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Geometric deep learning reveals the 
spatiotemporal features of microscopic 
motion

Jesús Pineda    1, Benjamin Midtvedt1, Harshith Bachimanchi    1, Sergio Noé    2, 
Daniel Midtvedt1, Giovanni Volpe    1   & Carlo Manzo    2 

The characterization of dynamical processes in living systems provides 
important clues for their mechanistic interpretation and link to biological 
functions. Owing to recent advances in microscopy techniques, it is now 
possible to routinely record the motion of cells, organelles and individual 
molecules at multiple spatiotemporal scales in physiological conditions. 
However, the automated analysis of dynamics occurring in crowded and 
complex environments still lags behind the acquisition of microscopic 
image sequences. Here we present a framework based on geometric deep 
learning that achieves the accurate estimation of dynamical properties in 
various biologically relevant scenarios. This deep-learning approach relies 
on a graph neural network enhanced by attention-based components. By 
processing object features with geometric priors, the network is capable 
of performing multiple tasks, from linking coordinates into trajectories 
to inferring local and global dynamic properties. We demonstrate the 
flexibility and reliability of this approach by applying it to real and simulated 
data corresponding to a broad range of biological experiments.

The biological functions of living systems rely on interactions that 
dynamically change in response to endogenous and exogenous stim-
uli. Studying the motion of the components of these systems sets the 
basis for mechanistic insights to understand health and disease1. Over 
the past 20 years, microscopy has advanced to the point where it can 
monitor dynamic processes at multiple scales with unprecedented 
spatiotemporal resolution. Time-lapse microscopy experiments have 
unveiled the strategies that unicellular organisms employ to search 
for food or to avoid adverse conditions, and have helped to under-
stand tissue growth and repair, cancer metastasis, quorum sensing, 
the emergence of multicellularity and immune responses in multicel-
lular organisms2,3. Fluorescence microscopy has monitored biological 
motion down to the nanoscale, detailing the diffusion of individual 
organelles and molecules within the cellular environment and disclos-
ing their role, for example, in the fundamental processes of signalling 
and function regulation4,5.

The momentous improvement of microscopy acquisition tech-
niques has led to a substantial effort to develop and improve algo-
rithms to automatically extract quantitative information from these 
experiments6,7. The standard analysis pipeline of tracking-by-detection 
methods entails the following steps4,7,8: (1) video frames are parti-
tioned (segmentation) and/or otherwise processed to detect and locate 
objects of interest (detection/localization); (2) detected positions at 
different times are connected into trajectories (linking); (3) recon-
structed trajectories are finally analysed to quantify dynamical param-
eters (motion characterization). The first two steps are often presented 
together and referred to as tracking. Several factors complicate the 
analysis of biological experiments, such as imaging noise, high object 
density, fusion or splitting events, random and heterogeneous motion, 
and shape-changing objects. Errors at each step propagate along the 
pipeline and ultimately impact the extraction of dynamic information.
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message-passing steps (Fig. 1f–i). The relational inductive knowledge 
implemented in the graph structure sketches a network of redundant 
object associations. The objective of the FGNN is to modulate the 
association strength to identify the edges majorly influencing the 
dynamic properties of each object. For this, the FGNN implements 
two mechanisms that combine information from multiple objects 
at the local and global levels. The first mechanism intervenes when 
aggregating edge features to a node (equation (3)). The contribu-
tion of each edge has a weight that depends on the distance between 
the connected nodes through a function with learnable parameters 
(equation (2)), thus defining a learnable local receptive field28,29. The 
second is a gated self-attention mechanism30 that sets in when updat-
ing the latent representation of nodes (equation (4)). The node update 
operation involves also information stemming beyond each node’s 
topological neighbourhood, thus effectively expanding the recep-
tive field to objects that, although not physically connected, can offer 
relevant information about the overall dynamics. The FGNN further 
updates the extra token for global attributes using information from 
all the nodes; thus, this extra token serves as an antenna to provide 
system-level insights.

The output of the FGNN is decoded by the last block of the GNN 
into an output graph, whose nodes, edges, and global attributes can 
be used to solve specific problems (Fig. 1j–l).

MAGIK accurately links trajectories
We benchmark MAGIK performance on a classical trajectory linking 
task, consisting of establishing temporal associations between identi-
fied objects. The graph structure includes a redundant number of edges 
with respect to the actual associations between objects. MAGIK aims to 
prune the wrong edges while retaining the true connections. We thus 
model this task as an edge-classification problem with a binary label 
(linked/unlinked) by minimizing the binary cross-entropy. From the 
predicted edge features, trajectories are built through a postprocess-
ing algorithm that eliminates spurious connections (Methods ‘Post
processing algorithm for trajectory linking’).

To test MAGIK, we use the silver-standard segmentation datasets 
provided for the training of the sixth edition of the Cell Tracking Chal-
lenge7. A representative segmentation of the dataset DIC-C2DH-HELA, 
corresponding to HeLa cells on a flat glass imaged through differential 
interference contrast, is shown in Fig. 2a. From the segmentation, we 
calculate the mean pixel intensity, area, perimeter, eccentricity and 
solidity of the segmented objects, which we use as input node features. 
The Euclidean distance between neighbouring objects is used as the 
sole edge feature. To limit memory usage, we generate graphs by draw-
ing edges only between objects within a limited spatial and temporal 
reach (Fig. 2b).

The DIC-C2DH-HELA dataset presents several challenges, such 
as the heterogeneity in cell shape and dynamics as a consequence of 
migration and proliferation (Fig. 2g). Examples of ground-truth and 
predicted graphs are shown in Fig. 2c,e showing a good agreement, 
as confirmed by an F1 score of 99.4% in edge prediction. For the evalu-
ation of performance at the trajectory level (Fig. 2d,f), we calculated 
the tracking accuracy measure (TRA), a normalized weighted dis-
tance between the tracking prediction and the reference tracking 
ground truth31 (Methods, ‘Quantification of cell-tracking results’). 
MAGIK reached a TRA = 99.2%, showing a great capability of correctly  
following objects despite shape changes and cell divisions (Fig. 2g and 
Supplementary Video 1).

We applied MAGIK to several other datasets of the 6th Cell Track-
ing Challenge, obtaining outstanding results for different microscopy 
techniques and cell types. Representative video frames with segmenta-
tion are shown in Fig. 3. Even though a strict objective comparison of 
MAGIK linking capability with other methods is limited by the fact that 
different algorithms rely on a different segmentation (whose errors 
influence linking and thus indirectly affect the value of the TRA metric), 

Numerous algorithmic solutions have been proposed to tackle 
the limitations of tracking algorithms and their performance has been 
compared in open challenges6,7. However, most of these methods are 
specific to a given experiment or dynamic model, and often require 
manual tuning of parameters. The current deep-learning revolution 
has fostered the development of various methods for both tracking9–13 
and motion characterization14.

Geometric deep learning provides compelling approaches to 
tackle tracking and motion characterization from a different perspec-
tive. It generalizes neural networks to problems that can be described 
by mathematical objects such as graphs that encode information 
about the structure of the input15. Deep-learning methods based on 
graphs are typically referred to as graph neural networks (GNNs)16 
and have been successfully applied, for example, to molecular prop-
erty prediction17, drug discovery18, computer-assisted retrosynthe-
sis19 and human trajectory prediction20. Besides being ubiquitously 
used in science to represent complex systems21,22, graphs provide a 
natural and intuitive way to represent the information contained in  
tracking experiments23,24.

Here we describe a framework for Motion Analysis through GNN 
Inductive Knowledge (MAGIK), which provides the accurate estimation 
of dynamical properties from time-lapse microscopy. MAGIK models 
the system’s motion and interactions through a graph representa-
tion. This graph is processed through an interpretable and adaptive 
attention-based GNN that estimates the associations among the objects 
and provides insights into the intrinsic dynamics of the systems. We 
demonstrate the flexibility and reliability of MAGIK by quantifying 
its performance on real and simulated data corresponding to a broad 
range of biological experiments. First, we benchmark it on its most 
natural application, that is, trajectory linking, in a variety of challeng-
ing experimental scenarios. Then, we show that MAGIK can estimate 
local and global dynamical properties without explicit linking even in 
highly heterogeneous scenarios.

Results
MAGIK represents spatiotemporal relations in a graph
MAGIK provides a GNN framework to estimate the dynamical properties 
of moving objects from time-lapse experiments. MAGIK models the 
objects’ motion and physical interactions using a graph representa-
tion. The details of the algorithm are given in Methods (‘Description of 
MAGIK’) and Extended Data Fig. 1. In this section, we provide a high-level 
description of the architecture (Fig. 1).

Graphs can define arbitrary relational structures between nodes 
connecting them pairwise through edges. When training a GNN, the 
graph architecture guides the learning process about the objects and 
their relations by introducing a relational inductive bias16. In MAGIK, 
each node describes an object detection at a specific time, the edges 
connect spatiotemporally close objects, and a set of global attributes 
encodes system-level properties. As an example, for subsequent frames 
of a cell migration experiment, each detected object (orange crosses in 
Fig. 1a) is represented as a node with a vector of node features (Fig. 1b). 
Directed edges with relational features connect each node to objects 
detected in the future in its proximity (Fig. 1b). There are no intrinsic 
restrictions on the type or number of descriptors (for example, loca-
tion and morphological features, image-based quantities, biological 
events, interaction strength, distance, direction) that can be encoded 
in the graph feature representation. The basic graph relational struc-
ture is established through a set of rules that link nodes pairwise based 
on distance metrics between features. Node and edge features are 
encoded through learnable functions implemented by neural networks  
(Fig. 1c,d). An extra learnable token is added to aggregate global attrib-
utes from the whole graph25–27 (Fig. 1e).

The graph is processed through a sequence of attention-based fin-
gerprinting graph neural networks (FGNNs; see also Methods ‘Descrip-
tion of MAGIK’ and Extended Data Fig. 1) that propagate information via 
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MAGIK obtained TRA values that are competitive, often superior, to 
the best-in-class methods of the 6th Cell Tracking Challenge. The influ-
ence of segmentation on linking is particularly relevant when dealing 
with touching or overlapping cells; thus specific isolation strategies 
might be adopted to prevent over- or under-segmentation32–35. While 
we attempted to account for these errors through the augmentation 
procedure, segmentation errors could produce systematic changes in 
node features that might impair the linking performance.

MAGIK quantifies motion parameters without trajectory linking
In most applications, the ultimate objective of tracking is the charac-
terization of the dynamics of the systems under investigation to gain 
insights into their underlying biological mechanisms. In this process, 
trajectory linking is often just an intermediate step necessary to obtain 
meaningful information from the data, but not the end goal itself.

MAGIK can characterize essentially any dynamic aspect without 
requiring the actual linking, owing to its capability of accounting for 
the whole spatiotemporal complexity contained in the associations 
between objects at multiple scales. Such linking-free analysis produces 
a twofold advantage. First, it bypasses the error-prone linking step, thus 
inherently preventing linking errors from propagating to the quanti-
fication of the ultimately relevant parameters. Second, it enables the 
analysis of experiments for which linking cannot be performed due to, 
for example, a high object density or low signal-to-noise ratio.

We apply MAGIK to analyse simulated data reproducing the diffu-
sion of fluorescently labelled single molecules such as lipids or recep-
tors in the plasma membrane of living cells (Fig. 4). We first consider 
the task of determining the diffusion coefficient from a heterogeneous 
ensemble of diffusing objects (Fig. 4a). We feed the network the cen-
troid coordinates and the intensity of the localized fluorescence spots 
as node features and the Euclidean distance between neighbouring 
centroids as the edge feature. We define the problem as a node regres-
sion and minimize the mean absolute error (MAE). The target feature 
is the displacement scaling factor √2D, with D being the diffusion 
coefficient. Graphs are built by connecting localized objects with 
neighbours in space and time (Fig. 4b). Ground-truth and predicted 
graphs are shown in Fig. 4b,c, respectively. All the edges of the graph 
structure are drawn, representing the network of associations used to 
infer dynamic properties without direct linking. Nodes are 
colour-coded according to the value of the displacement scaling factor 
√2D. Their visual comparison suggests excellent agreement, further 
confirmed by the quantification in Fig. 4d. Notably, the same architec-
ture can be applied at the single-trajectory level, opening interesting 
perspectives for the detection of dynamic changes and trajectory 
segmentation (Extended Data Fig. 2). The same approach can also be 
extended to estimate other parameters. In Extended Data Fig. 3a–d, 
we show the results of its application to the inference of the scaling 
exponent for objects undergoing anomalous diffusion, achieving 
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Fig. 1 | Spatiotemporal characterization of trajectories using MAGIK.  
a, Sequence of images illustrating the evolution of a group of cells over time, 
corresponding to frame numbers t − 1, t, t + 1, t + 2. The orange crosses indicate a 
detection. b, The movement of the cells and their interactions are geometrically 
modelled using a directed graph, where the nodes (𝒢𝒢) represent the detections 
and the edges (ℰ) connect spatiotemporally close detections. Each node contains 
features (orange squares) such as the cell’s centroid and some relevant 
descriptors (for example, the cell’s morphological and intensity attributes).  
The edges contain features (blue squares) too, in this case encoding the  
Euclidean distance between the centroids of the cells. In this example, the node 
of interest, labelled with the subindex i, is connected to neighbouring nodes  
in the future, labelled with the subindex j within a distance-based likelihood  
radius (the edge between nodes with feature vectors vti and vt+1

j=4 is dumped). 

Meaningful biological events (for example, cell divisions) are naturally encoded 
in the graph. c,d, The input node and edge features are mapped to a higher-level 
feature representation using learnable encoding functions implemented by the 
neural networks ϕv and ϕe, respectively. e, Importantly, we also append an extra 
learnable token U′ to the graph latent representation 𝒢𝒢 𝒢 𝒢𝒢𝒢′, ℰ′,U}, whose 
function is to provide global insights about the dynamics of the cells. f–l, MAGIK 
relies on attention-based fingerprinting graph blocks (FGNN; f) sequentially 
applied N times to process 𝒢𝒢 and provide an updated representation for nodes 
(𝒢𝒢′′; g), edges (ℰ′′; h) and global information (U′; i) (for further details regarding 
the FGNN architecture, refer to Methods ‘Description of MAGIK’ and Extended 
Data Fig. 1). Finally, 𝒢𝒢′′, ℰ′′ and U′ are decoded by applying learnable functions 
implemented by the neural networks φv, φe and φu, respectively, to obtain the 
sought-after node (j), edge (k) and global information (l).
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Fig. 2 | Trajectory linking using MAGIK. a, Representative frame of the HeLa 
cells in the DIC-C2DH-HELA validation video of the 6th Cell Tracking Challenge7. 
Scale bar, 20 μm. Segmentation (coloured regions) is used to extract relevant 
information from each cell along the sequence of images to build. b, The input 
graph structure including a redundant number of edges with respect to the 
actual associations between objects. Nodes are colour-coded with respect to the 
frame number (white, low; dark orange, high). c,d, Ground-truth graph (c)  
and ground-truth cell trajectories (d). Scale bar, 20 μm. e, The predicted graph 
agrees well with the expected solution, achieving an F1 score equal to 99.4%.  

f, The predicted trajectories reach TRA = 99.2% compared with the ground truth. 
Scale bar, 20 μm. Cell divisions are detected correctly, and the network performs 
well also in edge regions where cells are only partially observed and move out of 
the field of view. g, Zoomed-in view of the inset in f showing the heterogeneity in 
cell shape and dynamics. A cell changes morphology during migration (frames 
0–28) and divides into 2 daughter cells (frame 30) that spread and migrate  
apart (frames 30–83). Scale bar, 20 μm. A video visualizing the tracked cells is 
provided as Supplementary Video 1).
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similarly good results. It is also interesting to note that MAGIK’s per-
formance for node regression is less influenced by crowding than the 
performance for the linking task (Extended Data Fig. 4).

Fluorescence microscopy experiments for object tracking must 
ensure that the number of visualized molecules is low enough to unam-
biguously link the trajectories, thus they are often performed at low 
labelling density4. However, these conditions are not optimal to probe 
the interactions between particles and make difficult the inference of 
spatial patterns of diffusion36. Enabling the quantification of diffusion 
properties without linking offers the possibility to process high-density 
videos to determine the underlying topology and spatial heterogeneity.

As an example, we used MAGIK to resolve a spatially modulated 
landscape with diffusion continuously varying over more than two 
orders of magnitude from the localizations of diffusing particles  
(Fig. 4e–h), treating the problem as a node feature regression, as above. 
At a number density of about 0.02 px−2, MAGIK is capable of correctly 
retrieving the spatial map of D (Fig. 4f). Remarkably, most spatial fea-
tures can be already resolved with a 100-frame-long video (Fig. 4g). 
The spatial resolution of the predicted map can be further improved 
using longer videos (1,500 frames; Fig. 4h), with the typical duration 
of single-molecule fluorescence microscopy experiments for measur-
ing diffusion4.

MAGIK quantifies global dynamic properties
We applied MAGIK to directly extract ensemble information through 
the inference of global attributes skipping the trajectory linking step. 
We considered two biologically relevant scenarios. First, we analysed 
fluorescence microscopy experiments in which objects in the same 

video undergo diffusion according to different microscopic models 
(namely, fractional Brownian motion (FBM), annealed transient time 
motion (ATTM) and continuous-time random walk (CTRW); Fig. 5a–e). 
Although these diffusion models can give rise to anomalous diffusion, 
in this example they are parameterized to have the same scaling of the 
mean-squared displacement of Brownian motion (α = 1)14. Graphs are 
built as described above using centroid coordinates and intensity of 
the localized fluorescence spots as node features and the Euclidean 
distance between neighbouring centroids as the edge feature. MAGIK 
estimates the relative fraction of objects in each category, varying 
from experiment to experiment, as a regression problem by minimiz-
ing the sparse categorical cross-entropy of the global attribute. The 
results are summarized in Fig. 5a–e, showing an outstanding accuracy 
in predicting the correct fractions, even when the number of objects 
performing the same class of motion is very low. In Extended Data 
Fig. 3e–h, we further demonstrate that the same approach can also 
estimate the fraction of object moving according to different diffu-
sion modes (subdiffusion with α < 1, normal diffusion with α = 1 and 
superdiffusion with α > 1).

The second example refers to simulations of holographic imaging 
of microorganisms diffusing in a liquid environment, such as plank-
ton (Fig. 5f–k). We model diffusion as either FBM (Fig. 5f,g), ATTM  
(Fig. 5h,i) or CTRW (Fig. 5j,k) with α = 1. Objects in the same experiments 
follow the same physical model but with random diffusivity. Centroid 
three-dimensional coordinates, mean intensity, area and refractive 
index of the objects are used as node features in a classification prob-
lem to determine the common diffusion model of the objects in the 
same video, encoded as a global attribute. As shown in Fig. 5l, MAGIK 

a
Frame 17 Frame 18 Frame 19 Frame 20 Frame 21 Frame 22 Frame 23

b
Frame 12 Frame 23 Frame 33 Frame 57 Frame 85 Frame 97 Frame 114

c
Frame 4 Frame 17 Frame 35 Frame 50 Frame 56 Frame 57 Frame 58

Frame 6 Frame 73 Frame 76 Frame 79 Frame 82 Frame 85 Frame 86
d

Fig. 3 | MAGIK reliably links trajectories in various experimental scenarios. 
a, Confocal microscopy of green fluorescent protein (GFP)-transfected GOWT1 
mouse stem cells. MAGIK achieves an F1 score of 99.8% and TRA = 99.2% despite 
the fact that the cells frequently leave the field of observation. Scale bar, 
10 μm. b, Phase-contrast imaging of glioblastoma-astrocytoma U373 cells on a 
polyacrylamide substrate. MAGIK reaches an F1 score of 99.8% and TRA = 100% 
even though the cells greatly change shape over time. Scale bar, 10 μm.  
c, Epifluorescence imaging of HeLa cells stably expressing histone H2b–GFP. 
MAGIK achieves an F1 score of 98.8% and TRA = 98.4% despite the dense sample 

and frequent mitosis and collisions. Scale bar, 10 μm. d, Phase-contrast imaging 
of pancreatic stem cells on a polystyrene substrate. MAGIK obtains an F1 score of 
99.3% and TRA = 98.5% despite high cell density, elongated shapes, pronounced 
cell displacements and a significant number of division events. Scale bar, 10 μm. 
Interrupted trajectories correspond to cases where cells left the field of view or 
missed segmentation in the image sequence. All videos belong to the dataset 
of the 6th Cell Tracking Challenge7. Results can be observed in greater detail in 
Supplementary Videos 2–5.
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correctly classifies the diffusion model even with largely overlap-
ping objects. We find this result quite remarkable (equally so as that 
illustrated in Fig. 5e) since, for α = 1, all models converge to Brownian 
motion and feature large similarities in their statistical properties, 
making their classification rather challenging even when linked trajec-
tories are available14. We believe that MAGIK achieves this capability by 
detecting the fingerprint of each model’s generative dynamics at the 
microscopic level.

Last, we explore MAGIK’s performance for quantifying anom-
alous diffusion through the estimation of the exponent α (ref. 14) 
from a sequence of holographic images reproducing the motion of 
microorganisms. All the objects in the same video undergo FBM with 
random diffusivity and the same exponent α, varying from sequence 
to sequence (Fig. 5m). Also in this case, MAGIK provides remarkable 
results (MAE = 0.11) from short videos (about 50 frames) containing 
only a few objects.

Interpreting MAGIK
To determine the mechanisms that most contribute to MAGIK’s perfor-
mance, we evaluated different models on ablation of key components 
of the MAGIK architecture (Extended Data Table 1). As a baseline, we 
consider a version of MAGIK lacking both the learnable local receptive 
field and the gated self-attention and compare it with a model without 
gated self-attention and with the full MAGIK. As shown in Extended Data 
Table 1, both components contribute to improving the performance 

but, depending on the specific task, have a different weight. The learn-
able local receptive field seems to have little influence on the trajec-
tory linking and the estimation of local diffusion properties. In these 
cases, the gated self-attention significantly affects the results as both 
problems can benefit from information originated from nodes that are 
distant in time and/or space. In contrast, the learnable local receptive 
field is responsible for most of the gain in performance when inferring 
the fraction of objects performing different kinds of motion. Differ-
ences between diffusion modes can be in fact detected from short-time 
displacements, reducing the contribution of the gated self-attention 
to this task.

The relative distance between objects, encoded in MAGIK as an 
edge feature, is crucial to tackling the tasks presented in this work. 
In fact, we first attempted to establish a baseline through an ablated 
model without edge features. When trained for the node-regression 
problem, such a model did not converge and produced an MAE ≈ 0.2, 
compatible with random predictions of the diffusion coefficient.

We also explored positional encoding to provide distance-aware 
information, by appending Laplacian eigenvectors to node features27,37. 
However, Laplace positional encoding did not produce any improve-
ment in this architecture. To further explore the role of edge and 
node features in MAGIK, we trained a model where distances between 
detected objects are encoded as edge features but absolute coordinates 
are removed as node features. Interestingly, this model shows degra-
dation of performance with an MAE = 0.0748 ± 0.0115 (compared with 
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Fig. 4 | MAGIK determines local diffusion properties. a, Simulated single-
object tracking experiment where fluorescence microscopy is used to follow the 
motion of single molecules performing Brownian motion with diffusivity D 
varying from particle to particle. Scale bar, 20 px. b,c, Ground-truth (b) and 
predicted (c) graphs. The edges depict the network of associations used to infer 
dynamic properties without direct linking. The nodes are colour-coded 
according to the value of the target feature, that is, the displacement scaling 
factor √2D measured in pixels per frame (colour bar in b). d, Probability 
distribution of the predicted versus ground-truth diffusion coefficient D, 
showing a good agreement (MAE = 0.06). e, Simulated single-object tracking 

experiment where fluorescence microscopy is used to follow the motion of  
single molecules performing Brownian motion with diffusivity D randomly 
varying in space. Scale bar, 20 px. f–h, Ground-truth (f) and predicted (g,h) 
diffusion maps. Ground-truth spatial diffusivity pattern (f) and prediction 
obtained by MAGIK using 100-frame-long (g) and 1,500-frame-long (h) videos 
with about 0.02 localizations per px2 per frame. The analysis is performed by 
breaking down the sequence into 2 and 30 videos of 50 frames each, respectively. 
Predicted maps are obtained by interpolating the values of diffusivity obtained 
for the nodes over the 64 px × 64 px grid through a triangulation-based 
nearest-neighbour algorithm.
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MAE = 0.0538 ± 0.0022 for the complete model), pointing towards the 
importance of absolute coordinates for capturing spatial dynamics 
through the calculation of further parameters (for example, direction-
ality) beyond Euclidean distance.

The use of gated self-attention offers a feature-wise discriminatory 
power to the node update operation as it weights individual features of 
the attention node embedding with respect to their importance to the 
overall graph structure. Through this mechanism, MAGIK identifies 
only the meaningful features of each node. This leads MAGIK to apply 
non-uniform attention over the neighbourhood38 and to differentially 
consider the contribution from nodes of the same trajectory with respect 
to other neighbouring nodes belonging to different objects (Fig. 6).

Related works
Among the tasks explored in this work, the trajectory linking in biologi-
cal systems is undoubtedly the most popular and has been tackled with 
a variety of methods6,7. These methods typically employ Kalman filter39, 
multiframe and/or multitrack optimization based on greedy algorithms 
that approximate the multiple-hypothesis tracking solution36,40,41 or 
combinatorial optimization42. Most of these approaches offer their 
best performance when knowledge of the motion is explicitly used6.

Recently, deep-learning approaches have also been introduced to 
track biological objects using recurrent neural networks43,44 and long 
short-time memory networks45. From a computer vision point of view, 

trajectory linking is equivalent to what is generally referred to as data 
association in multi-object tracking. In this context, several approaches 
have used GNN to solve data association as an edge-classification 
problem46 or to jointly optimize detection and data association47,48. 
More generally, the problem of classifying nodes in a graph has also 
been tackled using spectral graph convolutional neural networks49. 
Very recently, the leveraging of the standard transformer into the 
graph domains has produced state-of-the-art performance on a wide 
range of tasks27.

MAGIK jointly processes spatial and temporal information in a 
static GNN. However, other approaches treat space and time differ-
ently50,51. In MAGIK, similar to other architectures, edge features are 
used together with node features in the aggregation of each node25,49. 
In these cases, unless a message-passing framework16,25 or an attention 
layer are used27, the edge features only propagate to the associated 
node. As MAGIK leverages edge information through a message-passing 
framework, we compared its performance with other methods using 
the same mechanism, namely a message-passing neural network25 
and a gated graph sequence neural network52. To assess differences 
in performance between the use of global and masked attention, we 
also compared MAGIK with a message-passing neural network having 
a graph transformer37 as a node update function. The results of the 
comparison are shown in Extended Data Table 1. For all the tasks and 
datasets, these methods perform better than or in line with the baseline 
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Fig. 5 | MAGIK estimates local and global dynamic properties at the ensemble 
and single-object levels. a, Simulated single-object tracking experiment  
where objects with different underlying diffusion models coexist (that is, FBM, 
ATTM and CTRW with anomalous diffusion exponents α = 1). Scale bar, 20 px. 
b–d, Probability distribution of predicted versus ground-truth model fraction  
for FBM (b), ATTM (c) and CTRW (d). e, Confusion matrix demonstrating how  
the network classifies the underlying diffusion model exhibited by objects in  
1,199 validation videos. The diagonal represents the percentage of correctly 
classified graph representations, constituting most cases. The off-diagonal 
cells represent incorrectly classified examples. Column-based normalization is 
applied, such that the sum along the columns adds up to 1, with minor deviations 
due to rounding. f–k, Representative frames of simulated holographic video 

(f,h,j) and corresponding graph representation (g,i,k) for the whole image 
sequence, where objects follow FBM (f,g), ATTM (h,i) and CTRW (j,k),  
with α = 1. Nodes are colour-coded with respect to the value of axial coordinate 
z (white, low; dark orange, high). In the graphs, the edges depict the association 
network used to infer dynamic properties without trajectory linking.  
Scale bars, 20 px. l, Confusion matrix showing how the network classifies the 
underlying diffusion model presented in 1,496 validation videos. Column-
based normalization is applied. m, MAGIK predicts the anomalous diffusion 
exponent governing the motion of ensembles of objects performing FBM in 
1,097 holographic videos. The probability distribution of the predicted versus 
ground-truth anomalous diffusion exponent (α) exhibits a good performance 
throughout the evaluated range.
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but are outperformed by the full MAGIK. MAGIK performance is quite 
striking for the node-regression task, once more stressing the impor-
tance of the attention layer for this problem.

Discussion
MAGIK is a versatile framework for the characterization of dynamic 
properties from time-lapse microscopy that exploits geometric 
deep-learning capability to capture the full spatiotemporal complexity 
of biological experiments. MAGIK strongly relies on an attention-based 
GNN that can extract dynamic parameters from image-based features 
by assuming relational constraints between objects.

The examples analysed in this work highlight the wide versatil-
ity of MAGIK in different biological contexts. Remarkably, the same 
architecture can be applied to investigate other observables, can be 
trained to simultaneously estimate several parameters, and can even 
be used for applications beyond time-lapse microscopy, where time is 
substituted by another variable.

MAGIK provides a key enabling technology to estimate dynamic 
parameters from segmentation/localization in a complete linking-free 
fashion, whereas other methods require some level of knowledge about 
the linking between objects53,54. As such, it provides a powerful solu-
tion for those experiments where trajectory linking cannot be reliably 
performed, for example, as a consequence of high object density or 
probe blinking.

Methods
Description of MAGIK
The input to MAGIK is the graph representation of the movement and 
interactions of an ensemble of objects. The nodes (𝒱𝒱) contain features 
encoding meaningful information about the objects, whereas the edges 
(ℰ) connect spatiotemporally neighbouring nodes codifying relational 
features, such as the Euclidean distance between them (Fig. 1a,b). To 
improve efficiency, each node is connected to a limited number of 
spatial neighbours at subsequent frames. This is achieved through the 
choice of two parameters that set the maximum distance at which 
nodes must be located in space and time to be connected. We thus 

obtain a directed graph that is generally not fully connected. For most 
of the examples discussed in this work, we connect nodes within a 
maximum distance equal to 20% of the full field of view and up to 2 
frames in the future. Exceptions are the reconstruction of the spatially 
varying diffusion map for which the maximum distance was set to 12% 
of the full field of view and the time-varying diffusion (segmentation) 
for which we connected nodes up to 4 frames in the future.

The architecture comprises three main blocks. First, an encoder 
neural network ϕv ∶ ℝl → ℝl′ converts each node feature representation 
vi ∈ 𝒱𝒱 of dimension l into an l′-dimensional feature representation  
v′i (Fig. 1c). In parallel, another encoder neural network function 
ϕe ∶ ℝf → ℝf′ transforms each edge feature ek ∈ ℰ into a high-level fea-
ture vector e′k of dimension f′ (Fig. 1d). ϕv and ϕe are a series of multilayer 
perceptrons (MLPs) composed of a linear layer followed by a Gaussian 
error linear unit55 as activation function and layer normalization.

Second, the resultant graph representation 𝒢𝒢 𝒢 {𝒱𝒱′, ℰ′} (Fig. 1e) is 
processed through repeated fingerprinting graph blocks (FGNN, 
described in detail in Extended Data Fig. 1). Each FGNN updates each 
edge in the graph by applying an MLP to the concatenation of the fea-
tures of two neighbouring nodes and their connecting edge, that is

e′′ij 𝒢 MLP ([v′i ,v
′
j , e

′
ij]) (1)

for j ∈ 𝒩𝒩i, where 𝒩𝒩i is the neighbourhood of node i, and [·] represents 
the concatenation operation (Extended Data Fig. 1b). Subsequently, 
the learned representation e′′ij (of dimension f′) is weighted by a Gauss-
ian attention mechanism

wij 𝒢 exp(−(
d2ij
2σ2 )

β

) (2)

where dij is the Euclidean distance between the centroids of the nodes 
i and j, and the standard deviation σ and the Gaussian order β are learn-
able parameters that allow the FGNN to adapt to varied object dynamics 
(Extended Data Fig. 1c,d). The FGNN computes a local representation 
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Fig. 6 | MAGIK attention mechanism. a, Exemplary frame from a video 
reproducing particles moving with different diffusion coefficients and their 
corresponding trajectories (segmented lines). Edges and nodes corresponding 
to detections of the two particles at the current (large circles) and at two previous 
(small circles) frames are also shown. Scale bar, 20 px. b, The message-passing 
steps only propagate information to a target node (vti) from a limited number  
(in this example 2) of previous frames. c, The gated self-attention mechanism 
further encodes information from all nodes. The different attention heads zi 
spatiotemporally cluster other nodes and differentially consider their influence 
on the target node. d, Example of a ground-truth graph. The edges depict the 
network of associations used to infer dynamic properties without direct linking. 

The nodes are colour-coded according to the value of the target feature,  
that is, the displacement scaling factor √2D. The green circle highlights the 
target node, with respect to which the attention values shown in e and g are 
calculated. e, Attention map (heads 1–6) corresponding to the graph in b 
calculated with respect to the target node. f, Zoom-in of the rectangular region  
in b. g, Ground-truth trajectories (symbols and lines) corresponding to the  
graph in f. The symbols are colour-coded according to the value of the attention 
head 6 calculated with respect to the target node. Independently from the  
spatial distance, nodes from the same trajectory have a larger influence on the 
reference node.
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for the topological neighbourhood 𝒩𝒩i  by applying a linear trans
formation to the concatenation of the current state of node i and the 
aggregate of the weighted edge features, according to

h̃i 𝒢 WH̃ [v′i , ∑
j∈𝒩𝒩i

wije′′ij ] (3)

where WH̃ is an l′ × (l′ + f′) linear projection matrix. The h̃i are stored  
in a local representation matrix H̃. Importantly, we prepend to this 
matrix a learnable node embedding U ∈ ℝl′ through row-wise concat-
enation, that is, H 𝒢 [U; H̃], whose state serves as a graph-level repre-
sentation (Extended Data Fig. 1e)26. Finally, gated self-attention layers30 
are used to update the hidden states of the node features

V′′(z) 𝒢 attn(z) (H)

𝒢 G(z) ⊙ (softmax ( 1
√c

Q(z)K(z)⊤)P(z))
(4)

where z = 1, ⋯ , Z, with Z representing the number of attention heads; 
Q(z) 𝒢 HW(z)

Q , K(z) 𝒢 HW(z)
K  and P(z) 𝒢 HW(z)

P  are the queries, key and val-
ues, embedding matrices of dimension c obtained by the l′ × l′ linear 
projection matrices W(z)

Q , W(z)
K  and W(z)

P , respectively; G(z) 𝒢 σ (HW(z)
G )  

is the gate vector parameterized by the linear projection matrix 
W(z)

G ∈ ℝl′×l′, followed by an element-wise sigmoid function σ; ⊙ denotes 
the Hadamard product; and softmax normalizes the self-attention 
weights to be positive and add up to 1. The multi-head outputs V′′(z) are 
concatenated and passed through a MLP to capture nonlinear interac-
tions between the node features to provide the set of updated node 
embeddings 𝒱𝒱′′ (Extended Data Fig. 1f). Note that U′ needs to be 
retrieved from 𝒱𝒱′′ to obtain the updated global features.

Third, the final node (𝒱𝒱′′), edge (ℰ′′) and global features (U′) are 
decoded to obtain node, edge and global-level predictions. The node 
features 𝒱𝒱′′ are processed using the decoding neural network φv to 
obtain predictions for nodes. Similarly, the decoder neural network φe 
receives ℰ′′ and yields a prediction for each edge in the graph. φv and 
φe are reflections of the encoder networks ϕv and ϕe, respectively, with 
an additional (prediction) layer comprising a linear transformation 
tailed by an output activation function (for example, softmax or logistic 
sigmoid for classification problems, or linear activation for regression 
tasks). To compute global attributes, U′ is processed by φu, an MLP 
followed by a linear layer and a task-dependent nonlinear activation.

To demonstrate the versatility of MAGIK, we use the same model 
architecture for all examples. The encoding neural networks ϕv and ϕe 
consist of a series of MLPs of dimensions 32, 64 and 96, respectively. The 
latent dimension for nodes and edges (that is, l′ = f′ = 96) is maintained 
across two FGNN layers in the trunk of the network and is chosen such 
that it is divisible by the number of self-attention heads in each layer 
(Z = 6 or Z = 12). The global embedding vector U is zero-initialized. The 
node and edge decoding neural networks φv and φe consist of three 
MLPs of dimensions 96, 64 and 32, followed by a final linear layer and 
an activation function that map the decoded node and edge features 
to the output dimension. φu consists of a 64-dimensional MLP followed 
by a linear output layer and an activation function that returns the 
global-level predictions.

MAGIK training
Once the network architecture is defined, MAGIK is trained using a set 
of graph feature representations and task-dependent targets. The input 
graphs follow the same relational structure regardless of the task, with 
nodes describing object detections and edges connecting the objects 
in time and space. Targets, in turn, represent different parameters 
depending on the specific task.

For trajectory linking (Figs. 2 and 3), MAGIK is trained to predict 
the probability of having a connection/link between two objects. This 
task is modelled as an edge-classification problem with a binary label 

(linked, labelled with 1, or unlinked, labelled with 0). Thus, during 
training, the network aims at minimizing the binary cross-entropy 
between the predicted probabilities and the ground-truth label for 
each edge. Accordingly, φe uses a sigmoid function as the final activa-
tion to produce probability estimates. For the training of the linking 
task, we use a single annotated video for each dataset/cell type, from 
which we stochastically extract 512 samples as sequences of consecu-
tive frames with a duration of 10% to 20% of the whole video duration. 
Graphs are created using features obtained from video segmentation 
as described in Fig. 1a. Object coordinates are augmented by trans-
lations, rotations and mirroring. Other object descriptors are aug-
mented by adding random noise to their values. To account for missed 
detections, we assign nodes a random number between 0 and 1 and 
remove those with values smaller than 0.05, together with the associ-
ated connections. For all the trajectory linking examples, the network 
is trained for 100 epochs using the 512 training samples processed in 
batches of 8 samples per iteration. Network performance was evalu-
ated on samples extracted from different videos with respect to those  
used for training.

The inference of local properties is modelled as a node-regression 
problem (Fig. 4a–d), where MAGIK is trained to minimize the MAE 
between node predictions and ground truth. As a target feature, we 
use either the diffusion coefficient (Fig. 4b–d) or the anomalous dif-
fusion exponent (Extended Data Figure 3b–d) of the object at the 
node level. Here, φv uses a linear activation function as the output 
activation. For the training, we generate a dataset of 2,000 videos with 
a duration of 50 to 55 frames corresponding to heterogeneous sets 
of moving objects (further details are provided in the ‘Simulations’ 
section). At each epoch, 1,024 samples are randomly extracted from 
the training dataset and their graph representations are augmented 
by translations, rotations and mirroring of the nodes’ centroids. The 
network was trained for 100 epochs, processing the 1,024 samples in 
batches of 8 per iteration. Network performance was evaluated on 
independently simulated samples obtained using a different seed 
with respect to the training.

The quantification of global dynamic properties requires MAGIK 
to be trained to estimate global-level attributes from the input graphs. 
We have approached this problem from different perspectives: a clas-
sification problem to determine the underlying diffusion model of a 
set of particles (Fig. 4e–l) and a regression problem to estimate the 
relative fraction of objects moving according to different diffusion 
modes (Extended Data Fig. 3e–h). For classification tasks, the network 
is trained to minimize the sparse categorical cross-entropy between 
class predictions and ground-truth labels, with a softmax as the out-
put activation of φu. For regression tasks, MAGIK minimizes the MAE 
between the network estimates and the target features and φu uses a 
linear activation function as the output activation. As target features, 
we use either class labels (for classification tasks) or continuous fea-
tures (for regression tasks). In each of these examples, the training 
data come from 2,000 simulated videos. At each epoch, 1,024 sam-
ples are randomly extracted from the training dataset from which we 
extract graph representations and augment their topological struc-
ture by translations, rotations and mirroring of the nodes’ centroids. 
The network was trained for 100 epochs, processing 1,024 samples 
in batches of 8 per iteration. Network performance was evaluated on 
independently simulated samples obtained using a different seed with 
respect to the training.

For all examples, the trainable parameters of MAGIK (that is, the 
weights of the artificial neurons in the neural networks and the param-
eters of Gaussian edge weighting function) were iteratively optimized 
using the backpropagation algorithm56 and Adam optimizer (with a 
learning rate of 0.001)57. The training time of MAGIK ranges between 
1 min and 5 min for trajectory linking and from 30 min to 60 min in the 
case of node and global-level regression on an NVIDIA A100 GPU (40 GB 
VRAM, 2,430 MHz effective core clock, 6,912 CUDA cores).
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The capability of training using a minimal amount of annotated 
data without requiring prior knowledge of the underlying dynamics 
enables the application of MAGIK to a wide range of real data for which 
large labelled datasets are not available. In addition, we have also tested 
the possibility to perform transfer learning for the linking task between 
migration experiments employing different cell types, as shown in the 
GitHub repository.

Postprocessing algorithm for trajectory linking
Cell trajectories are built from the scores obtained for the 
edge-classification problem through a simple postprocessing algo-
rithm. The algorithm starts from a random node at the initial frame 
t = 0 and connects it over time with other nodes at subsequent frames, 
considering only edges that have been classified as ‘linked’ by MAGIK. If 
no ‘linked’ edges connect the sender node at t with any receiver nodes at 
t + 1, the algorithm checks future frames, until a maximum time lag. If no 
‘linked’ edges are found within this lag, the trajectory is interrupted. If a 
sender node has two ‘linked’ edges connecting it to two receiver nodes 
at a later frame, the event is identified as a division. At this point, the 
algorithm treats the two nodes as independent and attempts to build 
two new trajectories. In the rare event that more than two ‘linked’ edges 
originate from the same sender, the one connecting the farthest receiver 
is dropped. The procedure is iterated until all the ‘linked’ edges have 
been taken into account. The datasets used in this work for the linking 
task did not contemplate merging events; therefore, this capability 
was not included in the postprocessing step used for the analysis. For 
other tasks and purposes, MAGIK output might be postprocessed with 
alternative algorithms that implement merging capabilities.

Quantification of cell-tracking results
Quantification of the method performance for cell tracking was 
obtained by calculating the TRA metric based on the acyclic oriented 
graph matching (AOGM) measure discussed in ref. 31. First, images 
corresponding to the incomplete cell segmentation provided for the 
6th Cell Tracking Challenge were annotated according to their ground 
truth and then transformed into an acyclic oriented graph according 
to the instructions for participation in the challenge7. A similar graph 
was also obtained for the trajectories predicted by our methods. The 
quantification of the matching between the two graphs performed by 
the AOGM corresponds to the weighted sum of the executed opera-
tions to transform the predicted graph into the ground-truth one31. For 
this, we used the AOGM-A measure, which corresponds to the AOGM 
measure calculated by keeping only the edge-related weights posi-
tive (wNS = wFN = wFP = 0; wED = 1, wEA = 1.5, wEC = 1)31. The AOGM-A thus 
evaluates the ability of an algorithm to follow objects in time (that is, 
its linking capability). The AOGM-A measure is normalized to obtain 
the tracking accuracy (TRA):

TRA 𝒢 1 − min(AOGM-A,AOGM-A0)
AOGM-A0

(5)

where AOGM-A0 corresponds to the cost of linking the graph from 
scratch (that is, the cost of adding all the edges multiplied by the corre-
sponding weights). The normalization bounds TRA in the interval [0, 1], 
with higher values corresponding to better tracking performance.

Simulations
Trajectories were simulated using the andi-datasets Python pack-
age58. In addition, we used DeepTrack 2.159 to render imaged objects 
in different illumination modalities (fluorescence and holographic 
microscopy) reproducing optical conditions to provide realistic node 
features (Fig. 4). The localizations’ crowding was estimated by c = ρDΔt, 
an adimensional parameter in two dimensions that simultaneously 
accounts for changes in the number density ρ, diffusion coefficient D 
and sampling time Δt.

For the fluorescence microscopy experiments of Fig. 4a–d, we 
simulated objects performing Brownian motion in two dimensions 
with random diffusivities (0.005 ≤ D ≤ 0.7). For Fig. 4e–h, the diffusiv-
ity was defined by a random spatial map, smoothed with a Gaussian 
filter. For training, we typically use videos of 50–55 frames containing 
30–35 objects for the inference of D and 70–80 frames for the diffusiv-
ity maps, initially positioned at random locations on 32 × 32 px2. The 
localizations’ crowding was estimated by c = ρDΔt, an adimensional 
parameter in two dimensions that simultaneously accounts for changes 
in the number density ρ, diffusion coefficient D and sampling time Δt. 
Due to the variability of D and of the number of objects, the crowding 
factor for these examples could vary from video to video in the range 
[0.003, 0.04]. Each object was rendered as a diffraction-limited spot 
through the optics module of DeepTrack 2.159, with a random intensity 
from a uniform distribution between 20 and 80 counts, varying over 
time with a standard deviation of 3 counts.

For all the experiments of Fig. 5, we generated trajectories under-
going three different diffusion models, namely FBM, ATTM and CTRW, 
with a constant anomalous exponent α = 1 and random diffusivity. For 
Fig. 5a–e, each object in the video undergoes two-dimensional diffusion 
with a randomly assigned model, with all other properties (sequence 
length, number of particles, intensity) being the same as described 
for the data in Fig. 4.

For the plankton trajectories illustrated in Fig. 5f–m, all 
microorganisms in the same video move according to the same 
three-dimensional model, varying from video to video. We generated 
holographic videos of 100 frames including 3–7 microorganisms, each 
with a randomly sampled refractive index from a uniform distribution 
between 1.35 and 1.55, covering a wide variety of plankton species in 
the literature60.

For the data of Extended Data Fig. 2, we generated trajectories 
undergoing Brownian motion with random diffusivity drawn from 
an exponential distribution with an average of 0.1 px2 per frame 
(truncated at 0.001 and 1 px2 per frame) and with a random inten-
sity from a uniform distribution between 20 and 80 counts, varying 
over time with a standard deviation of 3 counts. The diffusivity was 
kept constant over dwell times extracted from a geometrical distribu-
tion with p = 0.05 truncated at values >5 frames. Sequence length was  
400 frames.

For the examples in Extended Data Fig. 3a–d, we simulated objects 
performing FBM in two dimensions with random anomalous expo-
nents (0.2 ≤ α < 1.8) and diffusivities (0.005 ≤ D < 0.7). For the examples 
illustrated in Extended Data Fig. 3e–h, we generated fluorescence 
images of objects undergoing FBM in two dimensions in sub-diffusive 
(0.2 ≤ α ≤0.6), normal (α = 1) and super-diffusive mode (1.4 ≤ α ≤ 1.8). All 
other properties (sequence length, number of particles, intensity) are 
the same as described for the data in Fig. 4.

For the data of Extended Data Fig. 4, we generated trajectories 
undergoing FBM with a constant anomalous exponent α = 1 and ran-
dom diffusivity drawn from an exponential distribution with an aver-
age of 0.1 px2 per frame (truncated at 0.001 and 1 px2 per frame) and 
with a random intensity from a uniform distribution between 20 and 
80 counts, varying over time with a standard deviation of 3 counts.  
Particles undergo diffusion with reflecting boundaries in a square box 
with a side of 32 × 32 px2. The number of particles was kept constant at 30. 
Trajectories were generated at sampling times Δt = 0.5, 1, 2, 4, 8, 16, 32 
corresponding to crowding factor c = 0.0015, 0.0029, 0.0059, 0.0117, 
0.0234, 0.0468, 0.0936. Sequence length was 100 frames.

Data availability
The cell tracking datasets were obtained from the Cell Tracking Chal-
lenge webpage http://celltrackingchallenge.net/2d-datasets/, where 
they can be accessed from. Further datasets and examples to run the 
code are publicly available at the DeepTrack 2.1 GitHub repository59. 
Source data are provided with this paper.
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Code availability
All source code is made publicly available at the DeepTrack 2.1 GitHub 
repository59.
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Extended Data Fig. 1 | Processing flow of the fingerprinting graph block 
(FGNN). FGNN, similar to other flavours of GNN layers, comprises three 
fundamental steps: edge feature update, edge feature aggregation, and node 
update. a, Input graph structure. Nodes contain features encoding the object’s 
position and relevant descriptors. Edges encode relational features between 
neighbouring nodes. In this example, the node of interest, labelled with the 
subindex i, receives information from connected nodes, labelled with the 
subindex j. b, Each edge in the graph is updated by applying a multilayer 
perceptron (MLP) to the concatenation of the features of two nodes and the edge 
connecting them (equation (1)). c, During the aggregation of edge features to a 
node, the contribution of each edge has a weight that is determined by the 
distance between linked nodes using a function with free parameters, fw 
(equation (2)). d, fw is a super-Gaussian and defines a learnable local receptive 
field that allows the FGNN to adapt to heterogeneous dynamics. e, The current 

state of the nodes and the aggregate of the weighted edge features are 
concatenated and linearly transformed to obtain a local representation for each 
neighbourhood (equation (3)). Furthermore, the FGNN prepends a learnable 
node embedding U to the local representation matrix, whose features provide 
global system-level insights. f, The nodes are updated using gated self-attention 
layers. The matrix resulting from the concatenation of U with the local features is 
transformed by the trainable linear transformation matrices Q(z), K(z), P(z) to 
obtain queries, key, and values, respectively. z denotes the index of the attention 
head. The self-attention weights are calculated by the dot-product of the queries 
with the key matrix. Softmax normalizes the weights to be positive and to add up 
to 1 (equation (4)). Finally, the weighted values are multiplied by the gatings and 
passed through an MLP to account for nonlinear interactions between nodes to 
obtain the updated node features.
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Extended Data Fig. 2 | MAGIK detects dynamic changes along individual 
trajectories. a-c, Portions of individual 2D trajectories undergoing changes of 
diffusion coefficient (circles). The colour of the segments represents the value  
of the displacement scaling factor √2D, with D being the diffusion coefficient. 
The full trajectories are reproduced in the insets, with the remainder of the 

trajectory depicted in grey. d-f, Time traces of the displacement scaling factor 
√2D. The ground-truth value used in the simulations is shown by the orange 
curve. The predictions obtained by MAGIK at the single-node level are  
shown in grey. g, Probability distribution of the predicted vs. ground-truth 
diffusion coefficient D, showing a good agreement (MAE = 0.07).
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Extended Data Fig. 3 | MAGIK estimates local and global anomalous diffusion 
properties at the ensemble and single-object levels. a, Simulated single-object 
tracking experiment. Fluorescence microscopy is used to follow the motion 
of single molecules characterized by a fractional Brownian motion (FBM) with 
varying anomalous diffusion exponent α. Scale bar = 20 px. b-c, Ground-truth 
and predicted graphs. Edges depict the network of associations used to directly 
infer dynamic properties without explicit linking. Nodes are colour-coded 
according to the value of the target feature α. The predicted node values  
agree with the ground truth also in crowded areas (for example, zoomed  

regions I and II). d, Probability distribution of the predicted vs. ground-truth 
anomalous diffusion exponent α. e-h, MAGIK estimates the relative fraction of 
objects following different diffusion modes, that is, sub- (0.2≤α≤0.6), normal 
(α = 1) and superdiffusion (1.4≤α≤1.8). e-g, Probability distribution of predicted 
vs. ground-truth fraction for subdiffusion, normal diffusion, and superdiffusion, 
respectively. h Confusion matrix demonstrating how the network classifies 
the underlying diffusion model exhibited by objects in 1199 validation videos. 
Column-based normalization is applied, such as the sum along the columns  
adds up to 1, with minor deviations due to rounding.
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Extended Data Fig. 4 | MAGIK performance as a function of trajectory 
crowding. a-c, Examples of trajectories obtained at three different levels of 
crowding. The localizations’ crowding was estimated by c = ρDΔt, an 
adimensional parameter in 2D that simultaneously accounts for changes in the 
number density ρ, diffusion coefficient D, and sampling time Δt. Sequence length 
was 100 frames. Panels represent examples obtained for c = 0.0015 (a-c), 
c = 0.0117 (b), and c = 0.0936 (c). d-e, Performance obtained by MAGIK at varying 

the crowding factor for the trajectory linking (quantified through the Jaccard 
index, d) and the node-regression task (quantified through 1− MAPE

100
, where MAPE 

represents the mean absolute percentage error, e). The performance for the 
linking task degrades faster ( ≈ 25% reduction) with respect to node regression 
( ≈ 15% reduction) over the same range of c. Data in d-e correspond to averages 
(circles) and 3 × σ (error bars) calculated over 5 runs.
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Extended Data Table 1 | Results of ablation study and methods’ comparison. Ablated architectures are obtained by 
removing the learnable local receptive field (LLRF) and/or the gated self-attention (GSA) from MAGIK. Reported metrics 
correspond to averages over 20 runs for linking and over 5 runs for the other cases. Best-in-class performances are 
reported in bold. The dashed lines correspond to the metric values obtained for the baseline model

http://www.nature.com/natmachintell

	Geometric deep learning reveals the spatiotemporal features of microscopic motion

	Results

	MAGIK represents spatiotemporal relations in a graph

	MAGIK accurately links trajectories

	MAGIK quantifies motion parameters without trajectory linking

	MAGIK quantifies global dynamic properties

	Interpreting MAGIK

	Related works


	Discussion

	Methods

	Description of MAGIK

	MAGIK training

	Postprocessing algorithm for trajectory linking

	Quantification of cell-tracking results

	Simulations


	Acknowledgements

	Fig. 1 Spatiotemporal characterization of trajectories using MAGIK.
	Fig. 2 Trajectory linking using MAGIK.
	Fig. 3 MAGIK reliably links trajectories in various experimental scenarios.
	Fig. 4 MAGIK determines local diffusion properties.
	Fig. 5 MAGIK estimates local and global dynamic properties at the ensemble and single-object levels.
	Fig. 6 MAGIK attention mechanism.
	Extended Data Fig. 1 Processing flow of the fingerprinting graph block (FGNN).
	Extended Data Fig. 2 MAGIK detects dynamic changes along individual trajectories.
	Extended Data Fig. 3 MAGIK estimates local and global anomalous diffusion properties at the ensemble and single-object levels.
	Extended Data Fig. 4 MAGIK performance as a function of trajectory crowding.
	Extended Data Table 1 Results of ablation study and methods’ comparison.




