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Abstract—Persistent memory programming requires failure
atomicity. To achieve this in an efficient manner, recent proposals
use hardware-based logging for atomic-durable updates and
hardware transactional memory (HTM) for isolation. Although
the unbounded HTMs are promising for both performance and
programmability reasons, none of the previous studies satisfies
the practical requirements. They either require unrealistic hard-
ware overheads or do not allow transactions to exceed on-chip
cache boundaries. Furthermore, it has never been possible to use
both DRAM and NVM in HTM, though it is becoming a popular
persistency model.

To this end, this study proposes UHTM, unbounded hardware
transactional memory for DRAM and NVM hybrid memory
systems. UHTM combines the cache coherence protocol and
address-signatures to detect conflicts in the entire memory space.
This approach improves concurrency by significantly reducing
the false-positive rates of previous studies. More importantly,
UHTM allows both DRAM and NVM data to interact with
each other in transactions without compromising the consistency
guarantee. This is rendered possible by UHTM’s hybrid version
management that provides an undo-based log for DRAM and
a redo-based log for NVM. The experimental results show that
UHTM outperforms the state-of-the-art durable HTM, which is
LLC-bounded, by 56% on average and up to 818%.

I. INTRODUCTION

Emerging Non-Volatile Memory (NVM) has gained a mas-
sive amount of attention from both researchers and practitioners
for the last decade [15], [16], [37], [44], [58], [59], [67].
They have found killer applications, e.g., persistent key-value
stores [23], [41], [63] and persistent database systems [33], [34],
[52], to exploit both DRAM-like performance and durability
as in SSD.

However, the benefits of NVM do not come for free. First, in-
memory states of NVM must remain consistent across software
crashes and machine failures, which makes failure-atomicity of
NVM updates a hard requirement. Due to the 8-byte granularity
of atomic stores in modern CPUs, programmers should deal
with all the complexities to support the failure-atomicity of
large stores (> 8 bytes) and consistency between multiple
objects in the presence of power failure. Second, in-memory
states must remain consistent even when they are concurrently
updated. Thus, the existing failure-atomic systems mediate
concurrent updates on the shared data using synchronization

§This work is mostly done when the author was a Ph.D. student at KAIST.

primitives such as locks [13], [22], [36], [40] or transactional
memory [39], [59].

Given these requirements, the ACID transaction guarantees
what persistent programming requires. With that in mind,
researchers have proposed durable transactions that
support both atomic-durable updates and isolation in soft-
ware [13], [14], [22], [36], [39], [59]. Since these proposals
incur significant performance overheads, others take advantage
of hardware support to accelerate a durable transaction. For
example, they equip atomic-durable updates with hardware-
based logging [17], [28], [31], [46], [53], [66] and offer
isolation using hardware transactional memory (HTM) [3],
[10], [30], [61].

However, the hardware support limits the total size of
transactions, raising practical concerns. When a transaction goes
over the hardware limitation (i.e., capacity overflows),
it aborts and restarts, which significantly degrades the perfor-
mance and the forward progress due to repeated overflows.
In reality, this happens for NVM’s killer applications whose
transaction footprints scale from a few hundred KBs to MBs1.
Although the capacity overflows can be addressed by serializing
a problematic transaction using the programmer-defined slow
path [26], programmers still have to reason the footprint of the
transaction to minimize the serialization. The dynamic nature of
data growth makes the reasoning a hard problem. In particular,
it becomes even more challenging when applications run on
virtualized or containerized environments—because several
outstanding transactions compete for hardware resources. Given
that unbounded HTMs can address the capacity overflow
problem, it would be worth adapting them to persistent
programming.

Unfortunately, merely extending the state-of-the-art un-
bounded HTMs is not sufficient to support full-fledged per-
sistent programming in practice. First, previous unbounded
HTMs either rely on unrealistic assumptions or suffer from
an unacceptably large amount of false conflicts. For example,
while LogTM assumes the fully-mapped directory coherence
protocol [42], this assumption no longer holds for the hybrid
DRAM/NVM memory system that can scale to Peta-bytes.
LTM and VTM realize the unbounded HTM systems by

1Long-running and read-only transactions, which are common in real-world
applications [19], [48] and research papers [18], [38], [57], [62], exacerbate
the capacity overflow.
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virtualizing cache eviction and managing overflow states in
DRAM [1], [50]. However, they require searching DRAM to
detect conflicts beyond the on-chip cache capacity, thereby
causing prohibitively large overheads. On the other hand, the
address signature used by Bulk and LogTM-SE ends up with
a very high false-positive rate since they check all coherence
traffics [12], [64]. According to our evaluation, more than 99%
of transactions experience a repetitive false conflict and make
no forward progress without serializing them.

More importantly, no prior study supports the interaction
between non-persistent and persistent objects within a trans-
action. Their interplay is driven by two different trends. First,
the ease of programming and its flexibility leads to the advent
of new persistency models [20], [56] where DRAM and NVM
objects are seamlessly managed in a transaction. For example,
AutoPersist [56] can navigate non-persistent data structures
and persist them on the fly. Similarly, Go-pmem [20] allows
pointers across persistent objects and non-persistent ones inside
a transaction. Second, the demand for performant transactional
applications has them manipulate both persistent and non-
persistent objects as well [5], [23], [34], [41], [63]. Since
pointers between DRAM and NVM exhibit non-trivial inter-
dependencies in the applications, their HTM acceleration must
deal with the dependencies to provide consistency between
persistent and non-persistent objects. The takeaway is that
when a transaction aborts, intermediate changes made to
both persistent and non-persistent objects must be discarded
consistently. However, prior studies [3], [10], [30], [61] focus
only on persistent objects, leaving questions on how to offer
consistency for the new persistency models unanswered.

To overcome the aforementioned challenges, we present
UHTM, our hardware support for Unboundedness in the
DRAM/NVM Hybrid Transactional Memory. To efficiently
isolate transactions, UHTM introduces staged conflict
detection that combines two detection schemes and selec-
tively uses one depending on the transactional object location
being changed. For objects in on-chip caches, UHTM leverages
the cache-coherence protocol that renders conflict detection
accurate but is limited within on-chip caches. On the other
hand, when transactional objects are evicted to off-chip memory,
UHTM uses address signatures based on hardware bloom
filters that can cover the unlimited address space. The staged
detection scheme significantly reduces the abort rates of durable
transactions compared to using the address signature only since
the cache-coherence protocol filters the traffic to signatures,
resulting in fewer false positives.

Moreover, UHTM further reduces the abort rate in virtualized
or containerized environments. Even if two persistent applica-
tions do not share data, LLC miss requests of one can be found
in the address signature of another (i.e., a false positive), which
causes a transaction unnecessarily to abort. UHTM prevents
this false abortion between different persistent applications by
confining the conflict domain. LLC miss requests are only
checked against the signatures in the same conflict domain.
Isolating transactions per conflict domain achieves an additional
reduction on the false positive rate, making UHTM practical

in consolidated environments.
To minimize the commit latency, which is common and

performance-critical, UHTM proposes hybrid logging
that brings two different loggings into the design. It performs
undo logging for non-persistent objects (in DRAM) while redo
logging for persistent objects (in NVM). Employing the undo
logging for DRAM data achieves two advantages. First, it
commits faster since the redo logging suffers from copying
overheads of new values in the log to commit transactions.
Second, the undo logging does not require searching the logs
to locate new values while redo logging must do. On the
other hand, for NVM data, UHTM adopts a recent study of
an efficient hardware failure-atomic update based on redo
logging [28], which minimizes the latency and the bandwidth
consumption of failure-atomic updates.

The implication of transactions having both DRAM and
NVM data is to guarantee consistency between non-persistent
and persistent data structures. UHTM commits them in parallel
and atomically. On aborts, UHTM reverts intermediate changes
on DRAM and NVM using undo and redo logs, respectively,
preserving consistency between DRAM and NVM data.

The contributions of this paper are as follow:
• We design UHTM, the unbounded HTM for a hybrid

DRAM and NVM memory system. This is the first
proposal that achieves the unboundedness and the support
for the DRAM/NVM hybrid memory in HTMs.

• For the first time, UHTM allows both DRAM and NVM
data in a transaction and ensures their consistency, taking
into account a common practice in recent persistency
programming models.

• UHTM’s novel conflict detection scheme reduces the abort
rate of durable transactions from 99% to 9% by removing
most of false positives of address signatures.

• Our evaluation shows that UHTM outperforms the state-
of-the-art durable hardware transactional memory [30] by
56% on average and up to 818%.

The rest of the paper is organized as follows. We compare
our design to previous studies in Section II. Then, we motivate
the urgent need for unbounded HTMs for the DRAM and
NVM hybrid memory system in Section III. Our design goals
and implementation are explained in Section IV. We evaluate
our design in Section V and Section VI. Finally, we conclude
our paper in Section VII.

II. RELATED WORK

HTM must provide version management and conflict detec-
tion. Version management keeps both unmodified and modified
data within a transaction and uses a modified data (e.g., new
value) when committing and an unmodified version (e.g., old
value) when aborting. On the other hand, conflict detection
identifies concurrent accesses on the shared data and performs
proper means to serialize them if necessary. For HTMs to
be unbounded, they must support the unboundedness in both
version management and conflict detection.

In this section, we introduce previous solutions for un-
bounded and durable transactions. Our discussion here focuses
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Transaction Boundary Conflict Detection Version Management
DRAM NVM On-chip Off-chip DRAM NVM

LogTM [42]

Unbounded Not
support

Cache-coherence Sticky-Bit in Directory
Undo NoneLTM [1]&VTM [50] Overflow States in DRAM

LogTM-SE [64] Signature in L1-cacheBulk [12] Redo
PTM [61]

Not
support

L1-cache Cache-coherence
(L1-bounded) None None

Undo
PHyTM [3]

RedoNV-HTM [10]
DHTM [30] LLC Cache-coherence

UHTM Unbounded Cache-coherence Signature in DRAM/NVM
(+Signature Isolation)

Undo
(Overflow only) Redo

TABLE I: Comparison of UHTM with previous studies.

on conflict detection because it hinders previous solutions
not suitable for NVM. We discuss version management in
Section III-A. Table I compares previous approaches and
summarizes how they differ.

A. Limitations of Prior Unbounded HTMs

Although there have been many proposals for unbounded
HTMs, they do not suffice to satisfy the requirements of durable
transactions. These studies aimed to unshackle the boundary of
hardware transactional memory only with concerning DRAM.
Consequently, they do not fit for NVM. In fact, their conflict
detection methods have several limitations in applying to large
NVM.

First, they require non-negligible modifications to existing
hardware and software. For example, LogTM extends a
directory-based cache coherence protocol with a sticky-bit
to detect conflicts [42]. That is, LogTM sets a sticky-bit in the
directory entry on the cache eviction and determines access as
a conflict if it requests the block with the sticky-bit. However,
this approach relies on the fully-mapped directory protocol,
which is unrealistic under the hybrid DRAM/NVM memory
system that can scale to Pete-bytes. Although both LTM
and VTM take a different approach that realizes unbounded
transactions by virtualizing cache evictions and moving them
to software tables [1], [50], the both suffer from significantly
long latency by scanning the software tables to detect conflicts.
Due to hardware/software complexities and overheads, these
approaches are not practical for durable transactions.

Moreover, a common technique for boundless detection is to
use address signatures that represent the read- and write-sets
of transactions [12], [64]. The address signatures are managed
based on hardware bloom filters and can encode unlimited
addresses, thus making transactions unbounded. Unfortunately,
this approach ends up with a lot of false positives, leading
to many unnecessary aborts. Given the nature of durable
transactions whose data footprint easily exceeds a few hundreds
of KBs2, the signature bloom filters are quickly saturated
generating many false positives. Thus, the address signature-
based approach is vulnerable to false aborts. In our experiments,
we observed that transactions could not make forward progress

2We measured the footprints of transactions in SQLite using Mobibench [29].
The sizes of read- and write-sets are about 160KB and 100KB, respectively.

without serialization if address signatures are only used to
detect conflicts (see Section VI). Therefore, reducing the false
positives of address signatures is critical to make unbounded
HTMs efficient.

Finally, OneTM eases the management of capacity overflows
by limiting a single overflow transaction at a time [7].
However, running a single overflow transaction will cause
performance bottleneck as transaction sizes increase. On the
other hand, TokenTM detects conflict using tokens allocated
for every memory block [8]. Although TokenTM can support
unbounded transactions, token management is costly in the
hybrid DRAM/NVM memory system. Releasing tokens on
commit or abort requires to walk the log in DRAM, whose
cost is linear to transaction sizes.

B. Limitations of Previous Durable HTMs

With demanding requirements of persistent programming,
there have been a variety of studies proposing durable trans-
actions in software [14], [15], [36], [39], [59]. Unfortunately,
the software-based approaches cause a significant performance
degradation due to ordering stores in logging [53], [54] and
identifying conflicts (e.g., validation) when committing [9].

To overcome the limitations of software-based approaches,
researchers proposed the hardware support to extend HTM for
durability support with hardware-based logging [17], [28], [31],
[46], [53]. Since they use Intel RTM-like HTM, which relies
on the cache-coherence protocol to detect conflicts within the
L1 cache only, PTM [61], NV-HTM [10], and PHyTM [3] all
restrict durable transactions so that they fit in the L1 cache.
If a transaction footprint exceeds the L1 cache boundary,
it either restarts or falls back to the slow-path provided
by programmers—which eventually serializes transactions.
Recently, DHTM extends the transactional boundary to the
last-level cache to reduce the serialization due to frequent
L1-overflow [30]. However, this is not a safeguard to prevent
capacity overflow fundamentally, e.g., for long-running and
read-only transactions in real-world applications [18], [19],
[38], [48], [57], [62], DHTM inevitably generates capacity
overflows. Consequently, none of the previous studies, that
propose durable HTM, supports unbounded transactions.
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Fig. 1: An example of a durable transaction that manipulates
both DRAM and NVM data.

C. UHTM’s Approaches

UHTM uniquely positions itself, as shown in the last row
of Table I. For conflict detection, this paper proposes to use
the staged detection technique that can minimize the false-
positive rate of address signatures. That is, UHTM integrates
the cache-coherence protocol for removing false positives in on-
chip caches and the signature isolation technique for reducing
false conflicts in off-chip memories. For version management,
UHTM allows both DRAM and NVM data to be managed in a
transaction to respond to a compelling need for such a seamless
interplay (see Section III-A). The novelty of the UHTM design
is two-fold: undo logging only for cache-evicted DRAM data
and applying different logging for DRAM and NVM data.

III. MOTIVATION

A. Using DRAM in Durable Transactions

Two trends lead to the advent of a new persistency model
where DRAM and NVM objects are managed in a transaction.
First, the need for ease of programming and the flexibility
demand drive the removal of the restriction that forces to man-
age either non-persistent or persistent objects only [20], [56].
Recent persistent programming models such as AutoPersist [56]
and Go-pmem [20] allow persistent and non-persistent data to
seamlessly interact with each other in a transaction.

Second, the demand for high performance puts significant
pressure on the data management, pushing transactions to
manipulate non-persistent data structures therein to improve the
performance [5], [23], [34], [41], [63]. For example, Figure 1
represents the code fragment of inserting a new key-value
pair into a hybrid persistent kv-store [63]3 that maintains
two indexes, b+tree and hash-table. The b+tree is placed in
DRAM to accelerate a scan operation while others such as
put/get/update/delete use the hash-table in NVM. Since these
two indexes have to be synchronized, a transaction includes
both indexes and updates them atomically. Furthermore, other
proposals employ a hybrid memory design using DRAM
to offset the performance of slow NVM [5], [23], [34]. If
transactions do not allow manipulating both memory types,
persistent programming becomes increasingly tricky.

The takeaway is that HTM acceleration of such persistent
programming models must ensure consistency for both between
persistent and non-persistent objects and handle their inter-
dependencies. In this respect, an important implication is that

3We replaced mutex-based critical sections to transactions.

not only NVM stores but DRAM stores also have to be logged
since transaction aborts are more common than power failures.
In other words, commit and abort protocols must preserve the
consistency of both memory types. Similar to persistent data,
where failure-atomic updates guarantee its atomicity, volatile
data also needs to be handled atomically.

Unfortunately, supporting both volatile and persistent mem-
ory requires a significant redesign of existing systems. DHTM,
the start-of-the-art durable HTM proposal, leaves this chal-
lenge unanswered and handles persistent data only within
transactions [30]. Other durable HTM solutions have the same
limitation as well [3], [10], [61]. On the other hand, prior
unbounded HTMs for volatile data are vulnerable to a high
abort rate even if they are modified to support failure-atomicity.
Given all this, we design UHTM to address the unbounded
hardware transactional memory for both DRAM and NVM
data. To the best of our knowledge, no prior study supports
their interaction within a transaction.

B. Handling Transaction Overflows

Commercial HTMs do not guarantee forward progress [26],
[47], [60]. In addition to its concurrency control mechanism
contributing to this, the capacity overflow makes for-
ward progress more difficult by aborting transactions that
grow beyond the hardware limitation. Previous works rely
on the cache coherence to detect conflicts and, hence, limit
the transaction boundary within the on-chip cache size (e.g.,
L1-cache [10], [61] and LLC [30]). If footprints of transactions
exceed the boundary, transactions abort since HTM can no
longer support correctness. According to our experiments,
capacity overflows slow down applications by up to 6.2x (See
Section III-C). This limitation hinders a wide adoption of HTM
to existing applications [11], [32].

For handling capacity overflows, a common practice requires
a programmer to provide the slow-path that serializes trans-
actions. Algorithm 1 shows the example code of handling
transactions for Intel RTM [26]. This practice applies similarly
to other commercial HTMs as well [47], [60]. When the
transaction starts (line 3) and the lock is available (line 4),
transactions execute concurrently in a fast-path, indicated
by Ê. Otherwise, the transaction aborts the execution (line
8) and waits until the lock becomes available (line 12). If
capacity overflows are detected (line 15), the transaction jumps
to the slow-path (indicated by Ë) without retrying because
capacity overflows tend to happen repeatedly even after restarts.
Hence, the slow-path serializes transactions to avoid wasting
more cycles for retrying. In the absence of capacity overflows,
the execution also falls back to the slow-path after the maximum
number of retries (line 18).

This practice significantly degrades the concurrency as well
as forces programmers to reason about hardware limitations
and optimize transactions in order to minimize the overflows.
This paper tackles this problem by proposing the unbounded
hardware transactional memory.
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Algorithm 1 Hardware Transactional Memory Programming.

1: function run transaction
2: while 1 do
3: if xbegin() = XBEGIN STARTED then
4: if !lock.isLocked() then
5: fast-path . Ê
6: xend(); return
7: end if
8: xabort()
9: end if

10: if XABORT EXPLICIT then
11: while lock.isLocked() do
12: pause()
13: end while
14: end if
15: if XABORT CAPACITY then
16: break
17: end if
18: if N retries ≥Max retries then
19: break
20: end if
21: end while
22: lock.acquire()
23: slow-path . Ë
24: lock.release()
25: end function

C. Why Overflows Matter?

Previous work extends the transaction boundary beyond
L1 cache up to the last-level cache because the sizes of
transactions in modern applications exceed the L1 cache
capacity [11], [30], [32]. However, LLC is no longer the
safety line to avoid such costly capacity overflows. First, the
software and hardware trends encourage the consolidation of
workloads, bearing heavy contention in LLC. Given that cloud
infrastructures already have adopted persistent memory [21], the
rapid spread of lightweight container platforms is to increase the
consolidation level to overcome heavyweight virtualization. All
these trends imply that the number of applications in the system
and thereby the contention on the LLC will increase, which
renders LLC overflows the real problem. We found that even
a single memory-intensive application (e.g., graph500) could
consume all of the shared LLC, preventing other processes from
occupying LLC during 52% of its execution time. Therefore,
if such applications run with failure-atomic transactions, the
overflow from the private caches leads to overflow in LLC in
a cascade.

Second, even if most transactions are small size, there are
large transactions that exceed the on-chip cache capacity: long-
running, read-only transactions are often used in both real-world
applications and research proposals [19], [35], [38], [48], [57],
[62]. Although they are not frequent (e.g., less than 1% of
the total transactions), the resulting throughput is substantially
decreased—because they are prone to capacity overflows. When
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Fig. 2: Comparing throughput of LLC-Bounded to Ideal
unbounded HTM with running 16 threads.

the capacity overflow occurs, not only the long-running, read-
only transaction but other transactions—that are short and
prevalent—also should be blocked.

Furthermore, capacity overflows are hard to prevent. Al-
though programmers design transactions to fit in the hardware
limitation, transactions still may be overflowed due to con-
tentions in the shared resources [27], [30], [32], [60]. Also, once
the capacity overflow occurs, a transaction would repeatedly
encounter the same capacity overflow even though it restarts—
since the contention in the shared resources may still exist.
Hence, it is an urgent need to unshackle the size limitation of
hardware transactional memory to eliminate the performance
slowdown due to the overflows.

To quantify the impact of capacity overflows, we compared
the throughput of two HTM systems. The LLC-bounded
HTM system extends the cache coherence protocol to detect
conflicts within the last-level cache, similar to the recent study,
i.e., DHTM [30]. For the unbounded HTM, we assume that
it is capable of perfect conflict detection for unbounded
memory spaces (having no false positive). Section V provides
detailed configurations. As shown in Figure 2, we observed
that the LLC-bounded HTM is up to 6.2x slower than the ideal
unbounded HTM.

D. Need for Unboundedness

In summary, the advantages of supporting the unboundedness
in HTM is two-fold; (1) high performance and (2) convenient
programming. First, transactions no longer experience capacity
overflows and, hence, do not execute the slow, serialized
path used to guarantee forward progress in the current best-
efforts HTM, achieving a significant performance boost as
elaborated in Section III-C. Second, the unboundedness allows
programmers to have less burden in designing transaction
boundaries by hiding hardware limitations. This guarantee
not only makes the programming simple but reduces the
development cost. For example, the best-effort, bounded HTM
even requires redesigning index structures to accommodate
HTM into database systems [32]. Thus, the unbounded HTM
remedies the complexity and, as a consequence, catalyzes the
adoption of HTM into the wide range of existing applications.
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Fig. 3: The hybrid version management scheme of UHTM.

IV. UHTM

A. Overview

To this end, we propose UHTM that provides unbounded
hardware transactions for hybrid DRAM and NVM memory
system. UHTM satisfies all ACID properties. The design of
UHTM is summarized as follows:

• For atomic-durability, UHTM proposes the hybrid hard-
ware logging that minimizes the commit latency. For
non-persistent data, UHTM uses undo logging while
performing the redo logging for persistent data.

• To preserve non-persistent and persistent data of the same
transaction consistent, UHTM performs different commit
and abort protocols for non-persistent or persistent data
since it offers different logging techniques.

• For isolation, UHTM leverages the cache coherence
protocol to detect conflicts within the on-chip cache and
relies on address signatures to detect conflicts beyond
on-chip caches. By placing the address signatures on
the memory bus and checking conflicts only for LLC-
overflowed blocks, UHTM substantially reduces the false-
positive rate.

B. Atomic-Durability

In this section, we explain how UHTM guarantees atomicity
and durability. Atomicity applies for both DRAM and NVM
data and requires to make modifications visible at once
when commits. UHTM supports atomicity via logging for
both DRAM and NVM data. On the other hand, durability
only correlates with NVM data and requires to flush all
modifications to NVM before a transaction commits. Based on
this observation, UHTM proposes the hybrid scheme that
uses the eager version management for data in on-chip caches
and DRAM while applying the lazy policy for NVM data.
Figure 3 illustrates the hybrid version management scheme. All
NVM updates within transactions are logged with new value
and flushed to NVM for durability. On the other hand, for
DRAM data, logging is only used for overflowed blocks. We
explain the rationale behind this design decision and how to
handle data in on-chip caches.

UHTM reserves the part of the DRAM and NVM regions
for the log area. The log area is only accessible to the memory
controllers upon committing or aborting transactions. The

memory controllers serialize and append concurrent log writes
to the end of the log area.
On-chip Caches. UHTM allows the changes to overwrite data
in on-chip caches (known as the eager version management)
and does not store its copies in speculative buffers, such as logs.
Instead, if a transaction attempts to overwrite dirty cache blocks
that belong to DRAM, UHTM write-backs them to DRAM
before overwriting. UHTM invalidates modified cache blocks
when the transaction aborts (See Section IV-C). On a transaction
commit, UHTM makes transactional DRAM data visible in
their coherence states without flushing them to DRAM. In
this way, the abort and commit in UHTM are fast for volatile
transactions.
DRAM Data. On the other hand, DRAM data evicted from
on-chip caches require logging for correct recovery. Figure 4a
shows two different logging strategies. Undo-based logging
copies an original value in DRAM to a log, and an overflowed
block overwrites in-place location (as the eager version
management). In contrast, the redo approach keeps new values
of overflowed blocks in the log while in-place data remain
unmodified (as the lazy version management).

For this reason, UHTM employs eager version manage-
ment. Whenever evicting DRAM data from LLC, the memory
controller copies data in DRAM (e.g., old versions) to the log
before handling the cache eviction. Since the cache eviction
is not in the critical path, the undo logging can happen
asynchronously without stalling the transaction.

The eager policy better suits for the LLC-evicted DRAM
data for two reasons. First, it provides faster commits than lazy
version management. As shown in Figure 4c, undo logging can
finalize the commit protocol immediately by placing the commit
mark on the log because all changes are already applied. In
contrast, redo logging suffers from the copying of new values
in logs, making them commit slow. Although eager version
management has to recover overflowed blocks by using undo-
logs when aborting the transaction, UHTM prioritizes commits,
which is more common than aborts.

Second, the eager policy does not suffer from a read-
indirection problem. Once the LLC-overflow happens, redo
logging stores new values in logs while leaving in-place data
unmodified. Therefore, to locate new values, DRAM read
must query the log before accessing its address in DRAM
(shown in the right figure of Figure 4b). Indexing the log area
often necessitates multiple DRAM accesses, slowing down the
DRAM read performance. On the other hand, undo logging
is free from this limitation. As shown in the left figure of
Figure 4b, DRAM read can get data in its address directly
without log lookup.
NVM Data. Unlike DRAM data, durable transactions must
write-back NVM data from caches for durability when they
commit. UHTM uses the previous study that provides hardware-
based logging for persistent data [28]. The prior work proposed
a commit protocol based on redo-logging. It flushes modified
cache blocks that belong to NVM to a DRAM cache, which
is placed between LLC and NVM, while not deleting redo
log entries. The DRAM cache buffers LLC-overflowed blocks
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Fig. 4: Comparison of undo and redo logging for DRAM data of LLC-overflowed blocks.

(referred to as early-evicted blocks in [28]) and replaces
the NVM log searches with faster DRAM searches. Later, it
updates in-place data through eviction from the DRAM cache
without copying from the log. It provides fast commits and
saving NVM bandwidth. Note that UHTM does not bound
to the prior redo logging [28], but other designs for durable
logging for persistent data can also be used [17], [30], [31],
[46], [53].

As other failure-atomic updates do, UHTM also flushes
modified cache blocks to NVM when it commits a transaction.
To find a write-set in L1-cache, UHTM refers to a write-bit in
L1-resident cache blocks. However, locating the write-set in
the shared LLC and the DRAM cache is not trivial. Scanning
the shared LLC and DRAM cache whenever committing a
transaction increases the commit latency and would hamper
other transactions to access them. To this end, UHTM uses
the overflow list to store addresses of L1-evicted blocks
to reduce the latency of locating the write-set in LLC and
DRAM cache, similar to the previous study [30]. UHTM avoids
scanning the entire LLC or the DRAM cache by referring to
the overflow list when committing or aborting transactions.
UHTM stores the overflow list in the DRAM cache.

UHTM starts a commit protocol to DRAM and NVM in
parallel. First, the commit protocol for NVM data waits until
all redo-logs become durable in the NVM logs. Then, UHTM
accesses to the overflow list stored in the DRAM cache and
performs the following actions depending on whether the
address belongs to DRAM or NVM. Non-persistent DRAM
data are marked visible in their coherence states while persistent
NVM data are flushed to the DRAM cache. Meanwhile,
the commit for LLC-overflowed DRAM data is done after
writing the commit-mark on the DRAM log. When the commit
protocols for DRAM and NVM are completed, UHTM finalizes
the commit procedure.

C. Consistency and Data Recovery

This section explains how UHTM preserves consistency
when aborting a transaction that manipulated both DRAM and
NVM data due to a conflict or restarting one from a failure.
Transaction ID, a monotonically increasing global counter, is
stored in a register on each core and uniquely identifies a
transaction, defining the boundary of preserving consistency.

UHTM restores the program state from a power failure with
NVM data only. UHTM replays the committed redo entries
in the NVM log area and disregards the uncommitted one,
as same as the recovery of redo-logging in the conventional
database logging. The programmers’ responsibility is to place
data structures in NVM if they are necessary for data recovery.

On the other hand, UHTM guarantees the consistency of
both DRAM and NVM data in conflicted transactions. When a
conflict is detected (Section IV-D describes conflict detection
of UHTM), UHTM aborts the conflicted transaction by rolling
back to the previous consistent state of DRAM and NVM.
The abort protocol of UHTM consists of two stages: aborting
on-chip states and off-chip states. Abort protocols for all stages
begin in parallel.

On-chip states. On aborts, UHTM flushes all pipeline states
of a core at first and invalidates all cache blocks modified
by the aborting transaction. For cache blocks in the private
cache, UHTM identifies cache blocks with a write-bit set
and invalidates them while UHTM accesses the overflow list
to locate modified blocks in LLC. Then, UHTM sends an
invalidation request for blocks stored in the overflow list.

DRAM. Since UHTM keeps old versions in the log area, it
needs to restore in-place data with old values in the log when
aborting the transaction. Specifically, UHTM finds log entries
of the aborted transaction in the log area and copies the content
to in-place locations. Although the abort process is expensive in
exchange for fast commits, UHTM optimizes commits instead
of aborts.

NVM. Aborting persistent data in UHTM consists of two
steps; the DRAM cache and redo logs in NVM. First, UHTM
obtains addresses of uncommitted blocks in the DRAM cache
by accessing the overflow list and invalidates them by setting
an invalidate bit. Next, UHTM needs to delete logs of aborted
transactions. However, searching logs involves scanning the
NVM log area, making the abort procedure slow. Hence, to
reduce the abort latency, UHTM defers log deletion to the
background and completes the abort protocol after marking an
abort flag. Later, the log reclaiming policy deletes logs in a
similar way that the prior work has proposed [28].
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D. Isolation

UHTM guarantees serializability, where the concurrent and
serial executions produce the same output. This guarantee is
identical to what other hardware transactional memory systems
guarantee both in commercial [26], [47], [60] and literature [3],
[10], [30], [42], [61]. UHTM proposes the staged conflict
detection mechanism that uses different methods in on-chip
caches and off-chip memory. Figure 5 illustrates the conflict
detection mechanism for UHTM. UHTM extends the directory-
based cache coherence protocol to detect conflicts in on-chip
caches, which is accurate, while it uses address signatures
for overflowed blocks in off-chip memory, which provide an
unlimited range. UHTM uses the eager conflict detection
policy for both on- and off-chip memory but differs in how
to resolve conflicts whether detected in on-chip caches or
off-chip memory. We explain the conflict resolution policy in
Section IV-E.
On-chip caches. UHTM extends the directory-based cache
coherence protocol without changing coherence states. UHTM
introduces new fields in the directory entry; Tx-bit, Tx-Owner,
and Tx-Sharer. When a core has read or written blocks in
the transaction context, UHTM sets the Tx-bit of the directory
entry. The Tx-Owner and Tx-Sharer fields identify the
owner transaction that modifies the block and sharers that
read the block, respectively. These fields store the transaction
IDs, instead of core IDs to handle a context switch (see
Section IV-E). UHTM clears the Tx-Set, Tx-Owner, and Tx-
Sharer in the directory entry and the address signatures when
transactions commit or abort.

When the directory receives the coherence requests that
demand blocks with the Tx-bit set, UHTM starts checking
conflict conditions such as read-after-write, write-after-write,
or write-after-read. For example, if it receives an exclusive
request (e.g., GetM), UHTM determines it as either a read-
after-write conflict if the block has a sharer in Tx-Sharer
or a write-after-write conflict if its Tx-Owner exists. When
a shared request (e.g., GetS) arrives, and its Tx-Owner set,
then it is a write-after-read conflict. The conflict detection
mechanism of UHTM is similar to the one of LogTM [42]
but is different in the case of cache overflow. UHTM uses the
address signatures, explained below, for cache overflow instead
of sticky states in LogTM.

Overflowed? Action
On-chip Cache One Abort non-overflowed Tx

None or both Requester-Wins
Off-chip Memory One Abort non-overflowed Tx

None or both Requester-Aborts

TABLE II: The conflict resolution policy of UHTM.

Overflowed blocks. The cache coherence is not sufficient to
detect conflicts on overflowed blocks. The naive approach of
identifying conflicts on overflowed blocks is to walk the log
area and match an address in the log. Since this approach is
infeasible due to long latency, UHTM needs to detect conflicts
on overflowed blocks without accessing memory.

For this purpose, UHTM uses the address signatures pro-
posed in previous studies [12], [30], [55], [64]. The signatures
are implemented in the HW bloom filter and encode addresses
of overflowed blocks. Each transaction has separate read- and
write-signature. They can determine conflicts in unlimited
space but may produce a false-positive. Previous studies place
the signature in L1-cache and check all incoming coherence
messages [10], [12], [55], [61], [64] or L1-missed requests [30].
Unfortunately, this design results in a very high false-positive
rate and aborts non-conflicting transactions. We observed that
abort rates increase beyond 99% even if using large signatures
(e.g., 16k-bit). Most aborts were due to false-positives. On
the other hand, UHTM checks signatures with the address of
the LLC-missed request only. Therefore, UHTM drastically
reduces the false-positive rates from 99% to 26%.
Optimization. Using address signatures for cache-overflowed
blocks arises a unique challenge that aborts transactions if
they conflict with a non-transactional context. Signature arrays
are vulnerable to such false-conflicts since all LLC-missed
requests must be checked to provide correctness. For example,
background processes, which are completely unrelated to
durable transactions, could abort the transaction if signature
arrays detect it as a conflict (but it is false-positive). We
observed that such false-conflicts increased the abort rate further
by 17%. To reduce the false-positive rates, UHTM proposes the
signature isolation technique that confines address signatures
by defining the conflict domain. The conflict domain denotes a
group of transactions that share the address space and, therefore,
potentially conflict with each other. We modified the pthread
library to generate a transaction group ID shared by threads in
the process. The signature isolation technique does not require
modifications to applications. By grouping address signatures
with the group ID and eliminating false conflicts between
processes, UHTM further decreases the false-positive rates
from 26% to 9%.

E. Discussion

Conflict detection and resolution. UHTM enforces the pes-
simistic (eager) detection strategy. In the conflicting cases,
one of the transactions has to abort and restart with a random
backoff delay to avoid subsequent aborts. If only one transaction
overflowed between two conflicted transactions, UHTM aborts
the non-overflowed transaction to prioritize the overflowed one.
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Table II summarizes the conflict resolution policy of UHTM.
UHTM maintains the transaction status structure (TSS) to track
the status of all running transactions, whose entry consists of
the transaction ID, abortion flag, and the overflow bit. If UHTM
detects a conflict, it marks the abortion flag of the aborted
transaction in the TSS and signals to the thread to abort the
execution. In the case of capacity overflow, UHTM sets its
overflow bit in the TSS. If two overflowed (or non-overflowed)
transactions encountered a conflict with each other, UHTM uses
the different strategies whether the conflict occurs in on-chip
caches or off-chip memory. For conflicts found within on-chip
caches, UHTM uses the requester-wins policy [2], [26], which
prioritizes the transaction that requests later. On the other hand,
for conflicts of overflowed blocks, UHTM aborts the transaction
that requests later by the requester-loses policy because
the policy does not require extra communication between
processors. The requester-wins/-loses policy may produce a
cyclic abortion [2], [4], [51], [65], leading to livelock. UHTM
leaves this problem to the future work.
Context switch. UHTM preserves contexts of transactions
for conflict detection and version management across context
switches by virtualizing the transaction ID. First, the directory
and address signatures use the transaction ID instead of the
CPU ID to locate the correct thread running the transaction
after context switches. For example, when a transaction aborts,
UHTM broadcasts the aborted transaction ID to all CPUs and
aborts the transaction if it matches its transaction ID of a
received CPU. Furthermore, UHTM offers conflict detection
during context switches as well.

If the aborted transaction belongs to a suspended thread, the
broadcast will not receive its acknowledge. In this case, UHTM
sets the abortion flag in the TSS of the aborted transaction.
Then, it proceeds an abort protocol by invalidating cache blocks
in the write-set of the aborted transaction in LLC and requesting
an abort message to DRAM and NVM with its transaction ID.
When the suspended thread resumes, it restarts by checking
the abortion flag in the TSS.

Moreover, a transaction must find the write-set in the private
cache of the CPU, which it runs on, whenever it either commits
or aborts. Therefore, UHTM flushes modified data of both
DRAM and NVM in the private cache to the LLC on context
switch. The latency of flushing the private cache can be reduced
by the hardware support [49]. Later, UHTM correctly locates
these blocks in the LLC without asking the other CPUs and
flushes to NVM.
Hardware overheads. UHTM adds the hardware overheads on
top of Intel RTM-like HTM and includes hardware overheads
of the previous hardware-logging design [28], such as a DRAM
cache. Also, UHTM adds registers for the transaction ID, the
transaction status structure (TSS), and the start address of
the overflow list to each core. Moreover, UHTM extends
the directory for cache-coherence with additional fields on
each entry; Tx-Set, Tx-Owner, and Tx-Sharer. It also requires
separate read-/write-address signatures for each core. The
log areas of DRAM and NVM are reserved during system
initialization and not accessible by software. If the log is out

Processor 16-core, 2GHz, in-order
L1 I/D Cache Private 32KB, 8-way
L1 Latency 1.5ns
L2 Cache Shared 16MB, 16-way
L2 Latency 15ns
DRAM Latency Read/Write = 82ns
NVM Latency Read = 175ns, Write = 94ns

TABLE III: Simulation configuration.

Benchmarks Description
HashMap [25] Insert/update entries in hash table

B-Tree [25] Insert/update nodes in b-tree
RB-Tree [25] Insert/update nodes in red-black tree
SkipList [25] Insert/update entries in skip-list
Hybrid-Index
KV-Store [63]

Insert/update in KV-store
with two indexes in DRAM and in NVM

Dual
KV-Store [23]

Insert/update in KV-store
with two data structures in DRAM and NVM

Echo [5] Insert/update KV-pairs to persistent hash table

TABLE IV: List of benchmarks used in our evaluation.

of free space, UHTM traps the operating system to expand the
log area, similar to previous studies [28], [31].

V. METHODOLOGY

Our evaluation uses the system-call emulation mode of
the gem5 simulator [6]. Table III summarizes the simulation
configuration. We configured our system to have a 16-core
multicore and two-level cache hierarchy. Each core has a 32KB
private L1 I-cache and D-cache and shares 16MB of the last-
level cache. We measured latency from the real persistent
memory module [24] and set 175ns and 94ns for read and write
latency of NVM, respectively. The write latency is faster than
read latency since the NVM write finishes when the memory
controller accepts the request in the write-pending queue. The
durability of pending write requests in the memory controller
is guaranteed by asynchronous DRAM refresh (ADR).

Table IV presents the benchmarks used in our evalua-
tion. We use micro-benchmarks such as HashMap, B-Tree,
RB-Tree, and SkipList data structures provided in the
Intel PMDK library [25]. We evaluated these benchmarks with
persistent and volatile versions. The volatile versions keep all
data in DRAM while the persistent versions store all data in
NVM. We also evaluated UHTM with in-house hybrid key-
value stores. They resemble the recent studies of persistent
key-value stores [23], [41], [63]. The Hybrid-Index key-
value store maintains two separate indexes, one for DRAM
(e.g., B-Tree) and another for NVM (e.g., HashMap) while data
are only stored in NVM [63]. Another hybrid key-value store
we evaluated is referred to as Dual key-value store, which
maintains two identical data structures (e.g., HashMap) and
stores one in DRAM and another in NVM [23]. The foreground
threads handle user requests and deal with the DRAM data
structure. The foreground and background threads commu-
nicate through cross-referencing logs that operate similar to
a producer-consumer model. The backend threads keep data
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Fig. 6: Throughput of PMDK benchmarks and Echo key-
value store running transactions of 100KB footprints. Plots are
normalized to LLC-Bounded HTM.

structures in DRAM and NVM consistent. These hybrid key-
value stores represent transactions manipulating both DRAM
and NVM data. For the last class of benchmarks, we use
the Echo key-value store from the WHISPER benchmark
suite [43]. The master thread of the Echo key-value store
manages a persistent hash table while clients threads batch and
send updates to the master.

For all experiments, we consolidated four benchmarks with
four threads. We evaluated our design with different footprints
of transactions, ranging from 100KB to 500KB, which we
controlled with the number of operations in a single batch. We
decided to use a few hundred KBs footprints based on our
measurements of SQLite transactions using Mobibench [29].
We found that they have about 160KB for read-set and 100KB
for a write-set, respectively, when inserting a single entry to a
database table. Furthermore, the sizes of durable transactions
are expected to grow due to the failure-atomicity, which
involves multiple data structures to be consistently updated [45].

To evaluate UHTM, we compare the following designs.

• LLC-Bounded HTM. The baseline hardware transac-
tional memory system which provides durability through
hardware-supported redo-based logging. This design limits
the transaction boundary to on-chip caches since it uses the
cache coherence to detect conflicts. This implementation
is similar to the previous study [30].

• Signature-Only HTM. This represents a naive implemen-
tation of unbounded HTM system and is an extension of
previous HTM systems to non-volatile memory [12], [64].
This system detects conflicts with only address signatures
by checking all coherence traffics.

• UHTM. Proposed hardware transaction memory imple-
mentation that supports both durability and the unbound-
edness. This design provides unbounded transactions by
incorporating address signatures for overflowed blocks
and hybrid logging for DRAM and NVM data. We denote
UHTM in two labels; xxx_sig and xxx_opt, which
represents UHTM with and without the optimization of
confining conflict domains, respectively, while xxx is the

size of signatures.
• Ideal Unbounded HTM. The ideal hardware transac-

tional memory system which provides unboundedness and
durability. The conflict detection for overflowed blocks
never produces a false-positive.

For LLC-Bounded HTM, a transaction does not attempt
to retry if the transaction has overflowed and executes the
slow-path right away.

VI. EVALUATION

A. Persistent Hardware Transactions

In this section, we report the evaluation of UHTM with
durable transactions having NVM data only. Figure 6 shows the
throughput of PMDK benchmarks such as HashMap, B-Tree,
RB-Tree, and SkipList, and the real-world application,
KV-Echo. Figure 7 demonstrates the abort rates with the
cause of aborting transactions. Each benchmark either inserts
or updates the persistent data structure with the value size
of 100KB. We also run two memory-intensive applications
to emulate contention in LLC. Note that they also can cause
transactions to abort by false-positivies in address signatures.

First, the capacity overflow significantly hurts throughput
of durable transactions. HashMap does not experience the
capacity overflows, and hence, the LLC-bounded HTM and
UHTM do not show the difference in the transaction throughput.
Since HashMap has a shorter transaction latency, the capacity
overflow does not happen in this benchmark while it happens
in others. Nevertheless, the capacity overflow severely degrades
the throughput. For example, B-Tree and SkipList bench-
marks incur 8.2x and 6.7x slowdown while RB-Tree and
Echo show 2.7x and 2.5x throughput degradation, respectively.
In particular, UHTM shows a substantial speed-up for B-Tree,
RB-Tree, and Echo benchmarks, making them comparable
to the ideal performance. On the other hand, UHTM under-
performs in SkipList, showing less than 2x speed-up
compared to the LLC-Bounded baseline while the ideal one
achieves 7x speed-up. It turns out that UHTM ends up with
many false-positives while SkipList traverse the list, which
significantly diminishes throughput by false conflicts.

Second, reducing the false-positive rate of the address
signatures is critical. Signature-only HTM systems produce the
very high abort rates due to false-positives of address signatures.
They under-perform even compared to LLC-bounded systems.
Therefore, the key to designing efficient unbounded HTM is
to maintain the false-positive rates of address signatures low.
Figure 7 shows the abort rates of each signature configuration
of UHTM and decomposes the cause of the abortion (e.g.,
true or false conflicts, and overflows). The x-axis of the
figure represents the footprint of each transaction while
labels on the figure, xxx_sig, represents UHTM with the
address signatures of size xxx-bit. As the size of transaction
increases, so do the abort rates. Although UHTM provides the
performance gain over the LLC-bounded baseline as the size
of signatures increases (from 512 sig to 4k sig), it requires
more space overheads for large signatures.
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Fig. 8: Transaction throughput of Echo key-value stores with
long-running read-only transactions.

Lastly, when consolidating multiple persistent applications,
UHTM’s optimization that confines conflict domains of hard-
ware transactions eliminates false aborts between different
conflict domains, which contributes to a large portion of false-
positives. By grouping address signatures with conflict domains,
UHTM substantially improves throughput since applications
less abort and restart. Furthemore, the signature isolation
technique removes the false conflicts with the memory-intensive
applications. Hence, confining conflict domains is essential to
reduce false-positives of signature-based approaches.

B. Long-running Read-only Transactions

In this section, we demonstrate the need for unbound-
edness with the long-running and read-only transactions in
the Echo KV-store [5] in Figure 8. Long-running and read-
only transactions are rare but have significant implications on
transaction throughput by causing the capacity overflow since
their footprints far exceed the on-chip cache size. We did not
run the memory-intensive applications in this experiment and
configured long-running read-only transactions to be from 0.5%
to 2.0% of the total operations. Each long-running and read-only
transaction performs a batch of get-operations for randomly
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Fig. 9: Evaluation of the hybrid key-value stores [23], [63].

selected KV-pairs for the size of between 8MB and 32MB.
Meanwhile, other transactions have a single put-operation with
a value size of 1KB. As shown in Figure 8, the occurrence of
long-running and read-only transactions drastically degrades
the throughput of the LLC-bounded system. As a result, UHTM
achieves 4.2x throughput improvements when having 0.5% of
long-running read-only transactions. The existence of such
long-running transactions makes bounded HTMs challenging
to offer sustainable throughput. However, UHTM can support
any size of transactions without harming programmability or
performance.
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C. Hybrid Key-Value Stores

Figure 9 shows the results of hybrid-key value stores [23],
[63]. We varied the size of address signatures from 512-bit
to 4k-bit. We increased the footprints of transactions and
did not run LLC-hungry applications. The Hybrid-Index
key-value store, shown in Figure 9a, handles both DRAM
and NVM indexes when inserting a new key-value pair but
only stores data in NVM. The naive UHTM design (noted as
xxx_sig) has poor performance since high false-positive
rates hamper transactions to progress. The false-positive
happens more frequently in hybrid-index key-value stores since
transactions manipulate both DRAM and NVM, increasing the
possibility of overflows. However, the optimization to confine
the conflict domain within the process significantly boosts the
performance by eliminating false-positives between different
conflict domains. This optimization increases the throughput
by 30.5% even with transactions with 600KB footprints, and
the improvement reaches up to 64% with 1.5MB footprints.

On the other hand, the Dual key-value store has lower
overflow rates than other benchmarks. This is because the
communication between foreground and background threads
are out-of-transactions, resulting in low aggregated footprints
of active transactions. However, when overflows have occurred,
the throughput of the LLC-bounded system drops substantially.
Even the naive UHTM shows better performance by 15.6% and
32.6% when the footprints are 1.2MB and 1.5MB, respectively.
The optimization improves performance by 62.3% and 74.7%,
respectively.

D. Volatile Hardware Transactions

In volatile transactions, where all data are non-persistent
(DRAM), the overflowed blocks can be handled in either undo
or redo logging. The debate on which approach is superior to
another depends on the abort rate if not considered capacity
overflows. However, in the presence of overflows, the undo
approach outperforms redo logging.

Figure 10 compares the results of the undo or redo logging
for overflowed DRAM blocks. We averaged the results of

UHTM having 512-bit, 1k-bit, and 4k-bit signatures with the
optimization but only differing logging techniques for DRAM.
When committing transactions, the undo approach ends by
marking the commit mark on the log, offering the fast commit.
On the other hand, the redo log needs to copy new values to
in-place locations, making the transaction commit slow. When
aborting transactions, the trade-off becomes the opposite way.
Not only this trade-off but slow read performance of the redo
approach contribute to low throughput compared to the undo
log. The slow down becomes more significant as overflows are
frequent. Our experimental result shows that the undo approach
outperforms the redo log by 7.5% when footprints are 300KB
(e.g., low overflow rate). When overflows are more frequent,
the performance gap grows further up to 44.7%.

VII. CONCLUSION

To answer the calls for simple yet performant persistent
programming, we presented UHTM supporting unbounded
hardware transactions for DRAM and NVM hybrid memory
systems. UHTM proposed two techniques; the staged conflict
detection and hybrid hardware logging schemes. Experimental
results show that UHTM significantly outperforms the state-of-
the-art that limits the transaction to the size of on-chip caches
and supports NVM data only therein.
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