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c-Rel and its many roles in cancer: an old story
with new twists
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When the genes encoding NF-kB subunits were first isolated, their homology to the previously identified c-Rel proto-oncogene
and its viral homologue v-Rel was clear. This provided the first indication that these transcription factors also had a role in cancer.
Because of its homology to v-Rel, which transforms chicken B cells together with the important role c-Rel can have as a regulator
of B- and T-cell proliferation, most attention has focussed on its role in B-cell lymphomas, where the REL gene is frequently

amplified. However, a growing number of reports now indicate that c-Rel has important functions in many solid tumours, although
studies in mice suggest it may not always function as an oncogene. Moreover, c-Rel is a critical regulator of fibrosis, which provides
an environment for tumour development in many settings. Overall, c-Rel is emerging as a complex regulator of tumorigenesis,

and there is still much to learn about its functions in human malignancies and the response to cancer therapies.

The NF-xB subunits RelA/p65, RelB, c-Rel, p50/p105 (NF-xB1)
and p52/p100 (NF-xB2) comprise a family of dimeric transcription
factors with both common and distinct biological functions. NF-xB
complexes are present in all cells but are generally held in an
inactive form bound to a variety of inhibitory proteins, termed
inhibitors of NF-xB (IxBs) (Perkins, 2012). IxBs possess a series of
ankyrin repeat motifs that are also found in p100 and p105, the
precursor forms of p52 and p50, which allows them to function as
IxB-like NF-xB inhibitors. A wide range of NF-xB inducers,
including inflammatory cytokines, cell stresses such as DNA
damage, immune receptor engagement, bacterial products and
viral proteins, can activate the IxB kinase (IKK) complex, resulting
in IxB phosphorylation, degradation and the release of active NF-
kB dimers (Perkins, 2012).

NEF-«B activity is usually kept under tight control, with a variety
of negative feedback loops, such as resynthesis of IxBo or
expression of the ubiquitin editor A20, acting to limit the
magnitude and duration of a typical NF-«xB response (Perkins,
2012). However, in many human illnesses, NF-xB is aberrantly
active and either causes or contributes to the pathology of the
disease (Karin, 2009; Perkins, 2012; Bradford and Baldwin, 2014).
This is particularly true with inflammatory diseases, where NF-«B-
driven expression of genes encoding inflammatory cytokines such
as tumour necrosis factor (TNF) o or interleukin 6 (IL-6), drives
disease progression (Karin, 2009). Its critical role in the
inflammatory phenotype allows NF-xB to act as a promoter of

inflammation-associated cancers (Karin, 2009). However, NF-xB
can also contribute to cancer in many others ways. Aberrant
NF-xB activity in cancer only rarely results from direct mutation
of the NF-xB subunits but arises either through mutation of
upstream regulators (e.g., Ras, Myd88 or the B-cell receptor)
leading to constitutive IKK activity or via effects of the
tumour microenvironment (Bradford and Baldwin, 2014). Con-
stitutive activation of NF-xB in tumour cells can activate many
genes that regulate cancer-related cellular processes, including
apoptosis, proliferation, angiogenesis and metastasis (Bradford
and Baldwin, 2014). Thus NF-xB actively contributes to many of
the ‘hallmarks of cancer’, resulting in more rapid disease
progression, increased metastatic potential, a higher proportion
of tumour recurrence and therapeutic resistance (Bradford and
Baldwin, 2014).

THE NF-xB SUBUNIT c-REL

The NF-xB subunit c-Rel was first identified as the cellular
homologue of the avian Rev-T retroviral oncoprotein v-Rel
(Gilmore and Gerondakis, 2011). v-Rel causes lymphoma in birds
and c-Rel is the only NF-xB family member that can also
transform chicken lymphoid cells in vitro (Gilmore and
Gerondakis, 2011).
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c-Rel, which is encoded by the REL gene in humans, has
important roles in many aspects of lymphoid cell function
(Gilmore and Gerondakis, 2011). c-Rel is expressed in mammalian
B cells regardless of developmental stage, although c-Rel levels
increase during B-cell development (Grumont and Gerondakis,
1994; Liou et al, 1994). c-rel knockout mice develop normally with
no effects on haematopoietic cell development but do display
several immunological defects, which include reduced mature
B- and T-cell proliferation and activation in response to mitogenic
stimuli, abnormal germinal centre formation and reduced numbers
of marginal zone B cells (Gilmore and Gerondakis, 2011).
In addition to cancer (see below), c-Rel has a key role in a number
of human diseases, such as inflammatory bowel disease
and rheumatoid arthritis together with cardiac and skin fibrosis
(Wang et al, 2008; Gilmore and Gerondakis, 2011; Gaspar-Pereira
et al, 2012; Fullard et al, 2013).

The most common isoform of human c-Rel is 587 amino acids.
Overall, c-Rel has a similar structure to the RelA and RelB
members of the NF-xB family, with an N-terminal DNA-binding
and dimerisation domain termed the Rel homology domain and a
C-terminal transcriptional activation domain (Figure 1A). c-Rel is
most commonly found as a dimer with the p50 or RelA NF-xB
subunits but other combinations can occur (Gilmore and
Gerondakis, 2011). c-Rel has a slightly different DNA-binding
specificity compared with other NF-«xB subunits (Sanjabi et al,
2005), but ChIP-Seq analysis did not reveal any significant
differences in DNA-binding site preference in EBV-transformed
B cells (Zhao et al, 2014). Although posttranslational modifications
can have profound regulatory effects on other NF-xB subunits,
relatively little is known about how such modifications contribute
to c-Rel activity and function (Gilmore and Gerondakis, 2011).
c-Rel is generally described as an activator of transcription that
can function to establish a permissive chromatin environment at
NF-«kB-regulated promoters (van Essen et al, 2010), but whether
this varies in different cellular contexts has not been thoroughly

explored. Similar to RelA, c-Rel is a regulator of antiapoptotic
genes such as Bcl-xL (Gilmore and Gerondakis, 2011). However
c-Rel also regulates other cellular functions. For example, it can
induce the expression of CLSPN, a component of the checkpoint
kinase Chkl signalling pathway in the human U20S osteosarcoma
cell line (Kenneth et al, 2010). c-Rel can also regulate the
expression of EZH2, a histone methyl transferase frequently
upregulated in many cancers, in both primary murine B and T
cells as well as human leukaemia and multiple myeloma cell lines
(Neo et al, 2014).

THE ROLE OF c-REL IN B-CELL LYMPHOMA

NF-xB has a key role in several types of lymphoma, with many
B-cell lymphomas dependent on mutations that activate the NF-xB
pathway (Lim ef al, 2012). Activation of NF-«xB can arise in B-cell
lymphoma owing to mutations in upstream regulatory genes such
as TNFAIP3, CARDI1, MYD88, NFKBIA and CD79A/B, chromo-
somal translocations such as t(11;18)(q21;q21)/API-MALTI or to
signalling through cell surface receptors, such as CD40 and the
EBV latent membrane protein 1 (Compagno et al, 2009; Hamoudi
et al, 2010; Lim et al, 2012). Many diffuse large B-cell lymphomas
(DLBCL), including almost all activated B-cell-like (ABC-DLBCL),
primary mediastinal large B-cell lymphomas (PMBL) and a subset
of germinal centre B-cell-like DLBCL (GCB-DLBCL), in addition
to classical Hodgkin lymphoma (CHL) and MALT lymphomas,
possess distinct NF-xB target gene signatures thought to promote
lymphoma progression and survival (Compagno et al, 2009;
Hamoudi et al, 2010; Lim et al, 2012).

Despite this, the contribution of individual NF-xB proteins to
lymphomagenesis is poorly understood. However, evidence
suggests an important role for c-Rel. Genomic and cytogenetic
studies of human lymphomas have identified amplification of the
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Figure 1. Structure and genomic location of human c-Rel. (A) Schematic diagram showing the structure of c-Rel and amino-acid positions of
different regulatory motifs. A putative IKK phosphorylation site found mutated in some B-cell lymphoma patient samples together with a splice
variant that removes 23 amino acids from the REL inhibitory domain (RID) also found in some B-cell lymphoma cell lines and patient samples are
shown. TAl and TA Il are c-Rel transcriptional activation domains. Adapted from (Leeman et al, 2008). (B) Diagram demonstrating the close proximity
of the REL gene to the BCL11A proto-oncogene and the pseudouridine kinase PUS10 on human chromosome 2. Both genes therefore have the
potential to be co-amplified in human cancers. Figure compiled using the Integrated Genomics Viewer and the hg19 build of the human genome.
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Table 1. List of different cancers where a role for c-Rel is known or implied

Disease

Alteration

Biological effect

References

c-Rel in lymphoid cancers

Primary mediastinal B-cell lymphoma
(PMBL)

Classical Hodgkins lymphoma (CHL)
Germinal centre B-cell diffuse large
B-cell lymphoma (GCB-DLBCL)
Activated B-cell diffuse large B-cell
lymphoma (ABC-DLBCL)

Marginal zone lymphoma

Adult T-cell leukaemia/lymphoma
(ATLL)

Amplification of REL locus

Gain of 2p

Amplification of REL locus
and nuclear localised c-Rel
Distinct NF-xB gene
signature and nuclear
localised c-Rel

Increased REL mRNA
expression
Increased c-Rel expression

Correlates with increased REL mRNA, nuclear c-Rel
and NF-«kB activity. Use of IKKf inhibitor induced cell
death in cell lines

Correlates with nuclear c-Rel staining and constitutive
NF-«xB activity

Not clear. Some studies indicate poor overall survival
associated with c-Rel positivity but others do not
Lymphomas are dependent on this gene signature
for proliferation and survival. c-Rel positivity
associated with poor overall survival in some disease
subtypes

Shorter overall survival correlates with increased REL
and other NF-kB gene expression

Increased expression confers resistance to therapy

Weniger et al, 2007

Joos et al, 2002; Martin-Subero
et al, 2002; Barth et al, 2003;
Enciso-Mora et al, 2010

Lenz et al, 2008; Curry et al, 2009;
Li et al, 2015

Lenz et al, 2008; Campagno et al,
2009; Curry et al, 2009; Li et al,
2015

Barth et al, 2001

Ramos et al, 2007

c-Rel in solid tumours

Breast cancer

Colitis-associated adenoma

Increased REL mRNA, high
nuclear c-Rel expression
Loss of c-Rel in mice

c-Rel expression shown to induce mammary tumours
in murine breast cancer models
Increased disease susceptibility and tumour burden

Cogswell et al, 2000; Romieu-
Mourez et al, 2003
Burkitt et al, 2015

Gastric cancer Loss of c-Rel in mice

Pancreatic cancer Increased c-Rel expression in

cell lines

c-Rel ™/~ mice developed lesions similar to low-
grade MALT lymphomas when exposed to
pathogens

c-Rel acts to mediate TRAIL-induced apoptosis by
controlling tumour-promoting genes, such as
NFATc2

Burkitt et al, 2013

Geismann et al, 2014

response

Fibrosis Loss of c-Rel in mice

Head and neck cancer Amplification and nuclear Role for c-Rel in cancers expressing mutant p53 Lu et al, 2011
localisation of c-Rel where it inactivates p73

Other c-Rel-regulated pathways affecting tumorigenesis

Graft versus host disease (GVHD) c-Rel expression drives T-cell | Homing to GVHD organs reduced in c-Rel =/~ Yu et al, 2013

T-cells. c-Rel inhibition reduced T-cell activation
without compromising antitumour activity
Potentiates fibrosis in multiple organs via the
regulation of gene expression

Gieling et al, 2010; Gaspar-
Pereira et al, 2012; Fullard et al,
2013

Abbreviations: MALT = mucosa-associated lymphoid tissue; IKKS = kB kinase ; NFATc2 = nuclear factor of activated t-cells, cytoplasmic, calcineurin-dependent 2; NF-xB = nuclear factor B;
TRAIL = tumour necrosis factor-related apoptosis-inducing ligand. Please note that it was not possible to list all the primary literature here and a more comprehensive list of references, together
with haematological malignancies associated with c-Rel, can be found in Gilmore and Gerondakis (2011) (n=112) and Lim et al. (2012) (n=153).

region of chromosome 2pl3 where the REL gene is located
(Table 1). Amplifications and gains of REL, often associated with
elevated levels of nuclear c-Rel protein, have been detected in
approximately 50% of CHL and at lower levels in other types of
B-cell lymphoma, while c-Rel nuclear localisation is associated
with both ABC- and GCB-DLBCL (Barth et al, 2001, 2003; Martin-
Subero et al, 2002; Weniger et al, 2007; Lenz et al, 2008; Curry et al,
2009; Enciso-Mora et al, 2010; Gilmore and Gerondakis, 2011; Lim
et al, 2012; Li et al, 2015). Interestingly, in a recent study of 460
DLBCL patients, the 26% scoring positive for nuclear c-Rel
exhibited higher levels of clinical features, such as extra nodal
disease (Li et al, 2015). In this study, nuclear c-Rel did not correlate
with overall survival in the whole population of either ABC- or
GCB-DLBCL patients but was a significant indicator of negative
outcome in distinct subsets of patients. For example, in all patients
with mutant p53 tumour suppressor or in ABC-DLBCL patients
with low levels of the antiapoptotic protein Bcl-2, c-Rel positivity
was associated with poor overall survival (Li et al, 2015).
Although the REL gene is frequently amplified in PBML and
GCB-DLBCL, the association of this event with c-Rel activity and
an NF-xB gene signature has been questioned (Feuerhake et al,
2005; Lenz et al, 2008; Li et al, 2015). For example, in 460 DLBCL
patients, there was a poor correlation between c-Rel nuclear
localisation and mRNA levels in both ABC and GCB forms of the
disease (Li et al, 2015). Furthermore, a potential complication to
our understanding of REL gene amplification is the close proximity
of another myeloid and B-cell proto-oncogene, BCLI1A, on human

chromosome 2 (Figure 1B). Indeed, both the REL and BCLIIA
genes have been shown to be co-amplified in CHL (Martin-Subero
et al, 2002), while the pseudouridine kinase PUSIO that is also in
close proximity to REL (Figure 1B) is the most significantly
upregulated gene in this region in GCB-DLBCL (Lenz et al, 2008).
However, whether BCL11A or PUS10 contribute to any of the
pathological phenotypes associated with c-Rel is not known.

An additional potential complication in interpreting this data
that has not generally been considered is the identification of an
alternatively spliced hyperactive form of c-Rel (Leeman et al, 2008).
This isoform lacks a central inhibitory domain and is preferentially
expressed in a variety of lymphoma cell lines and DLBCL patient
cells (Leeman et al, 2008; Figure 1A). Furthermore, a transactiva-
tion domain mutation (S525P) in c-Rel was identified in B-cell
lymphomas from two patients, and this mutation enhances the
ability of c-Rel to transform cells in vitro (Figure 1A; Starczynowski
et al, 2007). However, the significance and frequency of these
findings to disease progression and treatment has yet to be
established.

c-REL IN SOLID TUMOURS

c-Rel is also associated with the malignant progression of solid
tumours (Table 1). Unlike the situation with lymphoma or other
haematological malignancies, these studies have used animal
models to assess c-Rel’s contribution to the disease. For example,

www.bjcancer.com | DOI:10.1038/bjc.2015.410

3


http://www.bjcancer.com

BRITISH JOURNAL OF CANCER

The role of the c-Rel NF-xB subunit in cancer

in the azoxymethane/dextran sulphate model of colitis-associated
colon adenocarcinoma, c-Rel "/~ mice show greater susceptibility
to disease (Burkitt et al, 2015). The number of polyps formed in
c-Rel '~ animals was not only significantly greater but were
larger with higher proliferation indices, suggesting that loss of
c-Rel drives a more aggressive form of the disease. Similarly, in a
Helicobacter felis (H. felis)-induced model of gastric cancer, unlike
NE-xkB1 ™/~ mice, c-Rel ~/~ animals did not develop spontaneous
gastric atrophy after either acute or chronic exposure. However,
after 1 year, half of the c-Rel /= mice exposed to H. felis
developed lesions similar to low-grade MALT lymphomas (Burkitt
et al, 2013). These inflammatory gastric lesions were characterised
as being highly proliferative and comprised of predominately
B cells, while also partially affecting the mucosa and surrounding
gastric glands. These studies suggest that, in contrast to its more
commonly characterised tumour-promoting activities, c-Rel can
also act to suppress tumorigenesis.

An interaction between the p53 family member ANp63o and
c-Rel has been reported following TNF-o stimulation in a subset of
head and neck carcinoma cell lines with mutant p53 (Lu et al,
2011). This interaction decreases the interaction of ANp63a with
the tumour-suppressor TAp73 and alters the latter’s effects on gene
expression. For example, in cell lines with mutant p53, depletion of
c-Rel by siRNA treatment was shown to increase the expression of
the CDK inhibitor p21"V*! gene and the two pro-apoptotic genes
PUMA and NOXA, indicating that c-Rel mediates cell survival in
head and neck cancer by inactivating TAp73. Another correlation
between c-Rel and p63 emerged from the DLBCL study discussed
above (Li et al, 2015). Here, in ABC-DLBCL, c-Rel nuclear
positivity was associated with poor overall survival in patients with
low p63 expression (Li et al, 2015).

It has also been suggested that c-Rel has a role in breast cancer.
Expression of mRNA for c-Rel, as well as for other NF-xB family
members, was shown to be upregulated in 35 primary inflamma-
tory breast cancers (Cogswell et al, 2000). Moreover, in a study
using transgenic mice in which c-Rel was expressed in breast tissue
under the control of the mouse mammary tumour virus,
approximately one-third of these mice developed tumours, albeit
with a long latency of approximately 20 months (Romieu-Mourez
et al, 2003).

Recently, a novel role for c-Rel in highly aggressive pancreatic
ductal adenocarcinoma (PDAC) cell lines has been reported. In
this case, c-Rel was found to be a key mediator of TNF-related
apoptosis-inducing ligand (TRAIL)-induced apoptosis in PDAC
and that the tumour promoter, NFATc2, was under the control of
c-Rel and TRAIL, resulting in a resistance to TRAIL-mediated
apoptosis (Geismann et al, 2014).

THE INFLAMMATION, FIBROSIS AND CANCER AXIS

c-Rel can potentially promote cancer by driving organ fibrosis (see
Figure 2). Organ fibrosis is a pathological condition characterised
by non-physiological wound healing leading to the excess
deposition of extracellular matrix. The progression of chronic
diseases in parenchymal organs such as the liver, kidney and lung

are associated with fibrosis and extensive tissue remodelling. This
fibrosis eventually leads to loss of organ function, and it can also
act as a precancerous state in which the development of solid
tumours is favoured (Elsharkawy and Mann, 2007). A key
component of fibrosis is the recruitment and trans-differentiation
of precursor cells to activated myofibroblasts. Activated myofibro-
blasts secrete a plethora of proinflammatory cytokines and
chemokines, such as IL-6, IL-8, the growth factor VEGFA and
the matrix metalloproteinase MMP9. These molecules are
important for normal wound healing but can also drive tumour
cell growth and metastasis (Coulouarn and Clement, 2014).

Importantly, c-Rel activity has recently been identified as a
common potentiator of fibrosis in multiple organs. A role for c-Rel
in myofibroblast activation is implied by analysis of c-Rel '~
mouse hepatic stellate cells, which display reduced levels of
classical profibrogenic genes such as collagen I and alpha smooth
muscle actin (Gieling et al, 2010). c-Rel has also been shown to be
an important regulator of epidermal homeostasis and skin fibrosis
in a mouse model of bleomycin-induced skin fibrosis. Here
c-Rel /~ mice display reduced keratinocyte proliferation as well
as reduced levels of fibrosis (Fullard et al, 2013). Similarly c-Rel is
important for the development of stress-induced cardiac hyper-
trophy and fibrosis, with c-Rel ~/~ mice showing reduced levels of
fibrosis in the heart and reduced cardiac growth (Gaspar-Pereira
et al, 2012). The reduction of cardiac fibrosis and growth
was attributed to the downregulation of two key regulators of
cardiac hypertrophy, myocyte enhancer factor 2A and GATA4
(Gaspar-Pereira et al, 2012).

Hepatocellular carcinoma (HCC) is one of the most common
forms of liver cancer, and 80% of these tumours arise in a setting of
established fibrosis and/or cirrhosis (Coulouarn and Clement,
2014). In the liver, c-Rel has been implicated in modulating both
fibrosis and regeneration. The livers of c-Rel '~ mice, following
chronic treatment with hepatotoxic carbon tetrachloride or bile
duct ligation, show impaired wound healing and reduced fibrosis,
characterised by reduced levels of both collagen and hepatic
myofibroblasts (Gieling et al, 2010).

Taken together, these reports indicate that by targeting the
pathways regulating c-Rel, c-Rel itself or the gene products that
c-Rel activates to induce fibrosis development may provide new
strategies for the treatment of HCC and other cancers driven by a
fibrotic microenvironment.

EFFECTS OF c-REL ON CANCER THERAPY

NEF-xB is known to affect the cellular response to many common
cancer therapies and c-Rel can also affect the treatment of
haematological malignancies. For example, adult T-cell leukaemia/
lymphoma (ATLL) is caused by the human T-cell leukaemia virus
type 1 and is treated with antiviral therapy, zidovudine (AZT) in
combination with interferon alpha, resulting in good rates of
remission. However, resistance to AZT in cells from ATLL patients
has been associated with high expression of c-Rel and IRF-4

Initial injury Chronic inflammation and fibrosis

Precancerous
microenvironment

(Ramos et al, 2007).

Tissue injury = Immune —3 Myofibroblast —3 Repeated =3 Abberant wound =3 Tumour-promoting = Solid organ tumour

response activation injury healing
* Physical c-Rel™ mice impaired
* Chemical immune response L TGFB1 | Collagen
* Infection

4 Neutrophils | T cells

* Autoimmunit:
Y ? Role of other immune cells

environment development

c-Rel™ mice protected from fibrosis c-Rel’s positive role in inflammation and fibrosis

in suggestive of a role in solid tumour growth

Figure 2. Schematic diagram showing how fibrosis can lead to cancer development and the role of c-Rel in this process.
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c-Rel also regulates graft vs host disease (GVHD), a problem
affecting patients following allogeneic haematopoietic stem cell
transplantation (allo-HSCT) for the treatment of a variety of
haematological malignancies, such as acute myeloid leukaemia. In
mice, bone marrow transfer of c-Rel-deficient donor T cells
significantly reduces GVHD compared with normal T cells
(Yu et al, 2013). Moreover, these c-Rel =/~ T cells also exhibit
reduced homing to GVHD organs, such as the lung, liver
and spleen. It has therefore been proposed that targeting
c-Rel would provide a therapeutic strategy for preventing GVHD
in patients undergoing allo-HSCT. Indeed, a small-molecule
inhibitor of c-Rel, IT-603, which reportedly acts by directly
binding to c-Rel and inhibiting its DNA-binding activity,
was shown to reduce the c-Rel-induced activation of T cells
without affecting the antitumour activity of allo-HSCT in mice
(Shono et al, 2014).

CONCLUSIONS

Descriptions of the NF-xB pathway, in common with other highly
investigated research areas, often contain many assumptions and
simplifications regarding the role of pathway components. This is
especially true of the NF-xB subunits and c-Rel in particular
(Perkins, 2012). NF-xB subunits are subject to extensive regulation,
that can involve their level of expression, interactions with
heterologous transcriptional regulators and posttranslational
modifications. This can determine their ability to regulate specific
gene targets and thereby affect their functions in different
physiological or pathological contexts. This review has highlighted
not only the well-established association of c-Rel with B-cell
lymphoma but also discussed evidence of a role for c-Rel in solid
tumours. It is apparent from reports in these areas that c-Rel
function is complex, can vary in different cell types or contexts and
potentially contributes to tumorigenesis in tissues where it is not
mutated through, for example, regulating the fibrosis—cancer axis.
However, in mouse models of colitis-associated adenoma and
gastric cancer (Burkitt et al, 2013; Burkitt et al, 2015), deletion of
c-Rel had the opposite effect and resulted in increased suscept-
ibility to disease. This underlines the importance of a thorough
understanding of NF-xB subunit function in different cancer types
if therapeutic intervention is to avoid unanticipated, negative
consequences.
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