature. After incuba-
tion, 10 pl of the heated sample was added to 90 pl of the fluorogenic
substrate master mix and mixed by pipetting. The fluoresceininternal
standard was analyzed on a microplate reader (excitation, 494 nm;
emission, 512 nm) for sample normalization, and the enzyme reaction
progress was monitored by analyzing the sample fluorescence (excita-
tion, 372 nm; emission, 445 nm) every 2 min for an hour. Any wells with
fluorescein fluorescence less than 20% of the average for a given run
were assumed to reflect pipetting failure and were not considered when
fitting a thermostability curve.

Human characterization of top designed enzymes

Bacterial protein expression and purification. The designs were
built using Golden Gate cloning to assemble the constituent gene
fragments, and the full gene was cloned into the pET-22b expression
plasmid. The assemblies were transformed into E. coli DH5a cells and
the gene sequences were verified using Sanger sequencing. The plas-
mids were then transformed into E. coli BL21(DE3) and preserved as
glycerol stocks at -80 °C. The glycerol stocks were used to inoculate an
overnight Luriabroth (LB) starter culture and the next day this culture
was diluted 100x into a 50-ml LB expression culture with 50 pg mI™
carbenicillin. The culture was incubated while shaking at 37 °C until
the optical density at 600 nmreached 0.5-0.6 and then induced with
1mMisopropyl 3-D-1-thiogalactopyranoside. The expression cultures
were incubated while shaking overnight at 16 °C, and the next day
the cultures were collected by centrifugation at 3,600g for 10 min,
discarding the supernatant. The cell pellets were resuspendedin 5 ml
of phosphate-buffered saline and lysed by sonication at 22 W for 20
cycles of 5sonand15 s off. The lysates were clarified by centrifugation
at10,000g for15 min.

The enzymes were purified by loading the clarified lysates
onto a Ni-NTA agarose column (Cytiva 17531801), washing with
20 ml of wash buffer (25 mM Tris, 400 mM NacCl, 20 mM imidazole,
10% vol/vol glycerol, pH 7.5) and eluting with 5 ml of elution buffer
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(25 mM Tris, 400 mM NaCl, 250 mM imidazole, 10% vol/vol glycerol,
pH 7.5). The eluted samples were concentrated using an Amicon filter
concentrator and concurrently transitioned to storage buffer (25 mM
Tris, 100 mM NaCl, 10% vol/vol glycerol, pH 7.5). The final protein con-
centration was determined using the Bio-Rad protein assay, the sam-
ples were diluted to 2 mg ml™in storage buffer, and frozen at —80 °C.

Thermostability assay. The clarified cell lysate from the protein
expressionwas diluted 100 in phosphate-buffered saline, then100 pl
of the diluted lysate was arrayed into a 96-well PCR plate and heated
for10 minonagradient thermocycler from40 °Cto 75 °C. The heated
samples were assayed for enzyme activity in quadruplicate with final
reaction conditions of10% heated lysate, 125 uM 4-methylumbelliferyl-
B-D-glucopyranoside, 0.125% vol/vol DMSO, 10 mM phosphate buffer
pH 7 and 50 mM NaCl. The reaction progress was monitored using a
microplate reader analyzing sample fluorescence (excitation, 372 nm;
emission, 445 nm) every 2 minfor 30 min. The reaction progress curves
were fit using linear regression to obtain the reactionrate, and a shifted
sigmoid function wasfit to the rate as afunction of temperatureincuba-
tion to obtain the T, value.

Michaelis-Menten kinetic assay. The purified enzymes were assayed
in quadruplicate along an eight-point twofold dilution series of
4-methylumbelliferyl-B-D-glucopyranoside starting from 500 pM.
The assays were performed with 10 nM enzyme, 0.5% vol/vol DMSO,
10 mM phosphate buffer pH 7and 50 mM NaCl. Thereaction progress
was monitored using amicroplate reader analyzing the sample fluores-
cence (excitation, 372 nm; emission, 445 nm) every 2 min for 30 min.
Astandard curve of 4-methylumbelliferone (4MU) ranging from 3.91to
62.5 ptMwas used to determine the assay’s linear range. The initial rate
for each reaction was determined by fitting a linear function to 4MU
fluoresence (excitation, 372 nm; emission, 445 nm) at 0-, 2-and 4-min
reaction times. The initial rate data were fit to the Michaelis—-Menten
equation using the scikit-learn®® curve_fit function to determine the
enzyme k., and Ky,.

SAMPLE code execution

Adetailed description of the software loop driving SAMPLE is provided
inthe Supplementary Information under the heading Detailed descrip-
tion of SAMPLE code functionality.

Materials availability
All plasmids used in this project are available upon request to
promero2@wisc.edu.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

Amore complete set of dataincludingthe code tointerpretthedatais
accessible at https://doi.org/10.5281/zenodo.10048592. Source data
are provided with this paper.

Code availability
All code and the necessary data to run that code are accessible at
https://doi.org/10.5281/zenod0.10048592.
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