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Neuron-released oligomeric a-synuclein is an
endogenous agonist of TLR2 for paracrine
activation of microglia
Changyoun Kim1,2, Dong-Hwan Ho1,2, Ji-Eun Suk1,2, Sungyong You3, Sarah Michael4, Junghee Kang5,

Sung Joong Lee5, Eliezer Masliah4, Daehee Hwang3, He-Jin Lee2,6 & Seung-Jae Lee1,2

Abnormal aggregation of a-synuclein and sustained microglial activation are important

contributors to the pathogenic processes of Parkinson’s disease. However, the relationship

between disease-associated protein aggregation and microglia-mediated neuroinflammation

remains unknown. Here, using a combination of in silico, in vitro and in vivo approaches, we

show that extracellular a-synuclein released from neuronal cells is an endogenous agonist for

Toll-like receptor 2 (TLR2), which activates inflammatory responses in microglia. The TLR2

ligand activity of a-synuclein is conformation-sensitive; only specific types of oligomer can

interact with and activate TLR2. This paracrine interaction between neuron-released oligo-

meric a-synuclein and TLR2 in microglia suggests that both of these proteins are novel

therapeutic targets for modification of neuroinflammation in Parkinson’s disease and related

neurological diseases.
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T
he role of innate immune responses of microglia in
neurodegenerative processes in many central nervous
system diseases has become increasingly evident1–3. Ab-

normal accumulation of specific protein aggregates in neurons
and glia is another common pathological feature shared by most
neurodegenerative diseases. Whether these two events are related,
and, if so, how misfolding and aggregation of specific proteins in
neurons might influence the inflammatory milieu in brain
parenchyma remains unknown.

A neuronal protein, a-synuclein, has been implicated in many
neurodegenerative diseases, including Parkinson’s disease (PD),
dementia with Lewy bodies, multiple system atrophy and a Lewy
body variant of Alzheimer’s disease (AD)4. Although it is a typical
cytosolic protein, a small amount of a-synuclein can be released
from neurons via brefeldin A-insensitive, unconventional
exocytosis5,6. The structure of the released a-synuclein is
unknown. However, there is evidence to suggest that misfolding
and aggregation facilitate the release of this protein from
neuronal cells5. Released a-synuclein can be transferred to
neighbouring neurons and astroglia, promoting formation
of inclusion bodies and inducing cell death in neurons and
proinflammatory responses from astroglia7,8. In the present
study, we attempted to determine the role of neuron-released
a-synuclein in microglial activation, the major culprit of
inflammation in brain parenchyma, and the mechanism
underlying this process.

Results
Cell-released a-synuclein induces microglia activation. We
collected culture media from differentiated SH-SY5Y cells
(dSY5Y) overexpressing either human a-synuclein (aSCM) or
b-galactosidase (LZCM) (Supplementary Fig. S1a). We chose
LacZ gene because it is not a mammalian gene and, thus, it is
unlikely to produce unwanted complications, and because among
the control genes we tested, only LacZ showed expression levels
higher than those of a-synuclein. Ectopic expression of these
genes did not affect the viability of dSY5Y cells (Supplementary
Fig. S2). The concentrations of a-synuclein in the aSCM
were determined by enzyme-linked immunosorbent assay
(ELISA), and the measurements resulted in an average of
1.06±0.371 mgml� 1 (Supplementary Fig. S1b). These media
were applied to primary rat microglia at a concentration of 0.1–
5.3 mgml� 1 a-synuclein. Microglia treated with aSCM, but not
with LZCM, underwent a series of changes indicating proin-
flammatory activation, including increased morphological chan-
ges to amoeboid shapes increased, production of nitric oxide and
intracellular reactive oxygen species, increased proliferation and
increased production of proinflammatory cytokines at the levels
of both messenger RNA and secreted protein (Fig. 1a–f). Con-
tamination of adenoviral vectors in aSCM has been ruled out
(Supplementary Fig. S3). Induction of cytokine production was
gradually reduced by serial depletion of a-synuclein proteins
from the conditioned medium (Fig. 1g), while a-synuclein
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Figure 1 | dSY5Y-released a-synuclein activates microglia. Rat primary microglia was treated with LZCM, aSCM or lipopolysaccharide (1mgml� 1, a

positive control) for the indicated hours. Lipopolysaccharide is an endotoxin that activates microglial responses that we tested, and therefore, was used as a

positive control. (a) Percentage of microglial cells with amoeboid morphology (n¼6). (b) Nitric oxide produced from microglia (n¼ 5). (c) Microglial

proliferation (n¼6). (d) Relative expression of IL-1b mRNA. Real-time PCR data were normalized with the average value of LZCM (n¼ 3). (e)

Quantification of intracellular reactive oxygen species levels using flow cytometry. This is the representative result of three independent experiments. (f)

Quantification of cytokines using ELISA in the microglial culture media (n¼ 3). (g) Depletion of a-synuclein and microglia activation activity from aSCM.

Three successive rounds of depletion were performed using an affinity resin. For cytokine induction (n¼ 3), the amount of a-synuclein in aSCM used was

0.1mgml� 1. (h) Cytokine induction by his-tagged a-synuclein pulled down from his-aSCM. Western blot shows different amounts of pulled-down

a-synuclein used in microglia activation (n¼ 3). Morphology analysis (a), NO production analysis (b), proliferation assay (c), iROS production (e) and

cytokine ELISA quantification (f) were performed at 24 h post treatment. Relative mRNA expression (d,g,h) was determined at 2 h post treatment.

Morphology analysis (a), NO production analysis (b) and relative mRNA expression (g,h) data were compared by one-way analysis of variance.

Proliferation assay (c), cytokine gene expression (d) and cytokine ELISA (f) data were analysed using unpaired t-test. Error bars represent±s.e.m.

*Po0.05; **Po0.01; ***Po0.001. ‘n’ represents the number of independent experiments and each experiment was performed at least in triplicate.
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proteins purified from aSCM induced cytokine production in a
dose-dependent manner (Fig. 1h). From these results, we con-
clude that a-synuclein released from neuronal cells induces
proinflammatory responses from microglia.

Signalling in microglia exposed to cell-released a-synuclein. In
order to gain a comprehensive understanding of the mechanism
of a-synuclein-induced microglial activation, we performed
transcriptome analyses using microglial cells treated with either
aSCM or LZCM at two different time points, 6 and 24 h. We
obtained a total of 2,009 differentially expressed genes (DEGs; 877
DEGs at 6 h only, 797 DEGs at 24 h only, and 335 DEGs common
at both time points; Supplementary Fig. S4a). KEGG pathway-
enrichment analyses of upregulated genes showed specific acti-
vation of the Jak-STAT signalling pathway during early respon-
ses, and leukocyte transendothelial migration, natural killer cell-
mediated cytotoxicity and regulation of actin cytoskeleton during
late responses (GSE26532, Supplementary Fig. S4b, Supple-
mentary Tables S1 and S2). On the other hand, Toll-like recep-
tor (TLR) signalling, cytokine receptor signalling and other
immune receptor signalling pathways were activated with high
statistical significance at both early and late time points. Using the
DEGs involved in these pathways in concert with protein–protein
interaction data from public databases, we have constructed a
model for a microglial signalling network activated by exposure to
dSY5Y-released a-synuclein. According to the model, the TLR2
and cytokine receptor signalling pathways are activated early,
producing various proinflammatory cytokines and chemokines.
Later, cell migration and actin cytoskeleton rearrangement
pathways are activated, while TLR signalling and cytokine/che-
mokine production are sustained (Fig. 2a). Validation of gene

expression changes in these signalling pathways was provided by
reverse transcriptase PCR (Fig. 2b), and activation of the TLR2
downstream signalling pathway was validated by increased IkB
degradation and p38 phosphorylation (Fig. 2c,d).

Role of Tlr2 in a-synuclein-induced microglia activation.
Involvement of the TLR2 pathway is one of the striking features
of the signalling network model. The role of TLRs as modulators
in neurological disorders has received increasing recognition.
TLR4 and its interaction with extracellular high-mobility group
box-1 contribute to generation of seizures9. In animal models of
stroke, TLR2 and 4 induced proinflammatory reactions resulting
in aggravated tissue damage10. TLR2 and 4 have been implicated
in both clearance of extracellular amyloid b (Ab) peptide and
Ab-induced microglial activation11–14. Amyloid structure has
also been suggested as crucial in triggering of TLR2-mediated
inflammatory responses in innate immune cells15,16. In a rat
model, administration of TLR3 agonist into the substantia nigra
(SN) induced sustained inflammation and increased susceptibility
of dopaminergic neurons to oxidative stress17, suggesting that
TLR modulation might have therapeutic implications for PD.

In order to verify involvement of the TLR system, we examined
inflammatory responses to dSY5Y-derived a-synuclein in
microglia isolated from mice deficient of Tlr2, 3 or 4 gene
(Tlr2� /� , Tlr3� /� and Tlr4� /� ). Depletion of Tlr2 gene
resulted in complete elimination of cytokine/chemokine gene
induction upon exposure to aSCM at both mRNA and protein
levels (Fig. 3a,b; Supplementary Figs S5 and S6). Treatment with
blocking antibody against TLR2 also resulted in elimination of
aSCM-induced cytokine gene expression (Fig. 3c). In addition,
aSCM activated TLR2 signalling cascade in the HEK293 reporter
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24 h). (b) Reverse transcriptase PCR analysis of genes identified in the network. (c,d) IkB degradation (c) and phosphorylation of p38 MAP kinase

(d) in microglia exposed to aSCM for 15min (n¼4). All data were analysed using unpaired t-test. Error bars represent ±s.e.m. **Po0.01. ‘n’ represents

the number of independent experiments.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2534 ARTICLE

NATURE COMMUNICATIONS | 4:1562 | DOI: 10.1038/ncomms2534 | www.nature.com/naturecommunications 3

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


cells (HEK-Blue-TLR2) ectopically expressing human TLR2 and
CD14 (Fig. 3d). dSY5Y-released a-synuclein proteins purified
from the conditioned medium also showed Tlr2-dependent
cytokine production (Fig. 3e). Conditioned medium obtained
from the wild-type (WT) mouse primary cortical neurons also
activated TLR2, whereas that obtained from a-synuclein null
mice did not (Fig. 3f, Supplementary Fig. S7). Activation of TLR2
could be observed at concentrations of a-synuclein as low as
1 ngml� 1 in the HEK293 reporter cells (Supplementary Fig. S8),
the level comparable to the levels found in the human interstitial
fluid18 (Supplementary Note 1). In contrast, Tlr3 or 4 gene
depletion had no effect on a-synuclein-induced gene induction of
proinflammatory cytokines/chemokines (Fig. 3a). Significant
reduction of a-synuclein-induced IkB degradation and p38
phosphorylation was observed in Tlr2� /� mouse microglia
(Fig. 3g,h), confirming that TLR2 mediates a-synuclein-induced
signalling in microglia. These results provide validation for the
signalling network model in which the TLR2 signalling pathway
is specifically involved in the proinflammatory responses of
microglia to a-synuclein released from cells, including neurons.

Interaction of cell-released a-synuclein with TLR2. Based on
the functional significance of TLR2 in a-synuclein-induced
microglial activation, we attempted to determine whether TLR2 is
the receptor for dSY5Y-released a-synuclein. First, we examined
the interaction between dSY5Y-released a-synuclein and TLR2 in
the BV2 microglial cell line by assessing the competition between
a-synuclein and anti-TLR2 antibody (T2.5). The cells showed
robust binding of the TLR2 antibody on the cell surface (Fig. 4a;
Dulbecco’s modified Eagle’s medium control). However,

pretreatment with aSCM resulted in significantly reduced binding
of the TLR2 antibody, whereas pretreatment with LZCM had
little effect. This result suggests a direct interaction between
dSY5Y-released a-synuclein and TLR2, which precludes the
interaction of the antibody with TLR2 (Supplementary Note 2).
Next, we demonstrated that internalization of externally treated
dSY5Y-released a-synuclein into microglia was significantly
reduced by Tlr2 gene depletion (Fig. 4b, Supplementary Fig. S9)
or by co-treatment with TLR2-blocking antibody (Fig. 4c).
Internalization was increased upon ectopic expression of TLR2
proteins in COS-7 cells (Fig. 4d). In addition, internalized
a-synuclein was found to be colocalized with TLR2 in the same
internal compartments (Fig. 4e). These results demonstrate that
TLR2 is the receptor for cell-released extracellular a-synuclein,
and that it is responsible not only for signalling and inflammatory
responses but also for binding and internalization of this protein.

Role of TLR2 in a-synuclein-induced microglia activation
in vivo. In order to validate the role of TLR2 in vivo, we induced
ectopic expression of human a-synuclein in the SN of WT or
Tlr2� /� mice. Adenoviral vectors for expression of human
a-synuclein and green fluorescent protein (GFP) were stereo-
taxically injected into either side of the putamen, respectively,
from which viral vectors were transported in a retrograde manner
to the cell bodies of dopaminergic neurons in the SN (Fig. 5a).
The retrograde transport and expression of viral vectors was
confirmed by expression of GFP in tyrosine hydroxylase (TH)-
positive neuronal cell bodies in the SN (Supplementary Fig. S10).
In a control experiment with the GFP vector, about 15% of nigral
dopaminergic neurons expressed GFP. In the SN, all the GFP-
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positive cells were also TH-positive, verifying that only the
dopaminergic neurons expressed human a-synuclein, while
microglia did not. Expression of a-synuclein in SN neurons of
WT mice resulted in increased microglial activation, while GFP
expression caused little change in microglia (Fig. 5b,c). Significant
correlation was observed between the level of a-synuclein
expression in SN neurons and the degree of microglial activation
(r¼ 0.8519, P¼ 0.0035), while the correlation with GFP expres-
sion was insignificant (r¼ 0.5217, P¼ 0.122; Fig. 5e). In striking
contrast, expression of aSCM in SN neurons of Tlr2� /� mice led
to significantly lowered microglial activation compared with WT
mice (Fig. 5b,d), and little correlation was observed between
neuronal a-synuclein expression and microglial activation
(r¼ 0.0722, P¼ 0.8777; Fig. 5e). These results provided verifica-
tion in vivo that neuronal a-synuclein can activate microglia in a
paracrine manner through activation of TLR2.

Cell-released a-synuclein is a conformation-sensitive agonist of
TLR2. We then compared a-synuclein proteins released from
dSY5Y cells and proteins residing in the cytosol after purification
of these proteins from culture medium and cell lysate, respec-
tively (Supplementary Fig. S11). The cytosolic a-synuclein is
mostly monomeric under the denaturing gel condition, whereas
the released protein preparation contains significant amounts of
stable oligomers (Supplementary Fig. S11a). The released
a-synuclein, but not the cytosolic protein, activated microglia in a
TLR2-dependent manner (Supplementary Fig. S11b), and con-
sistently, only the released a-synuclein resulted in TLR2-depen-
dent reporter gene expression, but not the TLR4-reporter gene
expression, in a dose-dependent manner in HEK293 reporter cell
systems (Supplementary Fig. S11c,d). These results suggest that
a-synuclein proteins released from cells possess specific mod-
ification(s) and/or type(s) of assembly that are essential for
becoming the agonist for TLR2.

Previous studies have shown microglial activation by various
forms of bacterially expressed recombinant a-synuclein pro-
teins19–22. In order to assess the molecular forms of a-synuclein
that act as the ligand of TLR2, we tested the following forms of
recombinant a-synuclein proteins: monomers, fibrils, oligomers
induced by incubation with 4-hydroxy-2-nonenal and mixture of
aggregates formed from nitrated a-synuclein (Supplementary
Fig. S12a). All of the treated forms of recombinant a-synuclein
proteins showed much less potency (430-fold) in cytokine gene
induction than aSCM containing a similar quantity of
a-synuclein (Supplementary Fig. S12b). More important,
recombinant a-synuclein proteins showed the same degree of
cytokine gene induction in Tlr2� /� mouse microglia as that
observed in WT microglia, suggesting that microglial responses
triggered by these forms of recombinant a-synuclein proteins do
not involve activation of TLR2. Consistently, recombinant
a-synuclein fibrils did not require TLR2 for internalization into
microglia (Supplementary Fig. S13a), nor did they colocalize with
TLR2 after internalization (Supplementary Fig. S13b).

During the fibrillation, various quasi-stable oligomeric
intermediates appear. To assess the role of these oligomers in
TLR2 activation, we took samples during the oligomerization of
recombinant a-synuclein and evaluated the ability to activate
TLR2 in the HEK293 reporter cell system. TLR2 activation was
increased over time as the protein aged, but before the appearance
of fibrils (Fig. 6a, Supplementary Fig. S14), suggesting that
oligomerization was required for a-synuclein to become the
agonist for TLR2. To directly address the role of oligomerization,
the aged a-synuclein preparation was subjected to the size
exclusion chromatography (SEC). ELISA and western blotting
clearly showed separation of oligomer, dimer and monomer

(Fig. 6b). TLR2 activation was observed only in the oligomer
fractions (fraction 8 has the highest activity), but not in the
dimer or monomer fractions (Fig. 6b). Depletion of a-synuclein
from the fraction 8 resulted in elimination of TLR2 activation
(Supplementary Fig. S15). Oligomers in the fraction 8 were stable
in the denaturing gel (Fig. 6b), were efficiently recognized by
Fila-4 antibody (specific for b-sheet-rich a-synuclein oligomers
and fibrils23; Fig. 6c) and showed a circular dichroism spectrum
typical of b-sheet-rich proteins (Fig. 6d). Consistent with the
reporter assay data, a-synuclein oligomers in fraction 8 interacted
with the HEK-Blue-TLR2 cells, whereas the monomers in
fraction 14 did not (Fig. 6e). Furthermore, oligomers in fraction
8, but not the monomers in fraction 14, efficiently competed
with the TLR2 antibody for binding to the microglial cell surface
receptor (Fig. 6f).

We then asked whether TLR2 activation by dSY5Y-released
a-synuclein is mediated by oligomeric forms. Proteins in aSCM
were separated with SEC, and each fraction was subjected to
a-synuclein ELISA, western blotting, and TLR2 activation assay
in the reporter cell system. The highest activity for TLR2
activation was present in the fraction 8, suggesting that dSY5Y-
released a-synuclein oligomers are the effective agonist for TLR2
(Fig. 7a). In contrast to recombinant monomers and dimers,
dSY5Y-released a-synuclein monomers and dimers were capable
of TLR2 activation, although their activities were weaker than
those of oligomers (Fig. 7a). dSY5Y-released a-synuclein
oligomers are reactive to Fila-4 antibody, indicating high b-
sheet content (Fig. 7b). When injected into the cerebral cortices of
WT mice, these oligomers (fraction 8 of aSCM) induced
microglial activation (Fig. 7c). Saline injection into the other
hemisphere showed very little microglial activation (Fig. 7c).
When the same material was injected into the cerebral cortices of
Tlr2� /� mice, neither a-synuclein oligomers nor saline injection
resulted in significant activation of microglia (Fig. 7c).
Monomers/dimers (fraction 14) derived from aSCM are also
capable of activating microglia in the cerebral cortices of WT
mice, albeit to a much weaker extent (Fig. 7c). This activity too
disappeared in Tlr2� /� mice (Fig. 7c). This is consistent with the
weak activity detected from these monomer/dimer fractions in
the TLR2 reporter cells. Therefore, although the majority of TLR2
agonist activity of cell-released a-synuclein is associated with
oligomeric forms, a small fraction of monomers/dimers might
have either specific modification or conformation that is required
for TLR2 activation. Taken together, a-synuclein is a confor-
mation-sensitive endogenous agonist for TLR2; the majority of
TLR2 ligand activity resides in b-sheet-rich oligomers among
the heterogeneous forms of neuronal cell-released a-synuclein
proteins.

TLR2 upregulation in Lewy body diseases and a-synuclein
transgenic mice. Paraformaldehyde-fixed vibratome sections
from the temporal cortices of human subjects (DLB patients and
non-demented control subjects) and sagittal brain sections of
mice (a-synuclein transgenic and control mice) were immuno-
labelled with a TLR2 antibody and analysed for levels of optical
density. In control cases, TLR2 antibody mildly labelled pyr-
amidal neurons in the neocortex in layers 2–3 and 5, and some
occasional glial cells with morphological characteristics consistent
with microglia (Fig. 8a). In the DLB cases and a-synuclein
transgenic mice, there was a significant increase in the levels of
TLR2 immunoreactivity in microglial cells. Upregulation of TLR2
in microglial cells was confirmed by double immunofluorescence
studies with antibodies against TLR2 and Iba-1, showing colo-
calization of the two markers (Fig. 8b). This colocalization was
seen in most of Iba-1-positive microglial cells, and TLR2
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immunofluorescence was stronger in a-synuclein transgenic mice
than in control non-transgenic mice. Western analysis also
showed significant increases in TLR2 expression in brain
homogenates of DLB cases and a-synuclein transgenic mice
(Fig. 8c). The molecular weight for the mature TLR2 is between
100–110 kDa, and it appears as a doublet. This might represent
post-translational modifications such as glycosylation24. For
quantification, we analysed the doublet, which was bracketed in
Fig. 8c.

Analysis of transcriptome data from postmortem SN of human
PD patients25, collected from the public database (NCBI GEO,
accession code GSE7621), shows significant increases in
expression of genes in the TLR2 signalling pathways, including
TLR2, CD14, IRAK2 and NFkB (Supplementary Fig. S16),
suggesting that the TLR2 signalling pathway is activated in PD.

Discussion
Our work exemplifies the power of a computational approach for
identification of receptors and signalling pathways that are
relevant to neurodegenerative diseases. The hypothetical signal-
ling network that we constructed proved to be consistent with
experimental results, which demonstrate that cell-released
a-synuclein is an endogenous agonist for TLR2 through which
microglia are activated and become neurotoxic. The fact that
microglial activation by neuronal a-synuclein overexpression in

the SN was eliminated in Tlr2-deficient mice provided in vivo
verification of the role of TLR2 in a-synuclein-induced microglial
activation. These results implicate a novel mechanism by which
neuronal a-synuclein proteins mediate the pathogenic interaction
between neuron and glia as a paracrine factor, thereby cultivating
inflammatory milieu in brain parenchyma. Our study suggests
that elimination of interaction between neuron-released
a-synuclein and TLR2 dampens inflammatory responses in the
brain, and therefore may be applicable to therapy (Supplementary
Fig. S16). Indeed, our recent study suggested that the clearance of
extracellular a-synuclein was the mechanism underlying the
protective effects of immunotherapy26.

Recently, a paper by Letiembre et al.27 reported TLR2
upregulation in several animal models of neurodegenerative
disease, including models for AD and PD/DLB, and argued that
this response is part of a nonspecific neuroinflammatory effector
phase rather than a disease-specific event. We do not intend to
argue that TLR2 activation is a specific event in Lewy body
diseases. What is disease-specific might be how this pathway is
activated. Novelty of our study is that pathogenic protein
aggregates that have previously been thought to be confined
within neuron can act as an endogenous agonist for the TLR2
pathway. In a recent signalling network analysis, we have hypo-
thesized that cell-released a-synuclein also activates inflammatory
responses in astrocytes, including TLR2 activation8. This needs
experimental validation.
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We have conducted the uptake and cytokine induction
experiments with Tlr2� /� microglia and the TLR2-blocking
antibody, and the cytokine induction was always completely

inhibited, whereas the uptake was only partially blocked. Our
interpretation is the following: when microglia are exposed to
a-synuclein that is secreted from neuronal cells, inflammatory
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activation of microglia is mediated solely by TLR2, whereas the
uptake can be mediated not only by TLR2 but also by other cell
surface proteins, such as the scavenger receptors28, with the latter
being inert in terms of inflammatory signalling.

Most of the experiments in our study were conducted at
relatively high a-synuclein concentrations (0.1–5.3 mgml� 1),
compared with the concentrations reported in the cerebrospinal
fluid (45–75 ngml� 1)29 and interstitial fluid (up to 8 ngml� 1)18.
However, as shown in Supplementary Fig. 7, a cytokine induction
can be achieved in microglia as low a concentration as 5 ngml� 1,
and TLR2 activation in the reporter system at 1 ngml� 1 (TLR2
reporter system is more sensitive than the assays for microglial
responses). At these low concentrations, the responses are very
weak but, nevertheless, statistically significant. We do not believe
that these weak responses are pathogenic. However, given the fact
that a-synuclein secretion is promoted by several factors that are
associated with disease, the concentrations used in our study
might probably be pathophysiologically relevant. Increased
expression of a-synuclein is associated with PD and leads to
increased secretion of a-synuclein in neuronal culture6. Oxidative
stress, defects in protein degradation systems and mitochondrial
dysfunction are also strongly associated with PD and promote
a-synuclein secretion5. Moreover, cytoplasmic calcium can
increase the secretion of a-synuclein30, raising the possibility
that a-synuclein release is regulated by neural activity. Therefore,
the concentration of a-synuclein in the interstitial fluid can vary
locally and temporarily, and those used in the current study is
likely to be within the range of physiological relevance, especially
in pathological situation.

Several studies have suggested that oligomeric aggregates are
the toxic culprit of protein aggregation-associated neurodegen-
erative diseases31. Our study expands the scope of pathogenic
functions that oligomeric protein aggregates exert in the
pathogenesis of these diseases, by showing that a-synuclein
oligomers, through activation of TLR2, are inducers of
inflammatory innate immunity in the nervous system.
Activation of TLR2 by a-synuclein is highly sensitive to the
conformation of the protein; purely monomeric and fibrillar
a-synuclein cannot activate TLR2. Oligomerization itself is not
sufficient for TLR2 activation; certain types of oligomers, such as
the ones induced by HNE, cannot activate TLR2. HNE-induced
a-synuclein oligomers generated in our laboratory have little
secondary structure32, whereas the oligomer preparation that can
activate TLR2 showed b-sheet-rich conformation. In addition, the
monomer/dimer fractions from aSCM, but not the same fractions
from the recombinant a-synuclein, showed a weak TLR2-
activating activity, suggesting that there might be certain
modification and/or conformation of monomer/dimer occurring
in cells that are required for TLR2 agonist activity. Therefore,
elucidation of structure of neuron-released a-synuclein is of great
importance in terms of understanding of molecular details
underlying the interaction between a-synuclein and TLR2.

One of the central questions in neurodegenerative diseases is
whether inflammatory responses promote neurodegeneration or
whether insufficient immune responses contribute to disease.
Studies assessing this question have yielded conflicting results.
Likewise, whether TLR signalling exacerbates neurodegeneration
or is protective in disease progression is still largely unknown.
In relation to our current study, more specific question would be
whether TLR signalling is hyperactivated by protein aggregates or
guide the clearance of protein aggregates.

TLRs may mediate the clearance of extracellular protein
aggregates. AD mouse models with depletions in TLR genes
showed increased cognitive impairments and Ab deposition12,14,
whereas conflicting results have also been reported; deletion of
coreceptor for TLR2/4, CD14 33, and a common adaptor protein,

MyD8834, ameliorates Ab deposition. In mice overexpressing
mutant SOD1, transplantation of MyD88-deficient bone marrow
cells resulted in earlier disease onset and shorter life span that of
WT cells35. On the other hand, there is a large body of evidence
for the role of TLR-mediated neuroinflammation in the initiation
and progression of neurodegenerative diseases. Ab fibrils
activated TLR2 and TLR4, and induced inflammatory responses
in cultured microglia and monocytes11,15. TLR4-dependent
neuroinflammation was also demonstrated in mouse models of
AD36. TLR4-activated microglia became neurotoxic13 and trigger
neurodegeneration in mice37. In models of SOD1-ALS, TLR-
dependent microglial activation exacerbated motor neuron
degeneration38. TLR3 agonists induced nigral dopaminergic
degeneration, which was reversed by systemic administration of
an interleukin (IL)-1 receptor antagonist in adult rats17,
suggesting that TLR activation and subsequent inflammation is
disease-promoting. In contrast to the study in the ALS mouse
model, transplantation of MyD88-deficient bone marrow cells
reduced inflammatory activation and brain Ab burden, and
improved cognitive function in a mouse model of AD39.

A recent study by Stefanova et al.40 suggested that TLR4 is
involved in a-synuclein clearance in transgenic mice expressing
this protein specifically in oligodendrocytes; the same group,
however, suggested in an earlier work that microglial activation
mediates neurodegeneration in the same mouse model41. We
speculate that these two seemingly opposite effects of TLRs may
not be mutually exclusive. Although the primary role of microglia
and its receptors for protein aggregates may be to clear the toxic
proteins and protect neurons, microglial responses to TLR
activation may change in diseased brains. The outcome of TLR
activation may depend on various factors, such as the states of
microglial cells, the source and assembly state of protein ligand,
duration and strength of the stimulation, and repertoire of
coreceptors and adaptor proteins that interact with TLR.

The model proposed in the current study (Supplementary Fig.
S17) allows the prediction that drugs that act on TLR2 and/or on
the extracellular a-synuclein oligomers might modify neuroin-
flammation in a-synuclein-related neurodegenerative diseases;
thus, both these proteins are candidates for mechanism-based
drug targets of PD and other related diseases. Of particular
interest, other cytosolic aggregation-prone proteins, such as tau
and superoxide dismutase 1, are also released from cells42,43.
Moreover, in human tauopathies and the related animal models,
neuronal accumulation of hyperphosphorylated tau was closely
associated with microglial activation44. These results along with
those of our current study point to an interesting possibility that
microglial activation by neuron-originated aggregation-prone
proteins might be a general mechanism of neuroinflammation
in major neurodegenerative diseases.

Methods
Antibodies and chemicals. Protease inhibitor cocktail, lipopolysaccharides and
DCF-DA were purchased from Sigma-Aldrich (St Louis, MO). Pam3CSK4
and QUANTI-Blue were obtained from InvivoGen (San Diego, CA). The
following antibodies were used: TLR2 (clone T2.5) and MHC class II (eBioscience,
San Diego, CA); polyclonal TLR2 antibody (US Biological, Swampscott, MA);
IkB, p38 MAPK, phospho-p38 MAPK and a-synuclein (polyclonal) (Cell Signaling
Technology, Beverly, MA); b-actin (Sigma-Aldrich); nitrated a-synuclein, a-
synuclein (LB509), tyrosine hydroxylase and TLR2 (Abcam, Cambridge, MA);
a-synuclein (Syn-1; BD Bioscience, San Diego, CA); Iba-1 (Wako Laboratories,
Richmond, VA); and FILA-4 antibody (Dr Poul Henning Jensen, University of
Aarus).

Animals. Sprague–Dawley rats and C57BL/6 mice were purchased from Samtako
(Osan, Korea). TLR2-deficient mice were obtained from Oriental Bioservice
(Kyoto, Japan)45, TLR3-deficient mice from R. Flavell (Yale University, School
of Medicine, New Haven, CT)46 and TLR4-deficient mice from S. Akira (Hyogo
College of Medicine, Hyogo, Japan)47. Transgenic mice expressing WT human
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a-synuclein under the PGDF-B promoter (line D) were described elsewhere48.
Genotypes of mice were analysed by PCR using specific primers (Supplementary
Table S3).

Cell culture. Maintenance and differentiation of SH-SY5Y human neuroblastoma,
primary cortical neurons, rat and mouse primary microglia, BV2 murine microglial
cell lines and COS-7 cells have been previously described 49,50.

Polymerase chain reaction. Total RNAs were reverse transcribed using the iScript
cDNA synthesis kit (Bio-Rad, Hercules, CA). For conventional reverse transcriptase
PCR, the complementary DNA products were amplified using specific primers over
the indicated cycles (Supplementary Table S3). For real-time PCR, target genes were
amplified using SYBR Premix ex taq II (Takara, Shiga, Japan) with specific primers
(Supplementary Table S3). Amplification of DNA products was measured by the
7500 Real-Time PCR system (Applied Biosystems, Foster City, CA). Relative mRNA
levels were calculated according to the 2�DDCT method. All DCT values were
normalized to glyceraldehyde-3-phosphate dehydrogenase or b-actin.

Preparation of conditioned media. Differentiated SH-SY5Y cells were infected
with adenoviral vectors (serotype Ad5, CMV promoter)51 at a multiplicity of
infection of 100. On day 2 post infection, media were replaced with serum-free
Dulbecco’s modified Eagle’s medium, then incubated for 18 h. For conditioned
media of cortical neurons, mouse cortical neurons were seeded onto 60-mm culture
dish. After a 5-day incubation, media were replaced with B27-free neurobasal
media, then incubated for 24 h. To remove cell debris, the media were centrifuged
at 10,000g for 10min. The recovered supernatants were concentrated using 10K
cutoff centrifugal filters (Millipore, County Cork, Ireland).

Morphological analysis of microglia. Microglia cells were treated with CM or
lipopolysaccharide for 24 h. Cells with amoeboid and ramified morphologies
were counted in ten randomly chosen areas for each experiment, and mean values
were obtained.

Nitric oxide and cell viability assays. Microglia cells were treated with CM or
lipopolysaccharide. After a 24-h incubation period, nitric oxide was measured
from the microglial culture media using the Griess reagent system (Promega,
Madison, WI) according to the manufacturer’s instruction. Cell viability
was determined from the cells in the same culture using the Cyquant cell pro-
liferation assay kit (Invitrogen, Carlsbad, CA).

Measurement of intracellular reactive oxygen species. Microglia cells were
treated with 20,70-dichlorodihydrofluorescein diacetate (DCF-DA) for 20min in the
dark. A total of 10,000 cells were analysed using a FACSCalibur flow
cytometer (Becton Dickinson, Franklin Lakes, NJ). The oxidized form of DCF-DA
was excited at 488 nm and detected at 530 nm.

a-Synuclein pull down. Owing to its affinity to metal ions, a-synuclein binds to
the Talon metal affinity resins (Clontech, Mountain View, CA; data not shown).
For removal of a-synuclein from aSCM, aSCM was mixed with Talon metal
affinity resins and incubated at 4 �C for 2 h with rotation. To isolate
cell-released and cytosolic a-synuclein (see Supplementary Fig. S10), His-aSCM
and cell extracts obtained from dSY5Y cells expressing His-tagged a-synuclein
were pulled down with Talon metal affinity resins.

Preparation of cell and tissue extracts, and western blot analysis. Cells were
lysed in the RIPA buffer (150mM NaCl, 1% Triton X-100, 1% sodium deox-
ycholate, 0.1% SDS and 50mM Tris–HCl) with a protease-phosphatase inhibitor
mixture. Brain homogenates were prepared in the lysis buffer (1% Triton
X-100, 10% glycerol, 50mM HEPES, pH 7.4, 140mM NaCl, 1mM EDTA, 1mM
Na3VO4, 20mM b-glycerophosphate and proteinase inhibitor cocktails),
and separated into cytosolic and particulate fractions by centrifugation. Western
blot analysis was performed as described previously51.

Tumor-necrosis factor-a and IL-6 measurements. The concentrations of tumor-
necrosis factor-a and IL-6 were determined by the BIOSOURCE Immunoassay kit
(Invitrogen).

Microarray experiment and network analysis. Microarray analysis was performed
on rat primary microglia. RNA preparation, microarray experiment
and probe annotation were performed as previously described8. Using the
normalized intensities, the DEGs (false discovery rate r0.01) between LZCM- and
aSCM-exposed cells were determined using a previously reported statistical method8.
For the gene expression data from 9 normal donors and 16 patients with PD
(GSE7621), we used the same method to identify the DEGs between
normal and patients (false discovery rate r0.05). In addition, KEGG pathways
enriched by the DEGs were identified (Po0.01) using DAVID software. For network
analysis, we selected a set of DEGs involved in the major pathways and then

reconstructed a network describing their interactions and associated pathways based
on the interaction data from public databases including BIND, HPRD, BioGRID and
KEGG8.

Analysis of TLR2/a-synuclein interaction. The entire procedure was performed
on ice in a cold room. BV2 microglia cells were pre-incubated with conditioned
medium or SEC fractions for 30min, then crosslinked by incubation with 2mM
dithiobis(succinimidylpropionate). After the incubation, cells were incubated with
either T2.5 (20 mgml� 1) or with IgG (20 mgml� 1). At least 120 cells were analysed
in each independent experiment. For a-synuclein cell surface binding to the
HEK293 reporter cells, the cells were incubated with the SEC fractions 8 or 14 for
1 h. At least 220 cells were analysed in each independent experiment.

a-Synuclein uptake assay. Primary microglia cells were treated with aSCM. After
PBS washes, cells were lysed with the Laemmlie sample buffer. In cases of
a-synuclein fibril uptake, microglial cells were treated with a-synuclein fibrils
(400 nM) and lysed with 1% TritonX-100/PBS. The Triton-insoluble pellets were
resuspended in the Laemmlie sample buffer. For ectopic expression of TLR2,
COS-7 cells were transfected with pcDNA3.1/Hygro-human TLR2 or with control
pcDNA3.1 using lipofectamine 2000 (Invitrogen). Acid washing was performed
with 0.1M HCl twice before lysis.

Immunofluorescence microscopy for cells. The procedure for immuno-
fluorescence and image analysis have been described elsewhere52.

Stereotaxic injection and analysis of tissue samples. The experimental proto-
cols were approved by Konkuk University’s Animal Care and Use Committee.
Adenoviral vectors were prepared using the virakit (Virapur, San Diego, CA).
Age-matched mice were stereotaxically positioned under deep anaesthesia, and
1.33� 108 infection units of adenoviral vectors were then injected into striatum (AP;
0.8mm, ML; 1.7mm and DV; � 3.2mm). Seven days after injection, the brains were
processed for immunofluorescence staining7. Immediately adjacent tissue sections
were labelled with different antibodies. Fluorescence intensity of unit area measured
in the SN region was normalized with that of the non-SN region. Correlation rates
were determined by the Pearson product–moment correlation coefficient method
(Pearson’s R) using GraphPad Instat software. For the injection of oligomers or
monomers, 0.2ng of aSCM fraction 8 and fraction 14 were injected into the cerebral
cortex (AP; 2.0mm, ML; 1.5mm, and DV; � 1.5mm). Fluorescence intensity of unit
area was measured in the cerebral cortex region around the injection site and
normalized with the data obtained from the hippocampus.

Preparation of recombinant a-synuclein and aggregates. Bacterial endotoxins
were removed using the Toxineraser endotoxin removal kit (Genscript, Piscataway,
NJ; o0.015 endotoxin unit per 1mg of a-synucein). Fibrils were prepared as
described previously53. Nitrated a-synuclein aggregates were generated following
the previously described procedure54. For HNE-induced oligomerization,
a-synuclein (1mgml� 1) was incubated with 1.4mM HNE (Cayman Chemical,
Ann Arbor, MI) for 1 week at 37�C and dialysed against PBS. For spontaneous
oligomerization, lyophilized recombinant a-synuclein was dissolved in PBS
(1mgml� 1) and incubated at 4�C. After 2 days of incubation, protein was
filtrated through a syringe filter with the pore size of 0.2 mm. One hundred
microlitres of a-synuclein (50mM) was separated using Superdex 200 HR 10/30
column (GE Healthcare Life Science) at a flow rate of 0.5mlmin� 1.

Circular dichroism. Samples (10 mM) were analysed in a Jasco J-810 spectro-
polarimeter (Tokyo, Japan) from 190–260 nm in a quartz cell at room temperature.
The data used for graphical presentation were an average of six different scans.

Enzyme-linked immunosorbent assay. ELISA was performed as described
previously55 with anti-a-synuclein antibodies Ab62 (1 mgml� 1) and biotinylated
Ab274 (1mgml� 1) as a capture and reporter, respectively.

HEK-Blue TLR reporter assay. HEK293 reporter cells stably expressing human
TLR2/CD14 and human TLR4/CD14/MD-2 were purchased from InvivoGen along
with matching control cells. HEK-Blue TLR reporter assay was performed
according to manufacturer’s instructions.

Human specimens, neuropathological evaluation and criteria for diagnosis.
Autopsy material (six non-demented controls and six DLB cases) was obtained
from patients studied neurologically and psychometrically at the Alzheimer Disease
Research Center/University of California, San Diego (Supplementary Table S4).
The last neurobehavioral evaluation was performed within 12 months before death
and included Blessed score, Mini Mental State Examination and dementia-rating
scale56. The diagnosis of DLB was based in the initial clinical presentation with
dementia followed by parkinsonism and the presence of a-synuclein- and
ubiquitin-positive LBs in cortical and subcortical regions57. Procedures for
immunocytochemistry and confocal microscopy were described elsewhere7.
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Statistical analysis. Statistical significances of data were determined using
unpaired t-test, one-way analysis of variance, or Mann–Whitney U-test.
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