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Comparison of NLP machine learning
models with human physicians for ASA
Physical Status classification
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The American Society of Anesthesiologist’s Physical Status (ASA-PS) classification system assesses
comorbidities before sedation and analgesia, but inconsistencies among raters have hindered its
objective use. This study aimed to develop natural language processing (NLP)models to classify ASA-
PS using pre-anesthesia evaluation summaries, comparing their performance to human physicians.
Data from717,389 surgical cases in a tertiary hospital (October 2004–May2023)was split into training,
tuning, and test datasets. Board-certified anesthesiologists created reference labels for tuning and
test datasets. TheNLPmodels, includingClinicalBigBird, BioClinicalBERT, andGenerative Pretrained
Transformer 4, were validated against anesthesiologists. The ClinicalBigBird model achieved an area
under the receiver operating characteristic curve of 0.915. It outperformed board-certified
anesthesiologists with a specificity of 0.901 vs. 0.897, precision of 0.732 vs. 0.715, and F1-score of
0.716 vs. 0.713 (all p <0.01). This approach will facilitate automatic and objective ASA-PS
classification, thereby streamlining the clinical workflow.

The American Society of Anesthesiologists Physical Status (ASA-PS)
classification, a fundamental scoring system used to evaluate co-
morbidities1 and predict perioperative mortality and morbidity2–5, is
widely used in anesthetic guidelines for non-anesthesia care6,
ambulatory surgery7,8, and pre-procedure evaluations9. This has
enabled anesthesiologists to provide patients with the benefits of
sedation or analgesia while minimizing the associated risks. The
ASA-PS classification has significantly impacted the healthcare sys-
tem, particularly on billing and reimbursement by health insurance
companies10,11. However, poor to moderate agreement has been
observed for the use of the ASA-PS system among healthcare pro-
fessionals across various departments and patient groups, leading to
inconsistencies12–14, which have hindered its objective use. Moreover,
significant discrepancies persist in different patient scenarios despite
a 2014 update providing approved examples for each ASA-PS
class11,15. Thus, the development of a reliable tool capable of assigning
ASA-PS classes accurately by extracting meaningful data from
unstructured patient information is necessary.

Recent advances in the field of natural language processing (NLP) have
led to significant improvement in themanagement of unstructuredmedical
text data. For instance, Generative Pretrained Transformer (GPT)-4
(OpenAI, San Francisco, California, USA) has demonstrated exceptional

accuracy of >90% on the United States Medical Licensing Examination
(USMLE). However, its lower performance on more specialized tasks
indicates the requirement for targeted improvements16,17. BioClinicalBERT,
trained on a large domain-specific biomedical text corpus, has exhibited
promising results inASA-PSclassification,with amacro-average area under
the receiver operating characteristic curve (AUROC)of 0.845. Furthermore,
its processing limit of 512 tokens indicates potential areas for
improvement18. ClinicalBigBird, which can model up to 4,096 tokens, may
leverage long-term dependencies, as demonstrated in clinical question
answering and medical document classification19. These specialized NLP
models can also enhance patient privacy and mitigate misclassification
errors by effectively utilizing their extensive token capacity and domain-
specific knowledge, thus suggesting their potential to outperform general
models in medical tasks.

This study aims to develop anNLP-basedASA-PS classificationmodel
that uses free-text pre-anesthesia evaluation summaries and compare its
performance with that of different levels of human physicians, including
anesthesiology residents and board-certified anesthesiologists. The inte-
grationof cutting-edgeNLPalgorithms into theASA-PS classification could
lead to the creation of an automatic and objective framework for risk pre-
diction, shared decision-making, and resource allocation in perioperative
medicine.
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Results
Data construction
The training (n = 593,510), tuning (n = 426), and test (n = 460) sets
comprised patients (n = 717,389) who underwent surgery between
October 2004 and May 2023 (Fig. 1). Table 1 presents the char-
acteristics of the datasets. ASA-PS scores of I or II were assigned to
90% of the training dataset. In contrast, the distribution of classes in
the tuning and test datasets was relatively uniform, ensuring equal
representation of each ASA-PS class to fairly assess the rare classes
assigned as III or IV–V. An increase in the length of pre-anesthesia
evaluation summaries with higher ASA-PS score classifications was
also observed. A verification process involving the application of
regular expressions and subsequent manual review confirmed that no
residual ASA-PS information remained in the pre-anesthesia eva-
luation summaries. The racial composition of our study cohort
remained predominantly Asian at over 99.5%, with White non-

Hispanic patients comprising 0.3%, Black or African American
patients 0.1%, and others 0.1%.

Performance of the NLP models
The performance of the NLP models, anesthesiology residents, and board-
certified anesthesiologistswas comparedwith the consensus reference labels
ofASA-PS scores assigned by the board-certified anesthesiologist consensus
committee by calculating the AUROC. Figure 2 and Table 2 present the
performances of individual ASA-PS raters and the average values for the
board-certified anesthesiologists and anesthesiology residents. Supple-
mentary Table 3 details the ASA-PS classification of each board-certified
anesthesiologist andanesthesiology resident.TheFleiss’kappavalues for the
board-certified anesthesiologists, anesthesiology residents, and ten different
responses of GPT-4 were 0.743 (95% confidence interval [CI] 0.731-0.754),
0.480 (95% CI 0.463-0.498), and 0.612 (95% CI 0.601-0.623), respectively
(Supplementary Table 4).

Fig. 1 | Flowchart of study design. The flowchart illustrates the study design for
developing and evaluating the natural language processing-based ASA-PS classifi-
cation models. The study utilized data from 717,389 surgical cases recorded at a

tertiary academic hospital between October 2004 and May 2023. The data was
divided into three distinct datasets: training, tuning, and test datasets. ASA-PS,
American Society of Anesthesiologists Physical Status.
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The ClinicalBigBird-based ASA-PS classification model achieved
AUROCs of >0.91 in both macro- and micro-averages (Table 2). The
ClinicalBigBird outperformed the BioClinicalBERT in micro-averaged
AUROC (p = 0.010) and was comparable to GPT-4 in macro- and micro-
averaged AUROCs for ASA-PS classification. Both the aleatoric and epis-
temic uncertainties of the ClinicalBigBird were lower than those of the
BioClinicalBERT (Supplementary Table 5). Subgroup analysis revealed that
theClinicalBigBird achievedgreaterAUROCsandareaunder theprecision-
recall curves (AUPRCs) for inputs longer than the median length of pre-
anesthesia evaluation summaries compared to shorter ones (Table 3). In
particular, for longer text inputs, the ClinicalBigBird significantly out-
performed GPT-4 in ASA-PS I and II, and also outperformed BioClini-
calBERT in ASA-PS classes II to IV–V.

Human physicians vs. NLP model
Performance of the ClinicalBigBird model was higher than board-certified
anesthesiologists with specificity 0.901 vs. 0.897, precision 0.732 vs. 0.715,
and F1-score 0.716 vs. 0.713, respectively, all p <0.01. Moreover, the Clin-
icalBigBird model outperformed the anesthesiology residents in sensitivity
0.723 vs. 0.598, specificity 0.901 vs. 0.868, and F1-score 0.716 vs. 0.633,
respectively, all p <0.001.

Evaluation of the confusion matrices (Fig. 3) revealed that the anes-
thesiology residents frequently classified over half of the pre-anesthesia
records (63.26%) as ASA-PS II. In contrast, the board-certified anesthe-
siologists often underestimated these classifications andmisidentifiedASA-
PS II as ASA-PS I and ASA-PS III as ASA-PS I or II at rates of 33.33% and
33.13%, respectively. The ClinicalBigBird demonstrated improved perfor-
mance in these categories. The underestimation rates for ASA-PS II and

ASA-PS III were 5.85% and 25.15%, respectively. However, an increase in
the overestimation rate for ASA-PS I from 1.35% to 32.00% partially offset
this improvement. GPT-4 exhibited a significant tendency toward over-
estimation with rates of 77.33% and 22.22% for ASA-PS I and ASA-PS II,
respectively. These rates were higher than those observed in the other
models and all physician groups.

Feature importance
Figure 4 illustrates how a specific input text contributes to the prediction
performance of the model for each ASA-PS class. The Shapley values of a
few key input texts, such as hypothyroidism, moyamoya disease, and
infarction, used to classify the ASA-PS according to the ASA-PS guidelines
were higher than those of other texts.

Discussion
An NLP-based ASA-PS classification model was developed in this study
using unstructured pre-anesthesia evaluation summaries. This model
exhibited a performance comparable with that of board-certified anesthe-
siologists in the ASA-PS classification. Furthermore, the model out-
performed other NLP-based models, such as BioClinicalBERT and GPT-4.

This study is the first to compare the performance of NLPmodels with
that of trained physicians with various levels of expertise in a domain-
specialized task. The ClinicalBigBird-based ASA-PS classification model
showed higher specificity, precision, and F1-score than that of the board-
certified anesthesiologists. These findings indicate that the NLP-based
approach can automatically and consistently assign ASA-PS classes using
the pre-anesthesia evaluation summaries in streamlined clinical workflows
with an accuracy similar to that of anesthesiologists.

The low inter-rater reliability of the ASA-PS classification remains a
long-standing issue in clinical and healthcare settings. The 2014 ASA-PS
classification guidelines introduced additional examples; however, these
examples could not fully resolve the uncertainty as they do not cover all
comorbidities. Physicians assigned the correct ASA-PS classifications in 7
out of 10 cases after the addition of examples; nevertheless, they failed to
reach a consensus in one-third of the cases20. This study found moderate
agreement among anesthesiologists (Fleiss’ kappa value, 0.743), consistent
with previous research reporting weighted kappa values ranging from 0.62
to 0.8621. The algorithmic approach could address the variability in the inter-
rater discrepancies by providing a unified, data-driven score per scenario
based on consensus reference labels.

DifferentiatingASA-PS II fromASA-PS III is particularly important in
clinical decision-making20. Several guidelines7,9 and regulations6,8,14 state that
differentiating ASA-PS II from ASA-PS III plays a critical role in for-
mulating a plan for non-anesthesia care and ambulatory surgery. Patients
classified as ASA-PS III or higher often require additional evaluation before
surgery. Errors in assignment can lead to the over- or underprescription of
preoperative testing, thereby compromising patient safety22. The board-
certified anesthesiologists and the anesthesiology residents exhibited error
ratesof 13.48%and21.96%, respectively, in assigningASA-PS I or II as III or
IV–V, or vice versa. However, the ClinicalBigBird developed in this study
demonstrated a lower error rate of 11.74%, outperforming the error rates of
physicians andotherNLP-basedmodels, such asBioClinicalBERT(14.12%)
and GPT-4 (11.95%).

The ClinicalBigBird model frequently misclassified ASA-PS III
cases as ASA-PS IV-V, while the anesthesiology residents mis-
classified ASA-PS IV-V cases as ASA-PS III, resulting in low sensi-
tivity (Fig. 3). This discrepancy may arise because the board-certified
anesthesiologists providing intraoperative care rate the patient as
having higher severity, whereas residents classify the same patient as
having lower severity23,24. Our model, ClinicalBigBird, was fine-tuned
with consensus reference labels, thereby rating ASA-PS III cases as
having higher severity, mimicking the board-certified anesthesiolo-
gists. Furthermore, anesthesiology residents tended to rate con-
servatively toward ASA-PS II, possibly due to limited clinical
experience25. Conversely, the board-certified anesthesiologists often

Table 1 | Dataset characteristics

Characteristics Training set Tuning set Test set

Period Oct 2004 to
Dec 2022

Jan 2023 to
Mar 2023

Apr 2023 to
May 2023

Number
of cases

593,510 426 460

Age, mean (SD) 43.7 (25.2) 57.5 (17.4) 56.1 (16.7)

Female, no. (%) 312,921 (52.7%) 209 (49.0%) 281 (61.0%)

Anesthesia type, no. (%)

General 487,801 (82.19%) 345 (80.99%) 379 (82.39%)

Regional 53,618 (9.04%) 44 (10.32%) 51 (11.09%)

MAC 52,091 (8.77%) 37 (8.69%) 30 (6.52%)

ASA-PS classification, no. (%)

I 244,386 (41.18%) 65 (15.26%) 75 (16.30%)

II 291,349 (49.09%) 128 (30.05%) 171 (37.17%)

III 54,092 (9.11%) 147 (34.50%) 163 (35.43%)

IV-V 3683 (0.62%) 86 (20.19%) 51 (11.09%)

Number of tokens and words in pre-anesthesia evaluation, median (IQR)

Token count 68 (27, 139) 232 (82, 440) 190 (110, 321)

ASA-PS I 29 (10, 60) 41 (26, 61) 64 (46, 114)

ASA-PS II 97 (53, 161) 105 (60, 168) 131 (101, 187)

ASA-PS III 238 (140, 398) 338 (233, 454) 286 (215, 406)

ASA-PS IV-V 317 (153, 565) 654 (423, 1136) 679 (370, 1184)

Word count 163 (63, 352) 532 (186, 1131) 462 (257, 818)

ASA-PS I 70 (24, 150) 99 (60, 140) 145 (94, 283)

ASA-PS II 230 (121, 406) 240 (136, 414) 313 (222, 462)

ASA-PS III 642 (356, 1158) 812 (581, 1209) 736 (532, 994)

ASA-PS IV-V 889 (395, 1726) 1680 (1052, 3053) 1677 (974, 3325)

MACmonitored anesthesia care, ASA-PS American Society of Anesthesiologists Physical Status.
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misclassified ASA-PS II cases as ASA-PS I, which might be caused by
overlooking well-controlled comorbidities. However, the NLP mod-
els, particularly ClinicalBigBird, can systemically process all available
information without fatigue or bias. This capacity potentially miti-
gates the risk of overlooking pertinent clinical details and facilitates a
balanced assessment.

The fine-tuned ClinicalBigBird model was superior to GPT-4 in
terms of performance. The performance of GPT-3.5 was comparable
to that of board-certified anesthesiologists in six out of ten hypo-
thetical scenarios, although it tended to underestimate ASA-PS IV-
V25. However, GPT-4 tended to overestimate the ASA-PS scores in
the present study. GPT-4 often misclassified ASA-PS I and ASA-PS II
as ASA-PS III in the confusion matrix owing to false inferences
regarding underlying diseases and systemic conditions. It is impor-
tant to note that GPT-4 was utilized through general prompting
rather than task-specific fine-tuning in this study, unlike BioClini-
calBERT and ClinicalBigBird which were optimized for ASA-PS
classification. While the findings of the present study suggest that
GPT-4 is currently less optimal for ASA-PS classification than other
language models, this comparison has limitations. If GPT-4 were to
undergo domain-specific pretraining and task-specific fine-tuning
similar to the other models, its performance could potentially
improve significantly26, possibly even surpassing the current top-
performing models.

The performance of several NLP models for assigning the ASA-
PS classes was compared in the present study. BioClinicalBERT,
which is limited to an input sequence of 512 tokens, requires trun-
cation and segmentation of the input text. It achieved a macro-
average AUROC of 0.899, slightly higher than the previous study,
which achieved a macro-average AUROC of 0.84518. In addition, the
study investigated the fastText model, which can process all texts in
clinical notes and achieved a macro-average AUROC of 0.865.

However, since the fastText model was not pretrained with a medical
text corpus, its performance might still be limited. On the other hand,
the ClinicalBigBird, used in our study, has two advantages; it is pre-
trained with a large medical corpus and capable of processing up to
4096 tokens19. Therefore, the ClinicalBigBird-based model is well-
suited for processing long, unstructured text, thereby streamlining
clinical workflows and offering advantages over machine learning
models that require structured data inputs such as words, numbers,
or binaries27,28.

A key limitation of our study is the inherent subjectivity in ASA-PS
classification. Despite our rigorous consensus-based approach yielding a
good agreement (Fleiss’ kappa of 0.743) compared to previous studies
(Fleiss’ kappa of 0.48–0.69) 12,27, some uncertainty in the ground truth
persists, suggesting our performance metrics should be interpreted as
approximate rather than definitive.While this improvement is noteworthy,
it’s important to recognize that perfect agreement in ASA-PS classification
remains challenging due to its subjective nature. Future research in this area
should continue to focus onmethods to enhance inter-rater reliability while
acknowledging the balance between achievable agreement and the inherent
variability in clinical assessments29.

This study also had other limitations. First, the ClinicalBigBird
and BioClinicalBERT models were developed and validated using
pre-anesthesia evaluation summaries from a single institution in
South Korea. Future studies should focus on validating these models’
performance owing to the differences in patient demographics such
as nationality, race, and ethnicity, and writing styles of the pre-
anesthesia evaluation summaries. In addition, the present study only
included adult patients owing to the limitations of the ASA-PS
classification systems in pediatric cases. However, the success of the
machine learning algorithm in classifying the ASA-PS scores in
pediatric patients suggests that a more comprehensive ASA-PS
classification model can be constructed using the NLP approach.

Fig. 2 |Receiver operating characteristic andprecision-recall curves of themodels
and human physicians for each ASA-PS class. The curves of the ClinicalBigBird
model were compared with those of BioClinicalBERT, GPT-4, anesthesiology
residents, and board-certified anesthesiologists. AUROC area under the receiver

operating characteristic curve, AUPRC area under the precision-recall curvem,
ASA-PS American Society of Anesthesiologists Physical Status, GPT-4 Generative
Pretrained Transformer-4.
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Table 2 | ASA-PS Classification performances of the NLP models, anesthesiology residents, and board-certified
anesthesiologists

AUROC AUPRC Sensitivity Specificity Precision F1-score

ClinicalBigBird (our model)

Weighted-average 0.912
(0.905–0.918)

0.804
(0.786–0.819)

0.767
(0.750–0.783)

0.870
(0.862–0.878)

0.762
(0.745–0.777)

0.754
(0.737–0.769)

Macro-average 0.915
(0.909–0.920)

0.774
(0.758–0.789)

0.723
(0.708–0.737)

0.901
(0.897–0.906)

0.732
(0.717–0.746)

0.716
(0.701–0.730)

Micro-average 0.914
(0.909–0.919)

0.745
(0.728–0.761)

0.728
(0.715–0.741)

0.728
(0.715–0.741)

0.728
(0.715–0.741)

0.728
(0.715–0.741)

ASA-PS I 0.952
(0.945–0.958)

0.814
(0.783–0.840)

0.680
(0.645–0.716)

0.974
(0.969–0.980)

0.836
(0.804–0.866)

0.750
(0.721–0.776)

ASA-PS II 0.884
(0.874–0.894)

0.803
(0.782–0.823)

0.871
(0.854–0.889)

0.772
(0.755–0.788)

0.693
(0.672–0.714)

0.772
(0.755–0.787)

ASA-PS III 0.877
(0.866–0.888)

0.775
(0.752–0.799)

0.595
(0.570–0.620)

0.926
(0.916–0.936)

0.815
(0.791–0.837)

0.688
(0.667–0.708)

ASA-PS IV-V 0.946
(0.938–0.954)

0.704
(0.665–0.743)

0.745
(0.702–0.786)

0.934
(0.926–0.942)

0.584
(0.541–0.623)

0.654
(0.619–0.689)

BioClinicalBERT

Weighted-average 0.897
(0.889–0.904)

0.787*
(0.771–0.802)

0.657*
(0.637–0.675)

0.883*
(0.876–0.891)

0.724*
(0.705–0.743)

0.685*
(0.667–0.704)

Macro-average 0.899
(0.893–0.906)

0.766*
(0.751–0.783)

0.679*
(0.662–0.694)

0.886*
(0.880–0.890)

0.666*
(0.650–0.680)

0.661*
(0.645–0.677)

Micro-average 0.901
(0.895–0.907)

0.739*
(0.724–0.755)

0.676*
(0.661–0.690)

0.676*
(0.661–0.690)

0.676*
(0.661–0.690)

0.676*
(0.661–0.690)

ASA-PS I 0.947
(0.940–0.954)

0.796*
(0.766–0.822)

0.587*
(0.550–0.623)

0.964*
(0.957–0.970)

0.759*
(0.721–0.796)

0.662*
(0.630–0.692)

ASA-PS II 0.860
(0.849–0.872)

0.786*
(0.765–0.806)

0.713*
(0.690–0.737)

0.820*
(0.806–0.835)

0.701*
(0.678–0.725)

0.707*
(0.688-0.726)

ASA-PS III 0.860
(0.849–0.872)

0.764*
(0.743–0.784)

0.650*
(0.628–0.673)

0.858*
(0.846-0.870)

0.716*
(0.691–0.738)

0.682*
(0.663–0.701)

ASA-PS IV-V 0.929
(0.918–0.940)

0.720*
(0.681–0.758)

0.764*
(0.726–0.804)

0.900*
(0.890–0.909)

0.486*
(0.449–0.525)

0.594*
(0.561–0.628)

GPT-4 (average)

Weighted-average 0.859
(0.850–0.869)

0.722*
(0.702–0.742)

0.559*
(0.542–0.575)

0.859*
(0.850–0.867)

0.759*
(0.736–0.780)

0.576*
(0.555–0.597)

Macro-average 0.893
(0.885–0.900)

0.769*
(0.753–0.784)

0.594*
(0.578–0.610)

0.881*
(0.876–0.886)

0.799*
(0.784–0.814)

0.623*
(0.605–0.639)

Micro-average 0.899
(0.893–0.906)

0.776
(0.762–0.790)

0.695*
(0.681–0.710)

0.695*
(0.681–0.710)

0.695*
(0.681–0.710)

0.695*
(0.681–0.710)

ASA-PS I 0.847*
(0.830–0.864)

0.701*
(0.669–0.734)

0.239*
(0.207–0.270)

0.995*
(0.992–0.997)

0.899*
(0.850–0.942)

0.377*
(0.335–0.417)

ASA-PS II 0.856
(0.845–0.867)

0.713*
(0.690–0.738)

0.766*
(0.744–0.787)

0.757*
(0.741–0.774)

0.651*
(0.628–0.673)

0.704*
(0.685–0.722)

ASA-PS III 0.924†
(0.915–0.932)

0.850*
(0.833–0.867)

0.902*
(0.887–0.917)

0.774*
(0.758–0.790)

0.687*
(0.665–0.709)

0.780*
(0.764–0.796)

ASA-PS IV-V 0.945
(0.931–0.959)

0.810*
(0.778–0.842)

0.470*
(0.422–0.514)

0.998*
(0.996–0.999)

0.960*
(0.933–0.983)

0.630*
(0.583–0.671)

Board-certified anesthesiologist (average)

Weighted-average NA 0.772*
(0.760–0.785)

0.847*
(0.838–0.855)

0.645*
(0.629–0.662)

0.676*
(0.659–0.692)

Macro-average 0.768*
(0.756–0.779)

0.897*
(0.893–0.902)

0.715*
(0.702–0.729)

0.713*
(0.700–0.727)

Micro-average 0.696*
(0.682–0.709)

0.696
(0.682–0.709)

0.696†
(0.682–0.709)

0.696
(0.682–0.709)

ASA-PS I 0.987*
(0.977–0.995)

0.826*
(0.813–0.839)

0.525*
(0.498–0.555)

0.686*
(0.662–0.711)

ASA-PS II 0.626*
(0.602–0.650)

0.841*
(0.827–0.854)

0.699*
(0.675–0.723)

0.660*
(0.641–0.681)

ASA-PS III 0.577*
(0.551–0.602)

0.960*
(0.952–0.967)

0.887*
(0.867–0.907)

0.699*
(0.677–0.719)

ASA-PS IV-V 0.882*
(0.849–0.910)

0.963*
(0.957–0.969)

0.748*
(0.711–0.787)

0.809*
(0.783–0.836)
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Second, the small sample size of five board-certified anesthesiologists
and three anesthesiology residents may not be representative of the
broader population of these professionals. A more rigorous and
generalizable conclusion would require a larger and more diverse
sample size, encompassing data from different hospitals in various
regions or countries. This would facilitate a more comprehensive
analysis of the variability of the ASA-PS classification across different
clinical settings. Third, only free-text pre-anesthesia evaluation
summaries refined by physicians were used in this study. Applying
the NLP technique to unprocessed medical records, such as out-
patient history, nursing notes, admission intake, and laboratory
values, would result in a broader scope for generalization and a more
significant impact on clinical practice. Fourth, translating the pre-
anesthesia evaluation texts from Korean to English may have affected
the accuracy of the ASA-PS classification model. Fifth, the use of
static few-shot prompting for GPT-4 ensured consistency across
predictions but may limit the model’s ability to adapt to a broader
range of clinical scenarios not represented in the demonstrations.
Future research could explore the impact of dynamic few-shot
prompting for GPT-4 to enhance the model’s robustness or gen-
eralizability across diverse clinical cases. Sixth, comparing GPT-4’s
performance directly with models like BioClinicalBERT and Clin-
icalBigBird is limited by the fact that GPT-4 was only prompted and
not fine-tuned on task-specific data, which could potentially affect its
performance outcome. Finally, prevalence-dependent metrics such as
the F1-score may not fully represent model performance in diverse
clinical settings due to differences in ASA-PS class distributions
between our tuning and test sets compared to the general population.

In conclusion, anNLP-basedmodel for theASA-PSclassificationusing
free-text pre-anesthesia evaluation summaries as input can achieve a per-
formance similar to that of board-certified anesthesiologists. This approach
can improve the consistency and inter-rater reliability of the ASA-PS clas-
sification in healthcare systems if confirmed in clinical settings.

Methods
Study design
This observational study was approved by the Institutional Review
Board (IRB) of the Ethics Committee of Seoul National University
Hospital (approval number: 2306-167-1444). The IRB waived the
requirement for obtaining informed consent from the patients owing
to the retrospective nature of this study. The study adhered to the

Standards for Reporting of Diagnostic Accuracy Studies (STARD)
and other relevant guidelines30.

Data collection
Patients who underwent surgical procedures at the Seoul National Uni-
versity Hospital between October 2004 and May 2023 were eligible for
inclusion in this study.The exclusion criteriawere as follows: absence of pre-
anesthesia evaluation summaries or ASA-PS scores, brain death, and ASA-
PS classVI (because of the direct correspondence between the diagnosis and
the ASA-PS score).

Data regarding pre-anesthesia evaluations and the physician-assigned
ASA-PS scores were extracted from the Seoul National University Hospital
Patient Research Environment (SUPREME) system. In addition, data
regarding patient demographics, medical history, surgical history, labora-
tory test results, diagnosis, and medications were also extracted. ASA-PS
classes IV and V were merged into the “IV–V” class to balance the rare
classes in the dataset18,20. In addition, themodifier “E” for emergency surgery
was also removed. Thus, the final ASA-PS classification system comprised
the following classes: I, II, III, and IV–V.

The datasets for training, tuning, and testing were initially segmented
based on the periods during which patients underwent surgical procedures
fromOctober 2004–December 2022, January 2023–March 2023, and April
2023–May 2023, respectively. For the tuning and test sets, to ensure a
feasible scope for the intensive manual labeling process by a consensus
committee of five board-certified anesthesiologists, we randomly sub-
sampled120patients aged>18 years fromeachASA-PSclass fromthe larger
pools of the datasets. This stratified random sampling approach was
designed to ensure a balanced representationof all theASA-PSclasses in our
evaluations, including classes III and IV–V, to prevent bias from the
underrepresentation of these rarer classes and ensure a fair assessment
across all ASA-PS classes. Cases were also excluded during the labeling
process if board-certified anesthesiologists determined that the pre-
anesthesia evaluation summaries contained insufficient information.
Lastly, to maintain the integrity of the test set, any patients in training and
tuning sets who also had surgical records in the test set were removed from
the training and tuning sets, ensuring that the datasets comprised com-
pletely disjointed sets of patients with separate identifiers.

Data preparation
Data preparation was performed initially using the pre-anesthesia
evaluation summaries. A proprietary translator was employed to

Table 2 (continued) | ASA-PS Classification performances of the NLP models, anesthesiology residents, and board-certified
anesthesiologists

AUROC AUPRC Sensitivity Specificity Precision F1-score

Anesthesiology resident (average)

Weighted-average NA 0.701*
(0.685–0.717)

0.778*
(0.769–0.788)

0.734*
(0.716–0.751)

0.652*
(0.632–0.671)

Macro-average 0.598*
(0.583–0.614)

0.868*
(0.864–0.873)

0.777*
(0.760–0.794)

0.633*
(0.616–0.650)

Micro-average 0.663*
(0.648–0.678)

0.663gjgjgjgjgj
(0.648–0.678)

0.663*
(0.648–0.678)

0.663*
(0.648–0.678)

ASA-PS I 0.427*
(0.389–0.463)

0.992*
(0.989–0.995)

0.915*
(0.882–0.946)

0.582*
(0.544–0.617)

ASA-PS II 0.971*
(0.962–0.980)

0.568*
(0.549–0.587)

0.570*
(0.552–0.590)

0.719*
(0.703–0.735)

ASA-PS III 0.503*
(0.478–0.529)

0.926
(0.917-0.936)

0.789*
(0.762-0.816)

0.614*
(0.591–0.637)

ASA-PS IV-V 0.491*
(0.446–0.537)

0.988*
(0.984–0.991)

0.832*
(0.787–0.878)

0.617*
(0.576–0.658)

Data are presented as means with 95% confidence intervals. The DeLong test and Mann–Whitney U-test were conducted to compare the AUROC and AUPRC of two different models, respectively.
Statistical significance is indicated by *, † for p <0.001 and p <0.01, respectively, in comparison with the performance of ClinicalBigBird. ASA-PS American Society of Anesthesiologists Physical Status,
NLP natural language processing, AUROC area under the receiver operating characteristic curve, AUPRC area under the precision-recall curve, NA not applicalble.
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translate the summaries written in a mixture of Korean and English
into English across all datasets. Supplementary Table 1 presents a
sample translation. The byte-pair encoding technique was used to
segment the sentences in the evaluations into tokens31. To ensure the
ASA-PS classification was not documented in the pre-anesthesia
evaluation summaries, we used regular expressions to detect and

remove any explicit mentions of ASA classifications within the
summaries. This process was further verified by manually reviewing
the tuning and test sets to confirm no residual ASA-PS information
remained during the development of the reference scores in the
following step.

The consensus reference labels ofASA-PS scores for the tuning and test
datasets were developedby a consensus committee comprising three board-
certified practicing anesthesiologists. The pre-anesthesia evaluation sum-
maries were evaluated independently by two board-certified anesthesiolo-
gists. Any disagreements between the board-certified anesthesiologists were
resolved via discussion or consulting with a third board-certified anesthe-
siologist. Five other board-certified anesthesiologists were excluded from
the committee, and three anesthesiology residents were individually
assigned the ASA-PS scores in the test dataset. These scores were used to
compare the performance of the model with that of the individual ASA-PS
providers with different levels of expertise. Thus, each record in the test
dataset received one consensus reference label of ASA-PS score from the
committee, five from the board-certified anesthesiologists, and three from
the anesthesiology residents.

For evaluating GPT-4 performance32, we employed a few-shot
prompting strategy, selecting one representative case from each ASA-PS
class (1 through 5), resulting in a total of five in-context demonstrations.
Each demonstration represented one ASA-PS class. The selection process
for these examples involved initially randomly selecting ten cases per ASA-
PS class. Fromthese, our consensus committee then carefully chose themost
representative case for ASA-PS class based on their clinical expertise. Fur-
thermore,we consistently used the samefivedemonstrations in the few-shot
prompting for each case to generate an ASA-PS prediction. Supplementary
Table 2 presents the detailed prompts. The performance ofGPT-4 in the test
dataset was compared with that of the anesthesiology residents, board-
certified anesthesiologists, and other language models.

Model development
Baseline model architectures of ClinicalBigBird and BioClinicalBERT for
ASA-PS classification were developed. These models used the pre-
anesthesia evaluation as the input to output the ASA-PS score. Each
model architecture underwent three learning stages in a sequential manner:
(1) masked language modeling using the training dataset to learn the pre-
anesthesia evaluation texts in a self-supervised manner, understanding the
relationships between words; (2) supervised learning using the input and
output training datasets; and (3) fine-tuning using the tuning dataset.

In the masked language modeling and supervised learning stages, we
used a grid search approach to hyperparameter tuning, applying an 80:20
holdout method. For the fine-tuning stage, a 5-fold cross-validation
approach was employed with a grid search to identify the best hyperpara-
meters. The best parameters identifiedwere thenapplied to train themodels
on the entire respective datasets. Early-stoppingmethodbased on validation
loss was used to finalize the best model for each stage.

Supplementary Table 6 presents model training details with hyper-
parameters explored and their respective best values for each model.
Throughout all learning stages, we used a cross-entropy loss function and
the AdamW optimizer.

Model evaluation
The AUROC, AUPRC, sensitivity, specificity, precision, recall, and
F1-score were used to evaluate the performance of the models in the
test set. Ten iterations were conducted for each pre-anesthesia eva-
luation summary to determine the probability distribution of the
ASA-PS classes in GPT-4. To evaluate the average ASA-PS classifi-
cation performances of the anesthesiology residents and the board-
certified anesthesiologists, we first attempted to calculate the mode of
the scorings given by the three anesthesiology residents and the five
board-certified anesthesiologists, respectively, selecting the most
frequently assigned ASA class. If all scores within each group were
different, we used the mean value, rounded to the nearest whole

Table 3 | Performance of NLP-based models in ASA-PS
classification across subgroups, stratified according to the
length of pre-anesthesia evaluation summaries, with the
median length of dataset as the threshold

≤Median length (N = 225) >Median length (N = 235)

AUROC AUPRC AUROC AUPRC

ClinicalBigBird

Weighted-
average

0.908
(0.901–0.915)

0.820
(0.805–0.834)

0.931
(0.926–0.936)

0.853
(0.842–0.865)

Macro-
average

0.919
(0.913–0.924)

0.785
(0.770–0.800)

0.926
(0.921–0.931)

0.814
(0.799–0.827)

Micro-
average

0.912
(0.906–0.917)

0.753
(0.737–0.769)

0.918
(0.912–0.923)

0.743
(0.725–0.759)

ASA-PS I 0.979
(0.975–0.983)

0.891
(0.867–0.914)

0.957
(0.951–0.963)

0.852
(0.830–0.872)

ASA-PS II 0.848
(0.836–0.861)

0.771
(0.750–0.791)

0.921
(0.913–0.929)

0.867
(0.851–0.881)

ASA-PS III 0.900
(0.890–0.909)

0.774
(0.746–0.798)

0.863
(0.851–0.875)

0.799
(0.778–0.820)

ASA-PS
IV-V

0.947
(0.939–0.953)

0.703
(0.664–0.739)

0.963
(0.958–0.969)

0.736
(0.698–0.773)

BioClinicalBERT

Weighted-
average

0.897
(0.889–0.905)

0.807*
(0.791–0.820)

0.907
(0.900–0.913)

0.830*
(0.818–0.841)

Macro-
average

0.902
(0.895–0.909)

0.780*
(0.764–0.796)

0.903
(0.897–0.909)

0.796*
(0.782–0.808)

Micro-
average

0.905
(0.899–0.911)

0.757*
(0.742–0.772)

0.896†
(0.890–0.902)

0.722*
(0.705–0.737)

ASA-PS I 0.957
(0.951–0.963)

0.838*
(0.812–0.861)

0.964
(0.957–0.970)

0.894*
(0.874–0.911)

ASA-PS II 0.845
(0.832–0.858)

0.782*
(0.760–0.801)

0.874†
(0.864–0.885)

0.796*
(0.776–0.814)

ASA-PS III 0.906
(0.897–0.915)

0.814*
(0.792–0.836)

0.819
(0.806–0.832)

0.733*
(0.712–0.755)

ASA-PS
IV-V

0.901
(0.886–0.914)

0.688*
(0.648–0.727)

0.956
(0.949–0.962)

0.760*
(0.722–0.793)

GPT-4 (average)

Weighted-
average

0.910
(0.901–0.918)

0.800*
(0.780–0.818)

0.816†
(0.805–0.827)

0.656*
(0.636–0.675)

Macro-
average

0.914
(0.907–0.921)

0.820*
(0.806–0.834)

0.877
(0.871–0.884)

0.733*
(0.718–0.747)

Micro-
average

0.919
(0.913–0.925)

0.820*
(0.807-0.832)

0.879†
(0.871–0.884)

0.732*
(0.717-0.747)

ASA-PS I 0.908
(0.893-0.922)

0.784*
(0.753-0.815)

0.790*
(0.770–0.809)

0.647*
(0.614-0.680)

ASA-PS II 0.909
(0.900–0.917)

0.801*
(0.780–0.821)

0.813*
(0.801–0.827)

0.624*
(0.600–0.651)

ASA-PS III 0.922
(0.913–0.931)

0.861*
(0.845–0.877)

0.931†
(0.923–0.938)

0.847*
(0.829–0.865)

ASA-PS
IV-V

0.917
(0.899–0.933)

0.835*
(0.804–0.864)

0.975
(0.971–0.979)

0.813*
(0.783–0.842)

Dataarepresentedasmeanwith a95%confidence interval. Statistical significance is indicatedby*,
† for p <0.001 and p <0.01, respectively. AUROC area under the receiver operating characteristic
curve, AUPRC area under the precision-recall curve, ASA-PS American Society of
Anesthesiologists Physical Status.
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number, as the final ASA-PS class. The AUROC and AUPRC were
computed for each class and aggregated into macro and micro
metrics according to the multi-class classification. To provide the
real-world performance of the models, we also calculated the
weighted average of the metrics using the prevalence of each ASA-PS
class in our cohort. Confusion matrices for the predictions of each
model and physician versus consensus reference labels were gener-
ated to identify the error distributions.

Subgroup analysis
The performances of themodels in the test set were compared and stratified
according to the number of tokens as a part of the subgroup analysis. The
test set was divided into two subgroups based on the length of each pre-
anesthesia evaluation summary, with the median length of the test set used
as a threshold.

Model interpretability
The significance of each text affecting the ASA-PS classification and
the reliance of the model on the interaction between texts was ana-
lyzed using the Shapley Additive exPlanations (SHAP) method.

Examples of the importance of each word were plotted and overlaid
on the original text. The SHAP force plots were used to illustrate how
individual tokens within the pre-anesthesia evaluation summaries
influence the model’s prediction for ASA-PS classification. Each force
plot shows the contribution of each token to the model’s output
probability. Tokens that push the prediction towards a higher
probability of a specific class are colored red, while those that push it
towards a lower probability are colored blue. The base value indicates
the average prediction for the model, and the output value shows the
specific prediction for the instance. The size of the arrows represents
the magnitude of each token’s contribution, making it clear which
tokens had the most significant impact on the final prediction.

Statistical analysis
Data pre-processing, model development and validation, statistical testing,
and visualization were performed using Python 3.10.0 (Python Software
Foundation,Wilmington, DE, USA). The AUROCs of the different models
were compared using the DeLong test. We measured two types of uncer-
tainty in NLPmodels: aleatoric uncertainty, which could originate from the
provided demonstrations, and epistemic uncertainty, which may be

Fig. 3 | Confusionmatrices of the natural language
processing models (ClinicalBigBird, BioClini-
calBERT, and GPT-4) and human physicians
(anesthesiology residents and board-certified
anesthesiologists) for ASA-PS classification. Each
cell presents the number of case and the corre-
sponding percentages that represent the proportion
of cases correctly classified by each model or phy-
sician group within each predicted ASA-PS class.
ASA-PS American Society of Anesthesiologists
Physical Status, GPT-4 Generative Pretrained
Transformer-4.

https://doi.org/10.1038/s41746-024-01259-6 Article

npj Digital Medicine |           (2024) 7:259 8

www.nature.com/npjdigitalmed


associated with the model’s configurations33. Specifically, we employ a
Bayesian approach to estimate both uncertainties through Monte Carlo
Dropout. For each input batch, we conduct multiple (1000 times) forward
passes with active dropout, approximating Bayesian inference by sampling
from the posterior distribution of model parameters. To capture aleatoric
uncertainty, we introduce noise to the input data during each forward pass,

reflecting inherent data variability.We aggregate the predicted probabilities
from these passes to calculate themeanandvariance for eachclass.Aleatoric
uncertainty is quantified by the entropy of themean predicted probabilities,
while epistemic uncertainty is estimated by the mean variance of predic-
tions. The consistency between the three anesthesiology residents and
among the five anesthesiologists was evaluated using Fleiss’ kappa34. Kappa
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values of 0.01–0.20 were interpreted as ‘none to slight’, 0.21–0.40 as ‘fair’,
0.41–0.60 as ‘moderate’, 0.61–0.80 as ‘substantial’, and 0.81–1.00 as ‘almost
perfect’ agreement35. The 95% CI for all evaluation metrics was computed
using 1000 bootstrap iterations with 4000 bootstrap samples on the test set.
A p-value <0.05 was considered statistically significant.

Data availability
To the extent allowed by data sharing agreements and IRB protocols, the
data from this manuscript will be shared upon written request.

Code availability
The code used in this study can be accessed at: https://github.com/jipyeong-
lee/ASA-PS-NLP-vs-Human-Physicians/.
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Shapley score. ASA-PS American Society of Anesthesiologists Physical Status, ABO
ABO blood group system, r/o rule out, RO right ovary, LO left ovary, P-MRI pelvic
magnetic resonance imaging, LNE lymph node enlargement, EM endometrial, A/W
or AW airway, MP mallampati, NE neck extension, DT Interincisor Gap, ST syn-
throid, SONO sonogram, TFT thyroid function test, fT4 free T4, TSH thyroid
stimulating hormone, ECG electrocardiogram, s.brady sinus bradycardia, c with,
METs metabolic equivalents, CV cardiovascular, Sx symptoms, h/o history of, s/p
status post, PO per os, medmedication, wBPward blood pressure, MBPmean blood
pressure, wHR ward heart rate, B/L bilateral, MMDmoyamoya disease, STA-MCA
superficial temporal artery to middle cerebral artery, EDAGS encephalo-duro-
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grade, perfusion MR perfusion magnetic resonance, MRI DCE magnetic resonance
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coronary computed tomography angiography, PTE pulmonary thromboembolism,
PA pulmonary artery, IMCc internal medicine cardiology consult; op tol, operative
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