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A generative modeling approach for benchmarking and
training shallow quantum circuits
Marcello Benedetti1,2, Delfina Garcia-Pintos3, Oscar Perdomo3,4,5, Vicente Leyton-Ortega3,4, Yunseong Nam6 and
Alejandro Perdomo-Ortiz1,3,4,7,8

Hybrid quantum-classical algorithms provide ways to use noisy intermediate-scale quantum computers for practical applications.
Expanding the portfolio of such techniques, we propose a quantum circuit learning algorithm that can be used to assist the
characterization of quantum devices and to train shallow circuits for generative tasks. The procedure leverages quantum hardware
capabilities to its fullest extent by using native gates and their qubit connectivity. We demonstrate that our approach can learn an
optimal preparation of the Greenberger-Horne-Zeilinger states, also known as “cat states”. We further demonstrate that our
approach can efficiently prepare approximate representations of coherent thermal states, wave functions that encode Boltzmann
probabilities in their amplitudes. Finally, complementing proposals to characterize the power or usefulness of near-term quantum
devices, such as IBM’s quantum volume, we provide a new hardware-independent metric called the qBAS score. It is based on the
performance yield in a specific sampling task on one of the canonical machine learning data sets known as Bars and Stripes. We
show how entanglement is a key ingredient in encoding the patterns of this data set; an ideal benchmark for testing hardware
starting at four qubits and up. We provide experimental results and evaluation of this metric to probe the trade off between several
architectural circuit designs and circuit depths on an ion-trap quantum computer.
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INTRODUCTION
What is a good metric for the computational power of noisy
intermediate-scale quantum1 (NISQ) devices? Can machine learn-
ing (ML) provide ways to benchmark the power and usefulness of
NISQ devices? How can we capture the performance scaling of
these devices as a function of circuit depth, gate fidelity, and qubit
connectivity? In this work, we design a hybrid quantum-classical
framework called data-driven quantum circuit learning (DDQCL)
and address these questions through simulations and experiments.
Hybrid quantum-classical algorithms, such as the variational

quantum eigensolver2,3 (VQE) and the quantum approximate
optimization algorithm4,5 (QAOA), provide ways to use NISQ
computers for practical applications. For example, VQE is often
used in quantum chemistry when searching the ground state of
the electronic Hamiltonian of a molecule.6–8 QAOA is used in
combinatorial optimization to find approximate solutions of a
classical Ising model9 and it has been demonstrated on a 19-qubit
device for the task of clustering synthetic data.10 Other successful
hybrid approaches based on genetic algorithms were proposed
for approximating quantum adders and training quantum
autoencoders.11–13 In all these examples, there is a clear-cut
objective function describing the cost associated with each
candidate solution. The task is then to optimize it exploiting both
quantum and classical resources.
Although optimization tasks offer a great niche of applications,

probabilistic tasks involving sampling have most of the potential
to prove quantum advantage in the near-term.14–16 For example,

learning probabilistic generative models is in many cases an
intractable task, and quantum-assisted algorithms have been
proposed for both gate-based17,18 and quantum annealing
devices.19–23 Differently from optimization, the learning of a
generative model is not always described by a clear-cut objective
function. All we are given as input is a data set, and there are
several cost functions that could be used as a guide, each one
with their own advantages, disadvantages, and assumptions.
Here we present a hybrid quantum-classical approach for

generative modeling on gate-based NISQ devices which heavily
relies on sampling. We use the 2N amplitudes of the wave function
obtained from a N-qubit quantum circuit to construct and capture
the correlations observed in a data set. As Born’s rule determines
the output probabilities, this model belongs to the class of models
called Born machines.24 Previous implementations of Born
machines25–28 often relied on the construction of tensor networks
and their efficient manipulation through graphical-processing
units. Our work differs in that Born’s rule is naturally implemented
by a quantum circuit executed on a NISQ hardware. Following the
notation of subsequent work,29 we refer to our generative model
as a quantum circuit Born machine.
By employing the quantum circuit itself as a model for the data

set, we also differentiate from quantum algorithms that target
specific probability distributions. For example, in ref. 30 the authors
developed a hybrid algorithm to approximately sample from a
Boltzmann distribution. The samples are used to update a classical
generative model, which requires running the hybrid algorithm for
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each training iteration. In contrast, our work does not assume a
Boltzmann distribution and therefore does not require a specific
sampling beyond Born’s rule.
Our work is also in contrast with other quantum-assisted ML

work (see e.g., refs 31–34) requiring fault-tolerant quantum
computers, which are not expected to be readily available in the
near-term.35 Instead, our circuits are carefully designed to exploit
the full power of the underlying NISQ hardware without the need
for a compilation step.
On the benchmarking of NISQ devices, quantum volume9,36 has

been proposed as an architecture-neutral metric. It is based on the
task of approximating a specific class of random circuits and
estimating the associated effective error rate. This is very general
and it is indeed useful for estimating the computational power of
a quantum computer. In this paper, we propose the qBAS score, a
complementary metric designed for benchmarking hybrid
quantum-classical systems. The score is based on the generative
modeling performance on a canonical synthetic data set which is
easy to generate, visualize, and validate for sizes up to hundreds
of qubits. Yet, implementing a shallow circuit that can uniformly
sample such data is hard; we will show that some candidate
solutions require large amount of entanglement. Hence, any
miscalibration or environmental noise will affect this single
performance number, enabling comparison between different
devices or across different generations of the same device.
Moreover, the score depends on the classical resources, hyper-
parameters, and various design choices, making it a good choice
for the assessment of the hybrid system as a whole.
Our design choices are based on the setup of existing ion trap

architectures. We choose the ion trap because of its full
connectivity among qubits37 which allows us to study several
circuit layouts on the same device. Our experiments are carried
out on an ion trap quantum computer hosted at the University of
Maryland.38

RESULTS
The learning pipeline
In this Section, we present a hybrid quantum-classical algorithm
for the unsupervised machine learning task of approximating an
unknown probability distribution from data. This task is also
known as generative modeling. First, we describe the data and the
model, then we present a training method.
The data set D ¼ ðxð1Þ; ¼ ; xðDÞÞ is a collection of D indepen-

dent and identically distributed random vectors. The underlying
probabilities are unknown and the target is to create a model for
such distribution. For simplicity, we restrict our attention to N-
dimensional binary vectors x(d) ∈ {−1, +1}N, e.g., black and white
images. This gives us an intuitive one-to-one mapping between
observation vectors and the computational basis of an N-qubit
quantum system, that is x ↔ |x〉 = |x1x2⋯xN〉. Note that standard
binary encodings can be used to implement integer, categorical,
and approximate continuous variables.
Provided with the data set D, our goal is now to obtain a good

approximation to the target probability distribution PD. A
quantum circuit model with fixed depth and gate layout,
parametrized by a vector θ, prepares a wave function |ψ(θ)〉 from
which probabilities are obtained according to Born’s rule Pθ(x) = |
〈x|ψ(θ)〉|2. Following a standard approach from generative
machine learning,39 we can minimize the Kullback–Leibler (KL)
divergence40 DKL½PDjPθ� from the circuit probability distribution in
the computational basis Pθ to the target probability distribution
PD. Minimization of this quantity is directly related to the
minimization of a well known cost function: the negative log-
likelihood CðθÞ ¼ � 1

D

PD
d¼1 lnðPθðxðdÞÞÞ. However, there is a

caveat; as probabilities are estimated from frequencies of a finite
number of measurements, low-amplitude states could lead to

incorrect assignements. For example, an estimate Pθ(x
(d)) = 0 for

some x(d) in the data set would lead to infinite cost. To avoid
singularities in the cost function, we use a simple variant

CnllðθÞ ¼ � 1
D

XD

d¼1

lnðmaxðε; PθðxðdÞÞÞÞ; (1)

where ε > 0 is a small number to be chosen. Note that the number
of measurements needed to obtain an unbiased estimate of the
relevant probabilities may not scale favorably with the number of
qubits N. In the Supplementary Material we suggest alternative
cost functions such as the moment matching error and the earth
mover’s distance.
After estimating the cost, we update the parameter vector θ to

further minimize the cost. This can in principle be done by any
suitable classical optimizer. We used a gradient-free algorithm
called particle swarm optimization (PSO)41,42 as previously done in
the context of quantum chemistry.7 The algorithm iterates for a
fixed number of steps, or until a local minimum is reached and the
cost does not decrease.
We chose the layout of the model circuit to be of the following

form. Let us consider a general circuit parametrized by single

qubit rotations fθðl;kÞi g and two-qubit entangling rotations fθðlÞij g
The subscripts denote qubits involved in the operation, l denotes
the layer number and k ∈ {1, 2, 3} denotes the rotation identifier.
The latter is needed as we decompose an arbitrary single qubit
rotation into three simpler rotations (see Section “Methods” for
further details about some exceptions and potential simplifica-
tions depending on the native gates available in each specific
hardware). Inspired by the gates readily available in ion trap
quantum computers, we use alternating layers of arbitrary single
qubit gates (odd layers) and Mølmer-Sørensen XX entangling
gates43–46 (even layers) as our model. All parameters are initialized
at random.
It is important to note that in our model the number of

parameters is fixed and is independent of the size D of the data
set. This means we can hope to obtain a good approximation to
the target distribution only if the model is flexible enough to
capture its complexity. Increasing the number of layers or
changing the topology of the entangling layer alter this flexibility,
potentially improving the quality of the approximation. However,
we anticipate that such flexible models are more challenging to
optimize because of their larger number of parameters. Principled
ways to choose the circuit layout and to regularize its parameters
could significantly help in such a case.
As summarized in Fig. 1, the learning algorithm iteratively

adjusts all the parameters to minimize the value of the cost
function. At any iteration the user-defined cost is approximated
using both samples from the data set and measurements from the
quantum hardware, hence the name data-driven quantum circuit
learning (DDQCL).

The qBAS score
Bars and stripes (BAS)47 is a synthetic data set of images that has
been widely used to study generative models for unsupervised
machine learning. For n ×m pixels, there are NBAS(n,m) = 2n + 2m −
2 images belonging to BAS, and they can be efficiently produced
and visualized. The probability distribution is 1/NBAS(n,m) for each
pattern belonging to BAS(n, m), and zero for any other pattern.
Figure 2 on the top left panel shows patterns belonging to BAS(2,
2), while the top central panel shows the remaining patterns.
We use DDQCL to learn a circuit that encodes all the BAS

patterns in the wave function of a quantum state. This also allows
us to design the qBAS(n, m) score: a task-specific figure of merit to
assess the performance of shallow quantum circuits. In a single
number, it captures the model capacity of the circuit layout and
intrinsic hardware strengths and limitations in solving a complex
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sampling task that requires a fair amount of entanglement. It takes
into account the model circuit depth, gate fidelities, and any other
architectural design aspects, such as the quantum hardware’s
qubit-to-qubit connectivity and native set of single and two-qubit
gates. It also takes classical resources such as the choice of cost
function, optimizer, and hyper-parameters, into account. There-
fore, it can be used to benchmark the performance of the
components of the hybrid quantum-classical system.
The qBAS(n, m) score is an instantiation of the F1 score widely

used in the context of information retrieval. The F1 score is defined
as the harmonic mean of the precision p and the recall r, i.e., F1 =
2pr/(p + r). The precision p indicates the ability to retrieve states
which belong to the data set of interest (The meaning and usage
of precision in the field of information retrieval differs from the
definition of precision within other branches of science and
statistics). In our context this is the number of measurements that
belong to the BAS(n, m) data set, divided by the total number of
measurements Nreads performed. The recall r is the capacity of the
model to retrieve the whole spectrum of patterns belonging to
the desired data set. In our case, if we denote the number of
unique patterns that were measured as d(Nreads), then r = d
(Nreads)/NBAS(n,m). To score high (F1 ≈ 1.0), both high precision (p ≈
1.0) and high recall (r ≈ 1.0) are required.
The F1 score is a useful measure for the quality of information

retrieval and classification algorithms, but for our purposes it has a
caveat: the dependence of r on the total number of measure-
ments. As an example, consider a model that generates only BAS
patterns, i.e., its precision is 1.0, but with highly heterogeneous
distribution. If some of the BAS patterns have infinitesimally small
probability, we can still push the recall to 1.0 by taking a large
number of measurements Nreads → ∞. This is not desirable since

our purpose is to evaluate circuits on the task of uniformly
sampling all the patterns from BAS(n, m). Therefore, to define a
unique score it is important to fix Nreads to a reasonable value such
that r ≈ 1.0 under the assumption of the model distribution being
equal to the target distribution PBAS(n,m), but not so large as to
make the score insensitive to deviations from the target
distribution. Assuming a perfect model distribution PBAS(n,m) = 1/
NBAS(n,m), the expected number of measurements to obtain a value
of r = 1.0 can be estimated using the famous coupon collector’s
problem. For our purposes here, we set Nreads to be equal to the
expected number of samples that need to be drawn to collect all
the NBAS(n,m) patterns (“coupons”). That is, Nreads ¼ NBASðn;mÞHNBASðn;mÞ
where Hk is the k-th harmonic number. Computed values of Nreads

are provided in Table 1 for different values of n and m up to 100
qubits. As shown in the table, the number of readouts required to
determine qBAS(n, m) are within experimental capabilities of
current NISQ devices. (It is an interesting problem to optimize
Nreads such that it maximizes the sensitivity of the score towards
differentiating two probability distributions. This problem is left for
future work).
For statistical robustness, we recommend as a good practice to

perform R repetitions of the Nreads measurements leading to R
independent estimates of the recall (each denoted as ri). For
estimating the precision p, all the samples collected should be
used to robustly estimate this quantity. Using this value of p one
can compute R independent values of the qBAS(n, m) score from
each of the ri. These are subsequently bootstrapped to obtain a
more robust average for the final reported value of qBAS(n, m)
(see details in Section “Methods”).
We note that a more general performance indicator than qBAS

(n,m) score is indeed the KL divergence, DKL[PBAS(n,m)|Pθ]. However,
this would not be robust in terms of scalability; as n ×m becomes
large, it is expected that the KL divergence is frequently undefined
(One may argue that the same scalability issue applies to the cost
function in Eq. (1) used for learning. However, we can choose
alternative scalable cost functions, as we show in the Supple-
mentary Material. A comprehensive study is left for future work).
This is true when measurements yield distributions such that
Pθ(x

(d)) = 0 for any of the x(d) in BAS(n, m). In all these cases, the
qBAS score can still be computed and the number of measure-
ments Nreads necessary for obtaining a robust estimate continues
to remain relatively small to be practical for intermediate size
n ×m.

Experiments
We investigated three different examples, namely, GHZ state
preparation, coherent thermal state preparation, and BAS(2, 2). We
implemented each example of DDQCL using both numerical
simulations and experiments. We explored the parameter space of
DDQCL by varying the qubit-to-qubit connectivity topology (see
top-right panel of Fig. 2) and the number of layers. We evaluated
the performance of each instance by using the KL divergence
from the circuit probability distribution in the computational basis
to the target probability distribution. While explicitly computing
the KL divergence is generally intractable, due to its demanding
resource requirement as the size of instances to consider
increases, we were able to compute this quantity explicitly for
all cases considered in this paper.

GHZ state preparation
To test the capabilities of DDQCL, we started with the preparation
of GHZ states, also known as “cat states”.48 Besides their importance
in quantum information, the choice is motivated by their simple
description and by the availability of many studies about their
preparation (see e.g., refs 49–51). From the DDQCL perspective, we
explored whether it is possible to learn any of the known recipes for
GHZ state preparation starting only from classical data. More

Fig. 1 General framework for data-driven quantum circuit learning
(DDQCL). Data vectors are interpreted as representative samples
from an unknown probability distribution and the task is to model
such distribution. The 2N amplitudes of the wave function resulting
from an N-qubit quantum circuit are used to capture the correlations
observed in the data. Training of the quantum circuit is achieved by
successive updates of the parameters θ, corresponding to specifica-
tions of single qubit operations and entangling gates. In this work,
we use arbitrary single qubit rotations for the odd layers, and
Mølmer-Sørensen XX gates for the even layers. At each iteration,
measurements from the quantum circuit are collected and
contrasted with the data through evaluation of a cost function
which tracks the learning progress
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specifically, the input data consists of samples from a distribution
corresponding to the two desired computational basis states; P0 =
0.5 for the state |0…0〉 and P1 = 0.5 for the state |1…1〉. Using a
layer of single qubit rotations followed by an entangling layer with
the all-to-all topology, DDQCL yielded many degenerate prepara-
tions of GHZ-like states differing only by a relative phase.
In particular, we first ran particle swarm optimization on 25

random initializations for 3, 4, 5, and 6-qubit instances. Then, a

human expert inspected the best set of parameters learned for
each size and after rounding the parameters to some precision,
spotted a clear pattern. Instances of 3 and 5 qubits yielded a
recipe, while instances of 4 and 6 qubit yielded another recipe.
The recipes obtained are summarized in Fig. 3 and were verified
for larger number of qubits, both odd and even. Indeed, DDQCL
successfully reproduced the recipes previously used on ion trap
quantum computers,52 and, to the best of our knowledge, they
correspond to the most compact and efficient protocols for GHZ

Fig. 2 DDQCL on the BAS data set. The top left panel shows patterns that belong to BAS(2, 2) our quantum circuit is to generate. The top
central panel shows undesired patterns. On the top right panel, we show a possible mapping of the 4 pixels to N = 4 qubits, and we show
some of the qubit-to-qubit connectivity topologies that can be set up in entangling layer and natively implemented by the ion trap quantum
computer (e.g chain, star, and all). The bottom left panel shows the results of DDQCL simulations of shallow circuits with different topologies.
We show the bootstrapped median and 90% confidence interval over the distribution of medians of the KL divergence as learning progresses
for 100 iterations. The mean-field-like circuit L = 1 (green crosses) severely underperforms. A significant improvement is obtained with L = 2,
where most of the parameters for XX gates have been learned to their maximum entangling value. These observations indicate that
entanglement is a key resource for learning the BAS data set. Note that for L = 2 the choice of topology becomes a key factor for improving
the performance. The chain topology (purple squares) performs slightly better than the star topology (red stars) even though they have the
same number of parameters. The all-to-all topology (orange circles) significantly outperform all the others as it has more expressive power.
The bottom central image extends the previous analysis to deeper circuits with L = 4 and approximatively twice the number of parameters. All
the topologies achieve a lower median KL divergence and the confidence intervals shrink. The bottom right panel shows the bootstrapped
mean qBAS(2, 2) score and 95% confidence interval for simulations (green bars) and experiments on the ion trap quantum computer hosted
at University of Maryland (pink bars)

Table 1. Example of experimental requirements for near-term
quantum computers with up to 100 qubits

(n, m) Nqubits NBAS(n,m) Nreads

(2, 2) 4 6 15

(2, 3) 6 10 30

(3, 3) 9 14 46

(4, 4) 16 30 120

(7, 7) 49 254 1554

(8, 8) 64 510 3475

(10, 10) 100 2046 16780

Note: As described in the main text, Nreads is the number of readouts
required for every estimation of the qBAS score

Fig. 3 GHZ-like state preparation assisted by DDQCL. Left (right)
panel shows a recipe obtained by a human expert assisted by
DDQCL for the even (odd) cat state preparation. Rx stands for the
single qubit rotation about the x axis. GMS stands for a global
Mølmer-Sørensen gate46 acting on all the N = 2n (N = 2n + 1) qubits
and is equivalent to the application of local XX gates to all N(N − 1)/2
pairs of qubits. All parameters attained values very close to π

2. The
human expert rounded the parameters to some precision and found
these patterns
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state preparation using XX gates (see Fig. 3). Another commonly
used approach consists of cascading entangling gates, with
alternations of single qubit rotations.51 DDQCL produced approx-
imate recipes of this kind in some of the test cases for 3 and 4
qubits when using a single entangling layer with chain topology.
It is interesting to note that in DDQCL all the parameters are

learned independently and not constrained to be the same. As
shown in Fig. 3, the learning process unveiled that these converge
to the same value. This is not necessarily the case for the other
data sets considered below. We also note that the simulations
assumed noiseless hardware, making the analysis of parameters
easier for the human expert. It would be much more difficult to
analyze parameters found with noisy hardware, as DDQCL can
learn to compensate certain types of noise, e.g., systematic
parameter offsets, in non-trivial ways. The upside is that learning
can be successful even in the presence of such systematic errors.
Finally, it is reassuring that DDQCL obtained circuits for cat state

preparation starting from samples of a classical distribution. While
this target distribution could have been modeled by a zero-
temperature ferromagnet, there apparently was no other way for
our circuit to reproduce such a distribution, if not by preparing a
GHZ-like state. One can obtain more general solutions by allowing
DDQCL to prepare mixed states. For example, consider a circuit
acting on both the main qubit register and an additional ancilla
register. By tracing out the ancilla register, e.g., ignoring it during
measurement, the main register can implement a mixed state and
can be trained to simulate a zero-temperature ferromagnet.
Another example which does not resort to an ancilla register is to
use decoherence as a mechanism to prepare mixed states that
explain the data.

Coherent thermal states
Thermal states play an important role in statistical physics,
quantum information, and machine learning. Using DDQCL, we
trained quantum circuits with different number of layers L ∈ {1, 2,
3} and using all-to-all topology, to approximate a target
Boltzmann distribution. In particular, we considered data sets
sampled from the Boltzmann distribution of 25 synthetic instances
with N = 5 qubits. By decreasing the temperature T of the target
distribution, we can increase the difficulty of the learning task.
Figure 4 shows the bootstrapped median and 90% confidence
interval over the distribution of medians of the KL divergence

during learning. Deeper circuits such as L= 3 (purple pentagons)
consistently outperformed shallower circuits such as L= 2 (red
circles) and L= 1 (yellow triangles). This became more evident as
we went from easy learning tasks (Fig. 4a) to hard learning tasks
(Fig. 4c). Results for instances of N= 6 qubits are shown in Fig. S2
in the Supplementary Material.
To assess how well DDQCL performs on the generative task, we

compared DDQCL to the inverse Bethe approximation53 (see also
Eqs. (3.21) and (3.22) in ref. 54), a classical closed-form approach
widely used in statistical physics to solve the inverse Ising
problem. As shown in Fig. 4, the inverse Bethe approximation
(green bar) performed extremely well in the easy task (a), matched
the L = 3 quantum circuit in the intermediate task (b), and
underperformed on the difficult task (c). The latter observation
comes from the fact that the median performance of the inverse
Bethe approximation has very large confidence intervals. We
emphasize that this is not a form of quantum supremacy as the
two methods are fundamentally different. DDQCL prepares a
quantum state without the assumption of an underlying
Boltzmann distribution, while the inverse Bethe approximation
infers the parameters with such assumption. Furthermore, the
error in the inverse Bethe approximation is expected to go to zero
with system size, and only above the reference temperature Tc
(see Section “Methods” for details). Thus, it is not surprising that
we obtained bad performance in Fig. 4c with the inverse Bethe
approximation. Other classical methods based on machine
learning and Markov Chain Monte Carlo, such as the Boltzmann
machine,55 could achieve higher accuracy by requiring more
computational resources than the inverse Bethe approximation
used here. A thorough comparison is beyond the scope of
this work.

BAS(2, 2)
For the purposes of benchmarking and measuring the power of
NISQ devices with DDQCL, it is insufficient to have an easy-to-
generate target data set; we also require the data set to represent
a useful quantum state in quantum computing, while simulta-
neously proving to be sufficiently challenging for the quantum
computer to generate. Because of the importance of entangle-
ment in quantum information processing, we considered the
entanglement entropy averaged over all two-qubit subsets56 as a
proxy measure of a specific quantum state’s usefulness for

Fig. 4 DDQCL preparation of coherent thermal states. We generated 25 random instances of size N= 5 and varied the difficulty of the
learning task by decreasing the temperature in T ∈ {2Tc, Tc, Tc/1.5} where Tc is the reference temperature (see Section “Methods” for details).
The model is a quantum circuit with five qubits and an all-to-all qubit connectivity for the entangling layer. We show the bootstrapped
median and 90% confidence interval over the distribution of medians of the KL divergence of DDQCL as learning progresses for 50 iterations.
aWhen T > Tc, the learning task is easy and shallow quantum circuits such as L= 1 (yellow triangles) and L= 2 (red circles) perform very well. b
When T ≈ Tc, a gap in performance between circuits of different depth becomes evident. c When T < Tc, the learning task becomes hard and
deeper circuits perform much better than shallow ones. We also report results for the inverse Bethe approximation, which does not actually
prepare a state, but produces a classical model in closed-form. The classical model so obtained (green band) is excellent for the easy task in a,
matches the best quantum model in b, and underperforms for the hard task in c
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benchmarking purposes. We start by noting that the four-qubit cat
state, whose rich entangled nature makes it ideal for studying
decoherence and decay of quantum information,49,51 has
entanglement entropy SGHZ = 1. Now consider states that encode
BAS(2, 2) in the computational basis. The minimum value of
entanglement entropy that any such state can have is SBAS(2,2) =
1.25163. Furthermore, the maximum value that a quantum
representation of BAS(2, 2) can reach is SBAS(2,2) = 1.79248, which
happens to be the maximum entanglement entropy known for
any four-qubit state56 (see also Fig. S5 and the corresponding
Section in the Supplementary Material).
We also note that one of the quantum representations of BAS(2,

2) found by DDQCL reached a remarkable value of SBAS(2,2) =
1.69989 (see Fig. S3 in the Supplementary Material). This shows
the power of our framework, in that DDQCL is capable of handling
useful quantum states that are rich in entanglement. This is an
important observation, since we know, based on our empirical
results, that (i) single layer circuits with no entangling gates
severely underperform in producing the output state probability
distribution that is close to the target data set, and (ii) when
inspecting the parameters learned for circuits with all-to-all
topology with L= 2 layers, we found that most of the XX gates
reached their maximum entangling setting.
We now discuss results for the qBAS(2, 2) score, which we

computed experimentally and theoretically in order to compare
the entangling topologies sketched in the top right panel of Fig. 2
and for different number of layers. The process consists of two
steps; first, DDQCL is used to encode BAS(2, 2) in the wave
function of the quantum state. Second, the best circuits, i.e., those
with lowest cost, are compared using the qBAS(2, 2) score.
The bottom left and bottom central panels in Fig. 2 show the

bootstrapped median of the KL divergence and 90% confidence
interval over 25 random initializations of DDQCL in silico. The all-
to-all topology (orange circles) always outperforms sparse
topologies (red stars and purple squares). However, deeper
circuits do not always provide significant improvements, as it is
the case for all-to-all L= 4 (dark green circles) versus all-to-all L= 2
(orange circles). A possible explanation is that, when going from
two to four layers, we approximately double the number of
parameters, and particle swarm optimization struggles to find
enhanced local optima. Another plausible explanation is that for
this small data set, the all-to-all circuits with L= 2 are already close
to optimal performance (we show supporting evidence in Fig. S3
in the Supplementary Material).
As the best performing circuits to compare using the qBAS

score, we chose all-to-all L= 2 and star L ∈ {2, 4} circuits. While
they represent very different approximate solutions to the same
problem, they may be compared with the help of qBAS(2, 2) score.
For each setting, we computed 25 scores from batches of size
Nreads= 15 samples, as described in Section “Results”. The bottom
right panel in Fig. 2 shows the bootstrapped mean qBAS(2, 2)
score and 95% confidence interval for simulations (green bars)
and experiments on the ion trap quantum computer hosted at
University of Maryland (pink bars). The score is sensitive to the
depth of the circuit as shown by the performance improvement of
L= 4 compared with L= 2 in the star topology. Note that the
theoretical improvement for using L= 4 is larger than that
observed experimentally in the ion trap. This is because the
quantum computer accumulated errors while executing the
deeper circuit. The score is also sensitive to the choice of topology
as shown by the drop in performance of star compared with all-to-
all when the same number of layers L= 2 is used.
Although we compared circuits implemented on the same ion

trap hardware, the score may be used to compare different device
generations or even completely different architectures (e.g.,
superconductor-based versus atomic-based). Similarly, one may
use the score to compare classical resources of the hybrid system
(e.g., different optimizers).

DISCUSSION
Data is an essential ingredient of any machine learning task. In this
work, we presented a data-driven quantum circuit learning
algorithm (DDQCL) as a framework that can assist in the
characterization of NISQ devices and to implement simple
generative models. The success of this approach is evidenced by
the results on three different data sets.
To summarize, first, we learned a GHZ state preparation recipe

for an ion trap quantum computer. Minimal intervention by a
human expert allowed to generalize the recipe to any number of
qubits. This is not an example of compilation, but rather an
illustration of how simple classical probability distributions can
guide the synthesis of interesting non-trivial quantum states.
Depending on the level or type of noise in the system, the same
algorithm could lead to a different circuit fulfilling the same
probability distribution as that of the data. The message here is
that machine learning can teach us that “there is more than one
way to skin a cat (state)”.
Second, we trained circuits to prepare approximations of

thermal states. This illustrates the power of Born machines24 to
approximate Boltzmann machines55 when the data require
thermal-like features.
Finally, tapping into the real power of near-term quantum

devices and approximate algorithms implementable on them, we
designed a task-specific performance estimator based on a
canonical data set. The bars and stripes data is easy to generate,
visualize and verify classically, while modeling it still requires
significant quantum resources in the form of entanglement. Errors
in the device will affect this single performance measure, the qBAS
score, which can be used to compare different device generations,
or completely different architectures. The qBAS score can also be
used to benchmark the typical performance of optimizers used in
hybrid quantum-classical systems. Selecting the method and
optimizing the hyper-parameters can be a daunting task and is a
key challenge towards a successful implementation as the number
of qubits increases. Therefore, having this unique metric for
benchmarking could help reduce the complexity of this fine-
tuning stage. The score can be computed in any of the NISQ
architectures available to date.
DDQCL is a modular framework and its performance will

ultimately depend on the choices made for such modules. In this
article we explored the impact of circuit layout and cost function,
while subsequent work has analyzed other modules and suggested
extensions to the algorithm. In ref. 29 the authors trained Born
machines using a differentiable cost function and exploiting
gradient calculations proposed in ref. 57. In refs 58,59 the authors
compared several optimizers, and in ref. 60 the authors focused on
the impact of hardware noise. The expressive power of shallow
circuits was investigated in ref. 61 and it was shown to outweigh that
of some classes of artificial neural networks. Finally, recent work has
shown successfull implementation of DDQCL on the IBM Q 20
Tokyo processor,60 on a five-qubit ion-trap hosted at University of
Maryland,58 and on the Rigetti 16Q Aspen-1 processor.59

It is left to future work to demonstrate more realistic machine
learning by allowing more flexible models and employing
regularization. At a finite and fixed low circuit depth, the power
of the generative model can be enhanced by including ancilla
qubits, in analogy to the role of hidden units in probabilistic
graphical models. Regularization can be included in the cost
function. In this paper, we used the negative log-likelihood which
quickly becomes expensive to estimate as the size of the system
increases. We reported preliminary results on alternative cost-
functions that overcome the caveat and still produce satisfactory
results. Layer-wise pre-training of the quantum circuit inspired by
deep learning39 could initialize parameters to near-optimal
locations in the cost landscape. Finally, DDQCL could be general-
ized to learn quantum distributions or states, assuming
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experimental data coming from quantum experiments, e.g.,
quantum measurements beyond the computational basis. We
think these are the most promising directions to be explored in
future work.
Our approach has the bidirectional capability of using NISQ

devices for machine learning, and machine learning for the
characterization of NISQ devices. We hope the ideas presented
here contribute to the development of further concrete metrics to
help guide the architectural hardware design, while tapping into
the computational power of NISQ devices.

METHODS
Simulation of quantum circuits in silico
We simulated quantum circuits using the QuTiP262 Python library and
implemented the constraints dictated by the ion trap experimental setting.
In the current experimental setup, we can perform arbitrary single qubit
rotations and Mølmer-Sørensen XX entangling gates involving any two
qubits. We used only these gates hence avoiding the need of further
compilation. For the simulations in silico, we also assume perfect gate
fidelities and error-free measurements.
In the ion trap setting, the implementation of single qubit rotations Rz is

very convenient. Therefore, we perform arbitrary single qubit operations

relying on the decomposition UðlÞ
i ¼ Rzðθðl;3Þi ÞRxðθðl;2Þi ÞRzðθðl;1Þi Þ where l is

the layer number, i is the qubit index, and θ
ðl;kÞ
i 2 ½�π;þπ� are Euler angles.

The rotations are then expressed as exponentials of Pauli operators

Rzðθðl;�Þi Þ ¼ exp � i
2 θ

ðl;�Þ
i σzi

� �
and Rxðθðl;�Þi Þ ¼ exp � i

2 θ
ðl;�Þ
i σxi

� �
:

Because we execute circuits always starting from the |0⋯0〉 state, the
first set of Rz rotations would have no effect and, therefore, is not needed.
When an odd number of layers is used, a similar exception occurs in the
last layer. There, the last set of Rz rotations would only add a phase that
becomes irrelevant when taking the amplitude squared required for the
Born machine. In other words, we can slightly reduce the number of
parameter without changing the expressive power of the circuit. Every
other layer of arbitrary single qubit operations would in general require 3N
parameters, where N is the number of qubits. By using an alternative
decomposition, namely U = RxRzRx, we could apply commutation rules
with XX gates and obtain a reduction to 2N parameters in all odd layers.
We decided not to do the former step for two reasons. First, there is no
effective reduction of the number of parameters for experiments up to L =
5 layers considered here. Second, in the ion trap quantum computer used
here38 it is experimentally convenient to use a larger number of Rz rather
than Rx rotations.
For the case of the entangling gates, we use the notation UðlÞ

ij ¼ XXðθðlÞij Þ
which in exponential form reads as XXðθðlÞij Þ ¼ exp � i

2 θ
ðlÞ
ij σ

x
i σ

x
j

� �
. Recalling

that states that differ by a global phase are indistinguishable, a direct
computation shows that the tunable parameters can be taken as

θ
ðlÞ
ij 2 ½�π;þπ�. Also, there is no need to set up an order for these gates

within an entangling layer as they commute with one another.
The total number of parameters per entangling layer depends on the

chosen topology: all is a fully-connected graph and has N(N− 1)/2
parameters, chain is a one-dimensional nearest neighbor graph with N – 1
parameters, and star is a star-shaped graph with N−1 parameters. The top
right panel of Fig. 2 shows a graphical representation of these topologies
for the case of N= 4 qubits.
When executing DDQCL, we always estimated the required quantities

from 1000 measurements in the computational basis.

Gradient-free optimization
Once the number of layers and topology of entangling gates is fixed, the
quantum circuits described above provide a template; by adjusting the
parameters we can implement a small subset of the unitaries that are in
principle allowed in the Hilbert space. The variational approach aims at
finding the best parameters by minimizing a cost function. For all our tests,
we choose to minimize a clipped version of the negative log-likelihood.
We use a global-best particle swarm optimization algorithm42 imple-

mented in the PySwarms63 Python library. A ‘particle’ corresponds to a
candidate solution circuit; the position of a particle is a point θ in
parameter space, the velocity is a vector determining how to update the
position in parameter space. Position and velocity of all the particles are

initialized at random and updated at each iteration following the schema
shown in Fig. 1. There are three hyper-parameters controlling the swarm
dynamics: a cognition coefficient c1, a social coefficient c2 and an inertia
coefficient w. After testing a grid of values, we chose to use a constant
value of 0.5 for all three hyper-parameters, which we found to work well
for our purpose. To avoid large jumps in parameter space, we further
restrict position updates in each dimension to a maximum magnitude of π.
Finally, we set the number of particles to twice the number of

parameters of the circuit. This is a conservative value compared with
previous work,8 also because of the large number of parameters in the
circuits explored here.

Data sets details
We worked with three synthetic data sets: zero-temperature ferromagnet,
random thermal, and bars and stripes (BAS). In all our numerical
experiments we use 1000 data points sampled exactly from these
distributions.

GHZ state preparation
The zero-temperature ferromagnet distribution is equivalent to assigning
1/2 probability to both |0…0〉 and |1…1〉 states of the computational basis.
This distribution can be easily prepared as a mixed state, but our study
uses pure states prepared by the circuit. The only way to reproduce the
zero-temperature ferromagnet distribution in our setting is to implement a
unitary transformation that prepares a GHZ-like state.

Thermal states
A thermal data set in N dimensions is generated by exact sampling
realizations of x ∈ {−1, + 1}N from the distribution
PðxÞ ¼ Z�1expððPij Jijxixj þ

P
i hixiÞT�1Þ where Z is the normalization

constant, Jij and hi are random coefficients sampled from a normal
distribution with zero mean and

ffiffiffiffi
N

p
standard deviation, and T is the

temperature. In the large system-size limit, a phase transition is expected
at Tc ≈ 1. Although this is not true for the small-sized systems considered
here, we take this value as a reference temperature. In our study, we vary T
∈ {2Tc, Tc, Tc/1.5} in order to generate increasingly complex instances.

Bars and stripes
BAS47 is a canonical machine learning data set for testing generative
models. It consists of n × m pixel pictures generated by setting each row
(or column) to either black (−1) or white (+1), at random. In generative
modeling, a handful of patterns are input to the algorithm and the target is
to train a model to capture correlations in the data. Assuming a successful
training, the model can reconstruct and generate previously unseen
patterns from partial or corrupted data. On the other hand, if we provide
the algorithm with all the patterns we are interested in and aim to a model
that generates only those, this would amount to an associative memory.
Although both tasks can be done with our DDQCL pipeline, for the qBAS(n,
m) score we focus on the latter task.
We now determine the number of patterns and provide an easy

identification of the bitstring belonging to the BAS(n, m) class. For the total
count of the number of patterns, we first count the number of single
stripes, double stripes, etc. that can fit into the n rows. This number is the

sum of binomial coefficients
Pn

k¼0 ð
n
k
Þ ¼ 2n . The same expression holds

for the number of patterns with bars that can be placed in the m columns,
that is 2m. Note that empty (all-white) and full (all-black) patterns are
counted in both the bars and the stripes. Therefore, we obtain the total
count for the BAS patterns by subtracting the two extra patterns from this
double count:

NBASðn;mÞ ¼ 2n þ 2m � 2: (2)

In the main text, we use the BAS data set to design a task-specific
performance indicator for hybrid quantum-classical systems. Table 1 shows
the requirements for some values of n and m.

Bootstrapping analysis
To obtain error bars for the KL divergence, we used the following
procedure. DDQCL was always executed 25 times with random initializa-
tion of the parameters. From the 25 repetitions, we sampled 10,000 data
sets of size 25 with replacement and computed the median KL divergence
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for each. From the distribution of 10,000 medians, we computed the
median and obtained error bars from the 5-th and 95-th percentiles as the
lower and upper limits, respectively, accounting for a 90% confidence
interval.
For the case of qBAS score, we did the following bootstrap analysis.

qBAS score was always computed 25 times from batches of samples Nreads.
From the 25 repetitions, we sampled 10,000 data sets of size 25 with
replacement and computed the mean for each. From the distribution of
10,000 means, we computed mean and obtained error bars from two
standard deviations, accounting for a 95% confidence interval.
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