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Constrained tropical land temperature-precipitation sensitivity
reveals decreasing evapotranspiration and faster vegetation
greening in CMIP6 projections
Boyuan Zhu1,2, Yongzhou Cheng1,2, Xuyue Hu1,2, Yuanfang Chai 3✉, Wouter R. Berghuijs4, Alistair G. L. Borthwick 5,6 and
Louise Slater 7

Over the tropical land surface, accurate estimates of future changes in temperature, precipitation and evapotranspiration are crucial
for ecological sustainability, but remain highly uncertain. Here we develop a series of emergent constraints (ECs) by using historical
and future outputs from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) Earth System Models under the four basic
Shared Socio-economic Pathway scenarios (SSP126, SSP245, SSP370, and SSP585). Results show that the temperature sensitivity to
precipitation during 2015–2100, which varies substantially in the original CMIP6 outputs, becomes systematically negative across
SSPs after application of the EC, with absolute values between −1.10 °C mm−1 day and −3.52 °C mm−1 day, and with uncertainties
reduced by 9.4% to 41.4%. The trend in tropical land-surface evapotranspiration, which was increasing by 0.292mm yr−1 in the
original CMIP6 model outputs, becomes significantly negative (−0.469mm yr−1) after applying the constraint. Moreover, we find a
significant increase of 58.7% in the leaf area index growth rate.
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INTRODUCTION
Over the tropical land surface, a negative association between
temperature and precipitation is generally observed due to the
cooling effect of land surface evapotranspiration, and is one of the
major processes between the earth and the atmosphere1–3.
However, future changes in these variables under climate change
remain highly uncertain. Thus, a robust evaluation of future
changes in temperature-precipitation-evapotranspiration and
their interaction is necessary to assess the potential resilience of
tropical land areas to future climate change.
Previous studies have investigated current and future tempera-

ture, precipitation, and evapotranspiration changes from regional
to global scales, using Earth System Models from the CMIP5
ensemble4–8. These studies were based on analyses of thermo-
dynamic and dynamic responses to changes in variables such as
specific humidity and atmospheric circulation. Although the
models accommodate important processes, such as convection,
aerosol effects, and land–atmosphere and dynamic
ocean–atmosphere interactions, the results show considerable
spread9. The emergent constraint (EC) method has recently been
employed to reduce uncertainty in the model outputs, and has led
to significant improvement10–13. The constraint is typically built
through a physically explainable empirical linear regression
between the inter-model spread in future estimates of tempera-
ture/precipitation/evapotranspiration (i.e. their absolute value or
their sensitivity to controlling factors, defined as the dependent
variable y) and historical values of variables (defined as the
independent variable x) produced by the CMIP5 ensemble10,11.
This relation can then be further constrained by projecting
observed values of x and their observational uncertainty (± one

standard deviation, denoted as SD) onto the y-axis through the
empirical linear relationship10,11, as the observed values are likely
to be sufficiently reliable to provide an accurate mean state of x.
This approach provides more reliable values of y with expectably
narrower uncertainty10–12.
CMIP6, the latest generation of CMIP, has finer horizontal-

vertical resolutions and more physically realistic representations of
aerosol, cloud-radiation interaction, oceanic horizontal-vertical
mixing and convection, sea ice, and biogeochemical processes
(e.g. carbon and nitrogen cycles) than its predecessor, CMIP510,14.
Recent works concerned with reproducing historical changes and
predicting future features in global temperature, precipitation, and
evapotranspiration have demonstrated that CMIP6 models pro-
vide projections that are more accurate and reliable than their
CMIP5 counterparts15–17.
Despite these improvements in CMIP6, there remains consider-

able uncertainty in the projections of the sensitivity of future
surface temperature to precipitation over the tropical land surface,
and the future growth rate of evapotranspiration and vegetation
cover. CMIP models (and constrained projections using the EC
method) have projected a decline of the tropical forest, especially
in the Amazon, but the projection accuracy depends largely on
the reliability of the environmental variable projections12,18–23. The
tropical forest cover is closely related to factors such as
temperature, precipitation and evapotranspiration. As tempera-
tures rise, the rates of plant transpiration and respiration grow
significantly due to amplified vegetation stomatal openings. This
intensification leads to substantial losses of water and CO2 within
plant bodies, subsequently causing notable constraints in water
use efficiency, photosynthesis and CO2 fertilization which
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ultimately suppress plant growth12,18–24. Under decreasing pre-
cipitation, lower water availability is also unfavorable for plant
growth12,18–20,22–24.
Here we assess the reliability of future projections of tropical

land-surface temperature-precipitation sensitivity, evapotranspira-
tion and leaf area index (LAI). We first explore the sensitivity of
temperature to precipitation over the tropical land area within
23.5°S–23.5°N and 180° W–180°E. Our methodology is based on an
emergent relationship established between the future annual
tropical land-surface temperature sensitivity to precipitation
(dT/dP) and the historical seasonal average dT/dP under the four
basic SSP scenarios of CMIP6. The projected changes in tropical
land-surface temperature sensitivity are then employed to
estimate absolute variations in future tropical land-surface
temperature, evapotranspiration and LAI.

RESULTS
Sensitivity of tropical land-surface temperature to
precipitation
It is widely acknowledged that the increasing atmospheric CO2

concentration is the main driving factor behind the significant
warming of the Earth’s surface25–28. However, interannual oscilla-
tions in temperature may also be related to local precipitation
changes, which has been identified in the Amazon rainforest12.
Observed time series of annual land-surface temperature and
precipitation in the tropical zone from the HadCRUT4 dataset
display oscillations roughly in antiphase during the period of 1949
to 2005 (Fig. 1a). Negative associations are found at the annual
and seasonal scale between land-surface temperature and
precipitation anomalies (Fig. 1b). Supportive results are also
derived from three other datasets (Supplementary Figs. 1, 2).
The underlying mechanism of the negative sensitivity of tropical

land-surface temperature to precipitation (i.e. opposite oscillations
in Fig. 1a and Supplementary Fig. 1) is as follows: increasing
precipitation leads to more water availability in the soil and on the
ground, enhancing the cooling effect of evapotranspiration on
sensible heating, and subsequently lowering the temperature of
the tropical land surface1,2,29. This interpretation is supported by
antiphase oscillations between annual mean evapotranspiration
and temperature on the tropical land surface (Fig. 1c and
Supplementary Fig. 3). Recent research also revealed that water
availability (and especially extreme drought) affects fluctuations of
land-surface temperature in the tropical region, through vegeta-
tion stomatal responses to the soil-moisture-deficit induced
atmospheric water stress or the plant metabolism downregula-
tion30. Moreover, as the dominant extreme climate event in
controlling matter-energy cycles between land surface and
atmosphere over the tropical region, ENSO triggers subsidence/
rising weather systems and subsequently causes concurrent
warming (cooling), decreased (increased) humidity, less (more)
cloud cover, less (more) precipitation, lower (higher) evaporation
and less (more) soil moisture2,31,32, strengthening the negative
feedback between tropical land-surface temperature and pre-
cipitation. Here, if we use a moving average approach to reduce
disturbance from climate oscillations (i.e. ENSO and other
compensating effects)9,31–33, we find that the negative association
between temperature and precipitation is further strengthened
(Fig. 1d, Supplementary Fig. 4 and Supplementary Fig. 5).
An effective index for representing tropical land-surface

temperature change due to evapotranspiration arising from
precipitation is the temperature sensitivity to precipitation
(dT/dP, °C mm−1 day). We select a total of 26 models under the
four SSP scenarios from the CMIP6 ensemble, which provide both
the required historical (1949–2005) and future (2015–2100)
temperature/precipitation outputs (Supplementary Table 1). A
large spread occurs in the CMIP6 scenario estimates of the

absolute value of future annual dT/dP, as indicated by its
considerable variability, ranging from −1.52 to 1.06 °C mm−1

day for SSP126, from −1.52 to 2.19 °C mm−1 day for SSP245, from
−3.63 to 4.75 °C mm−1 day for SSP370, and from −4.31 to 5.00 °C
mm−1 day for SSP585 (Fig. 1e). Since the feedback among
temperature, precipitation and evapotranspiration is a key process
between the land surface and the atmosphere, such large
uncertainties may lead to comparable uncertainties in the cycle
among water, carbon and energy on the tropical land12.
Using evapotranspiration data from the GLEAM dataset during

the period of 1980–2014, we calculated the annual rates of
increase in evapotranspiration from the tropical land surface in
wet and dry seasons (Jan. to Mar. and May to Jul., respectively),
and found that the rate of increase was significantly larger in the
dry season than in the wet season (0.23% yr−1 vs. 0.11% yr−1,
Supplementary Fig. 6). This difference is likely to be related to the
seasonal effect of absolute water storage in the tropical land: in
the wet season, water storage is large and reaches the upper limit
of evapotranspiration, meaning that evapotranspiration cannot
increase appreciably as water storage continues to increase;
whereas in the dry season, water storage is scarce, and
evapotranspiration is markedly enhanced as the water storage
increases34. In summary, larger fluctuations in the
evapotranspiration-cooling effect occur in the dry season, which
profoundly affects the oscillation in tropical land-surface tem-
perature. Observations show that the dry-season land-surface
temperature exhibits tighter negative correlation (i.e. higher
absolute values of R) with precipitation than the wet-season
temperature (Fig. 1b, Supplementary Fig. 2), implying that
changes in dry-season dT/dP values dominate the annual negative
sensitivity of temperature to precipitation. Model results reveal
that the future annual dT/dP exhibits a high positive correlation
with the future dry-season dT/dP for all four emission scenarios
(0.49 ≤ R ≤ 0.81, P < 0.001, Fig. 1f), suggesting that the spread in
future dry-season dT/dP (Supplementary Fig. 7) will lead to a
comparable spread in future annual dT/dP. Therefore, we can
expect to constrain the future annual dT/dP through establishing
an emergent relationship between the future annual dT/dP and
the historical dry-season dT/dP. In fact, a similar emergent
constraint on future dT/dP has been identified in the Amazon
rainforest12.

EC on future dT/dP based on the CMIP6 ensemble
We observed significant linear regressions (along with their
corresponding errors) between the future annual and the
historical dry-season average values of dT/dP for the four SSP
scenarios (Fig. 2, Supplementary Fig. 8), based on the spread in the
CMIP6 ensemble (Fig. 1e–f). Linear regressions between future
annual and historical wet-season average values of dT/dP have
lower values of R and higher P values (Supplementary Fig. 9), and
therefore are not used. The observed dry-season average dT/dP
(vertical black line) ± one standard deviation (light blue rectangle)
derived from the HadCRUT4 dataset are then plotted for the four
SSP scenarios (Fig. 2, Supplementary Fig. 8). These two steps
together establish the ECs on future annual dT/dP for the four SSP
scenarios. Associated probability density functions (PDFs) after
applying the ECs are then calculated based on error intervals of
both the observed historical dry-season average values and
projected future annual values of dT/dP, while PDFs without the
ECs are directly obtained from the CMIP6 ensemble (Fig. 2,
Supplementary Fig. 8).
After the application of the ECs, the spreads of the PDFs under

the four SSP scenarios become compressed, revealing large
reductions in uncertainty in future annual dT/dP compared with
the values directly derived from the CMIP6 ensemble. The
reductions are 9.4%, 16.1%, 29.8%, and 41.4% for the four SSPs,
respectively (Fig. 2, Supplementary Fig. 8). Importantly, the best
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estimates of the constrained future annual dT/dP (each corre-
sponding to the peak in the PDF) exhibit large decreases from pre-
EC to post-EC conditions (Fig. 2, Supplementary Fig. 8, Supple-
mentary Table 2). Pre-EC values of the best estimates of dT/dP are
−0.14 °C mm−1 day, −0.27 °C mm−1 day, 0.57 °C mm−1 day, and
1.03 °C mm−1 day, respectively, under the four SSP scenarios (Fig.
2, Supplementary Fig. 8, Supplementary Table 2), suggesting
uncertainty even in the sign of future annual dT/dP, if different SSP
scenarios are used. However, the post-EC values drop to −1.10 °C

mm−1 day, −1.63 °C mm−1 day, −2.86 °C mm−1 day, and −3.52 °C
mm−1 day, respectively, with the absolute decreases reaching
0.96 °C mm−1 day, 1.36 °C mm−1 day, 3.43 °C mm−1 day, and
4.55 °C mm−1 day, correspondingly (Fig. 2, Supplementary Fig. 8,
Supplementary Table 2), meaning that future annual dT/dP
becomes systematically negative across all SSP scenarios.
Decreases from pre-EC to post-EC conditions are therefore
conspicuous. PDFs based on the three other observational

Fig. 1 Association between tropical land-surface temperature and precipitation using HadCRUT4 observations and CMIP6 outputs.
a Observed time series of annual tropical land-surface temperature and precipitation from 1949 to 2005. b Observed relationship between
tropical land-surface temperature and precipitation anomalies at annual and seasonal timescales (anomalies are computed as the value of a
variable in a certain year minus the mean over the multi-year period of 1949–2005). c Comparison between the two observed yearly time
series of tropical land-surface evapotranspiration from GLEAM dataset and temperature from HadCRUT4 dataset during 1980–2005. d Linear
relationships between observed tropical land-surface temperature and precipitation before and after using a moving average with the
window length of 5 years. Linear relationships corresponding to other window lengths are illustrated in Supplementary Fig. 4, and correlation
coefficients and slope values (i.e., dT/dP) are provided in Supplementary Fig. 5. e Spreads of future annual dT/dP modeled under the four SSP
scenarios. f Relationship between future annual and historical dry-season values of tropical land dT/dP modeled under the four SSP scenarios.
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datasets also demonstrate reductions in both the uncertainty and
the best estimate (Supplementary Fig. 10).
Out-of-sample testing is an effective way to assess whether these

emergent relationships have emerged solely by chance10. Using 25
CMIP5 models, we still find a tight relationship between future
annual dT/dP and historical dry-season dT/dP under the RCP2.6
scenario (R= 0.64, P < 0.001, Supplementary Fig. 11). When driving
the relationship with the observations, the constraint also shifts the
future annual dT/dP from −0.89 ± 0.79 °C mm−1 day to a more
negative value of −1.43 ± 0.65 °C mm−1 day. This testing further
supports the reliability of our introduced emergent constraint.

Future evapotranspiration from tropical land
Evapotranspiration from tropical land depends strongly on
variations in tropical land temperature and precipitation, as is
illustrated by the strong positive correlation between the future
annual growth rate in evapotranspiration and the future annual
dT/dP under the high emission scenario of SSP585 (Fig. 3a). By
projecting the post-EC value of future annual dT/dP ± one
standard deviation (vertical black line ± light blue rectangle) onto
the y-axis through the linear regression relation (with forecast
error), we find that evapotranspiration is likely to experience a
reduction at a rate of −0.469 ± 0.430mm yr−1 under SSP585
during 2015–2100 (Fig. 3a). Conversely, under pre-EC conditions,
an increasing rate of evapotranspiration of 0.292 ± 0.533mm yr−1

is projected, corresponding to the peak of the pre-EC PDF curve
(Fig. 3b). In other words, after application of the EC, evapotran-
spiration from tropical land is projected to decrease substantially

in the future under the high emission scenario of SSP585.
Moreover, the PDF curve corresponding to the future annual
trend in tropical land evapotranspiration shows a notable
narrowing from pre-EC to post-EC conditions, suggesting a
reduction of 19.3% in the uncertainty of the projection (Fig. 3b).
Past research suggests a significant decline in soil water content

in the tropics accompanied by an expected rise in aridification35.
This would result in the soil’s water supply becoming inadequate
to meet the increasing evaporative demand from the atmosphere.
This may be the reason for the decrease in future tropical
evapotranspiration. A similar feedback between soil water and
evapotranspiration has been reported which suggested that the
observed decline of global evapotranspiration during 1998-2008
was primarily driven by moisture shortage in the Southern
Hemisphere36.

Future vegetation greening on tropical land
Temperature and precipitation are key climatic factors that affect
vegetation dynamics on the tropical land, as is confirmed by the
strong relationship between the future annual growth rate in
tropical land LAI and future annual dT/dP across CMIP6 models
under the SSP585 scenario (R=−0.82, P < 0.001, Fig. 4a). The
relationship indicates that a more negative dT/dP (i.e., a higher
evaporative cooling effect) after application of the EC is associated
with greater greening of tropical vegetation. Hence, the over-
estimate of future dT/dP by the original CMIP6 models implies that
they equally underestimated the increase in tropical land
vegetation. The original CMIP6 models projected a future annual

Fig. 2 EC on future annual dT/dP based on CMIP6 models under the SSP585 scenario. a The constraint consists of a linear regression (with
the associated error) between the future annual simulated dT/dP and historical dry season simulated dT/dP (red line and orange shaded area);
then the constrained data is computed by projecting the observed historical dry season dT/dP ± one standard deviation (vertical black line and
light blue rectangle, obtained from the HadCRUT4 dataset) onto the regression. b Blue and gray lines are PDFs for the constrained (post-EC) and
unconstrained (pre-EC) future annual dT/dP, showing the change in projection uncertainty and the best estimate of future annual dT/dP.
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growth rate in LAI of 0.0085 ± 0.0073 m2 m−2 yr−1 under the
SSP585 scenario (Fig. 4b). However, after applying the constraint
(Fig. 4a), the future tropical land LAI is expected to increase by
0.0205 ± 0.0065 m2 m−2 yr−1, demonstrating that the raw CMIP6
models underestimated the future increasing trend in tropical
land LAI by 58.7% under the SSP585 scenario (Fig. 4b).
When there is enough water in the soil to meet the

transpiration demand, the increase in the LAI growth rate typically
strengthens the process of transpiration, and results in higher
evapotranspiration. The counterintuitive downward trend in the
tropical land evapotranspiration (Fig. 3) might be related to the
change in soil water content. Under the high emission scenario of
SSP585, more than half of the earth’s land surface is likely to
experience a severe limitation in future soil water content35, which
would exert an inhibitory effect on the tropical land evapotran-
spiration, as is supported by the positive correlation between the
soil water content and evapotranspiration in Supplementary Fig.
12. If this kind of mechanism overwhelms the positive effect of LAI
growth, decrease in evapotranspiration can be expected.

DISCUSSION
We define the wet and dry seasons over the tropical land surface
as May to July and January to March, respectively, in this study. We

first exclude the subareas different from the whole tropical land
area in which dry-season months are defined as May to July. These
subareas are rain-less and desert regions. EC method is then
applied to the remaining area and the constrained result is found
to be quite similar to that of the whole tropical land area, with the
discrepancy of merely 14.5–19.3% (Supplementary Fig. 13). We
then establish emergent relationships between historical monthly
dT/dP and future annual dT/dP, as in Thackeray et al.37, and find
that the relationships are most significant for the defined dry-
season months (i.e. May to Jul.) (Supplementary Fig. 14), which
also leads to the largest uncertainty reductions for the constrained
future annual dT/dP.
We use historical dry season dT/dP to constrain the future

annual dT/dP over the tropical land. We contend the plausible
mechanism underpinning this emergent relationship is related to
the evaporative cooling effect: increased precipitation leads to
more water availability on the ground and in the soil, enhancing
the cooling effect of evapotranspiration on sensible heating, and
subsequently lowering the temperature of the tropical land
surface, leading to a negative value of dT/dP1,2,29. This is
supported by the antiphase oscillation between annual mean
evapotranspiration and temperature over the tropical land (Fig. 1c,
Supplementary Fig. 3). A model with a high evaporative cooling
effect tends to produce a more negative dT/dP in both the

Fig. 3 EC on future annual growth rate in tropical land evapotranspiration based on CMIP6 models (see Supplementary Table 1) under
the SSP585 scenario. a The constraint consists of a linear regression (with the associated forecast error) between the future annual dT/dP and
future annual growth rate in evapotranspiration (red line and orange shaded area); the constrained data is computed by projecting the
constrained future annual dT/dP ± one standard deviation (SD, vertical black line ± light blue rectangle) onto the regression. b Blue and gray
lines are PDFs for the constrained (post-EC) and unconstrained (pre-EC) future annual growth rates in evapotranspiration. Note: The use of a
constrained future variable (x) to constrain another future variable (y) has also been applied in previous studies11,45. The logic is as follows: A
tight interdependence (i.e. emergent relationship) is first found between x and y based on originally modeled results. The constrained x is
then applied in the emergent relationship to obtain a more precise y given that this kind of x shows a much lower uncertainty.
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historical and future periods, and vice versa. The inter-model
spread in both the historical dry season dT/dP and the future
annual dT/dP are dependent on the same evaporative cooling
mechanism, which supports the existence of an emergent
relationship between them. As noted by Hall et al. (2019)10,
verification of the mechanism underpinning the emergent
relationship is most straightforward and effective when the same
physical feedback process involves both the predictor and the
predictand, and the only difference is the time scale over which
the process occurs. Hence, an emergent constraint that focuses on
the projection of a variable onto itself (i.e. the historical dry season
dT/dP onto the future annual dT/dP in our case) is most
straightforward and reliable.
In Fig. 2b, there is a striking change in dT/dP (i.e. 1.03 °C mm−1

day to −3.52 °C mm−1 day) after applying the EC method. From
Fig. 2a, we see that modeled results of both historical dry season
dT/dP and future annual dT/dP show a large spread across the 26
CMIP6 models, rather than biases from individual models, and the
collection of data points forms the emergent relationship. If we
eliminate the handful of models with negative values of future
annual dT/dP, the emergent relationship still exists and changes
little. The major driving factor for the significant shift in the future
annual dT/dP from pre-EC to post-EC conditions is the observed
historical dry season dT/dP (black vertical line), which is smaller
than all the modeled values and results in the strongly negative
value of future annual dT/dP when substituting the observation
into the emergent relationship (i.e. the red regression line in Fig.
2a). This in turn highlights the high uncertainty of the CMIP model

simulations and the efficiency of the EC method. We can also see
from Supplementary Table 2 that the observed historical dry
season dT/dP values of the four datasets and the corresponding
post-EC future annual dT/dP are all negative, and the changes
from pre-EC to post-EC results are comparable with the result
shown in Fig. 2, further supporting the method and conclusions of
our study.
The Amazonian forest loss is projected to cross a tipping point

and becomes increasingly severe as future annual ΔT/ΔP
decreases12, whereas the tropical LAI growth rate in this study
experiences an obvious increase as future annual dT/dP declines
(Fig. 4). This divergent behavior can be explained by different
climate characteristics in these two regions. In the Amazon,
precipitation is abundant and has experienced a limited decrease
(see Fig. 1a in Chai et al.12); more negative dT/dP indicates more
temperature warming, which is unfavorable for vegetation growth
due to limitations in water use efficiency, photosynthesis and CO2

fertilization12,18–24. This demonstrates that the Amazonian forest
cover is mainly controlled by temperature. Nevertheless, the
whole tropical land surface, assessed in this work, contains a wide
variety of subareas, including both arid deserts and humid
rainforests, where precipitation and temperature have respectively
witnessed obvious decreases and increases (see Fig. 1a in this
study). Over this broader area, a more negative dT/dP (namely the
more negative linear regression slope in Fig. 1b in this study)
means a lesser decrease in precipitation for a given increase in
temperature (it can be seen from Fig. 1a that the increasing rate in
temperature is roughly stable after 1975 whereas the decreasing

Fig. 4 EC on future annual growth rate in tropical land LAI based on CMIP6 models (see Supplementary Table 1) under the
SSP585 scenario. a The constraint consists of a linear regression (with the associated forecast error) between the future annual dT/dP and
future annual growth rates in tropical land LAI (red line and orange shaded area); the constrained data is computed by projecting the
constrained future annual dT/dP ± one standard deviation (SD, vertical black line ± light blue rectangle) onto the regression. b Blue and gray
lines are PDFs for the constrained (post-EC) and unconstrained (pre-EC) future annual growth rates in tropical land LAI.
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rate in precipitation slowed from 1975–1992 to 1992–2005), which
is favorable for vegetation growth due to higher water
availability12,18–20,22–24. Recognition of the key environmental
variables driving the two different spatial-scale vegetation green-
ings is quite instructive for ecological preservation.
Apart from future annual dT/dP, we find that the historical LAI

change also has a significant emergent relationship with the future
LAI trend across CMIP6 models (Supplementary Fig. 15a). After
combining this EC with the observation of LAI (0.0069 m2 m−2 yr−1),
we estimate that the constrained future annual growth rate in LAI is
most likely to reach 0.0192 m2 m−2 yr−1, which is quite consistent
with the result (0.0205 m2 m−2 yr−1) obtained by using the
constrained future annual dT/dP, with a discrepancy is only of 6.3%.
These two equivalent results further improve the reliability of the
finding in this study. In contrast, historical changes of evapotran-
spiration, temperature and precipitation show insignificant relation-
ships with future LAI and evapotranspiration variations
(Supplementary Fig. 15b–f).
Existing emergent constraint-based findings13,37–42 are uni-

formly based on the assumption of the same plausible mechanism
underpinning the inter-model spreads in both the historical and
future changes for a certain environmental variable. This is the
reason why all the previous studies11,37,38,43 use a linear emergent
relationship to reduce the prediction uncertainty in future
variables. Similarly, in this study, our emergent constraint focuses
on the projection of a variable onto itself (i.e. the historical dT/dP
onto the future dT/dP), which involves in the same physical
mechanism for both the predictor and the predictand. Thus, a
linear emergent relationship is a more reasonable selection.
One limitation of this study is related to the uncertainty of the

observational datasets. Different datasets exhibit a discrepancy in
estimating the observed dT/dP, which may affect the post-EC
results. Considering a range of observational datasets might be an
effective way to relieve this influence. Here, we adopt four widely
used datasets and find that the pre-EC dT/dP values are the same
under a given SSP scenario, the post-EC dT/dP values are
consistently negative, and the negative post-EC dT/dP values are
comparable under a given SSP scenario (Supplementary Table 2),
which confirms the reliability of our findings. Furthermore, another
synthetic method, termed the Hierarchical Emergent Constraint
(HEC) framework44, also provides a practical pattern for constraining
the future climate projections, given that it incorporates the
present-future climate correlation, the bias between observations
and ensemble mean, and the observation uncertainty. After using
this method, we find that the constrained future annual dT/dP
remains virtually unchanged (i.e. -0.98 °C mm−1 day under SSP126,
−1.49 °C mm−1 day under SSP245, −2.51 °C mm−1 day under
SSP370 and −3.05 °C mm−1 day under SSP585) compared with the
results seen in Supplementary Table 2 (i.e. −1.10 °C mm−1 day
under SSP126, −1.63 °C mm−1 day under SSP245, −2.86 °C mm−1

day under SSP370 and −3.52 °C mm−1 day under SSP585), with a
discrepancy of merely 8.6–13.4%, which further improves the
reliability of our main findings.

METHODS
Average values
Values of temperature, precipitation, evapotranspiration and LAI
are taken directly from the relevant datasets (see Data Availability).
All values are at the grid scale, bounded in the geographic land
area within 23.5°S–23.5°N and 180°W–180°E. Spatial averages are
obtained over the tropical land area. Herein, dT/dP is the rate of
change of tropical land-surface average temperature with respect
to tropical land-surface average precipitation. Changes in evapo-
transpiration and LAI are also derived from corresponding spatial
averages.

Linear regression and forecast error
A linear regression is performed between x (independent variable)
and y (dependent variable) using the least squares method6. That
is, the best fit line corresponds to the minimum quadratic sum of
the normal distances between the data points and the fitted line.
Then, the best-estimate value of y (yp) for a given value of x (xp) is
obtained by substituting xp into the regression equation of the fit
line6,12,13.
The forecast error of yp at xp is estimated as

σðypÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

N
þ ðxp � xÞ2

N � σ2
x

s
(1)

where N is the number of samples, x is the geometric average
across all elements in the independent variable sample, σx is the
variance of x, and s is used to minimize the quadratic sum of the
vertical distances during the linear regression analysis. σx and s are
respectively calculated as follows:

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðxi � xÞ2
vuut (2)

s2 ¼ min
1

N � 2

XN
i¼1

ðypi � yiÞ2
 !

(3)

where xi and yi are the ith elements in samples of the independent
and dependent variables, and ypi is the value of yp on the best fit
line corresponding to yi.
In Figs. 2a, 3a, 4a, and Supplementary Fig. 7a, c, e and 10a, x

represents the historical dry season dT/dP and future annual dT/
dP, respectively, and y represents future annual dT/dP, future
change in tropical land evapotranspiration, and future annual
growth rate in tropical land LAI, separately. Meanwhile, the
observed dry season average dT/dP (vertical black line) ± one
standard deviation (light blue rectangle) in Fig. 2a and Supple-
mentary Fig. 7a, c, e and 10a are also determined using a linear
regression process, in which the best estimate (i.e. the vertical
black line) is the slope of the linear regression line between
observed historical dry season T and observed historical dry
season P, and a single standard deviation (i.e. the light blue
rectangle) is calculated by Eq. (1). Subsequently, the constrained
future annual dT/dP (vertical black line) ± one standard deviation
(light blue rectangle) in Figs. 3a, 4a are obtained by projecting the
best estimate of historical dry season dT/dP onto the red
regression line and the orange shaded area in Fig. 2a.

PDFs
Following Cox et al.6 and Chai et al.12, PDFs of pre-EC values of
dependent variables are directly calculated from

PðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσðypÞ2

q exp �ðy � ypÞ2
2σðypÞ2

" #
(4)

By comparison, post-EC values (y') are constrained by dataset
observations, and the corresponding PDFs are determined from

Pðy0Þ ¼
Z þ1

�1
PðyÞPðx0Þdx0 (5)

where x' represents the independent variable derived from
observed datasets rather than the model results.

Hierarchical emergent constraint (HEC) framework
The hierarchical emergent constraint method requires data for the
projected future climate variable (y), alongside simulated and
observed current climate variables (x and xo). Least-squares linear
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regression is applied to establish the emergent relationship
between x and y:

y ¼ kðx � xÞ þ y (6)

where k is the regression coefficient, which can be calculated by
using Eq. (7); x and y are the model ensemble mean values of x
and y.

k ¼ ρ
σy

σx
(7)

where ρ is the correlation coefficient between x and y, and σx and
σy are standard deviations of x and y across the CMIP6 models.
If the emergent relationship is causal and significant, we can

constrain y by combining with the observed current climate
variable xo and its uncertainty. Assuming that the observation is
related to the current climate through an additive-noise model
under Gaussian assumptions, we use the signal-noise ratio (SNR) in
x0 to correct the scaling factor k (Eq. (8)). SNR defines the relative
strength of the signal variability to the noise variability and is
estimated by using Eq. (9), where σ2x and σ2

o are variances across
the models and across the different observation datasets. If the
noise dominates the signal, the forecast anomaly will approach 0.
Otherwise, if the signal drives the noise (i.e. SNR ≥ 1), the
correction through Eq. (8) has little effect, and thus the
constrained future climate y0 with its standard deviation can be
estimated by Eqs. (10) and (11), respectively.

k� ¼ 1

1þ SNR�1 k (8)

SNR ¼ σ2
x

σ2
0

(9)

y0 ¼ y þ k

1þ SNR�1 ðx0 � xÞ (10)

σ2
y ¼ 1� ρ2

1þ SNR�1

� �
σ2
y (11)

After using the HEC framework, the uncertainty of the projected
future climate y0 is reduced by ρ2

1þSNR�1. More detailed information
of the HEC framework can be seen in Bowman et al.44.

DATA AVAILABILITY
CMIP6 model simulations of monthly data of temperature/precipitation during
1949–2100, and evapotranspiration and LAI during 2015–2100 under the emission
scenarios of SSP126, SSP245, SSP370 and SSP585 were collected from https://esgf-
node.llnl.gov/projects/cmip6/. Observed monthly temperature and precipitation data
during 1949–2005 are derived from the HadCRUT4 (http://www.cru.uea.ac.uk/), GPCC
(https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-
centre), NOAA (https://www.esrl.noaa.gov/psd/data/gridded/data.noaaglobaltemp.html),
GISS (https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html) and Delaware
(https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html) datasets. HadCRUT4 and
Delaware provide both temperature and precipitation data, whereas the GPCC dataset
solely provides precipitation data, and NOAA and GISS datasets only provide
temperature data. Hence, we use HadCRUT4, Delaware, and combinations of
GISS+GPCC and NOAA+GPCC to establish the sensitivity of tropical land-surface
temperature to precipitation in this study. Observed monthly data of evapotranspiration
during 1980–2014 were gathered from the GLEAM dataset (https://www.gleam.eu/).

CODE AVAILABILITY
The code used to generate the results for this study is available upon reasonable
request from the corresponding author.
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