
AQUOMAN: An Analytic-Query Offloading

Machine

Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim*, Sungjin Lee*, Arvind

MIT CSAIL, DGIST*

{shuotao, bthom, tianhaoh, arvind}@csail.mit.edu, {ghwns9652, sungjin.lee}@dgist.ac.kr*

Abstract—Analytic workloads on terabyte data-sets are often
run in the cloud, where application and storage servers are
separate and connected via network. In order to saturate the
storage bandwidth and to hide the long storage latency, such
a solution requires an expensive server cluster with sufficient
aggregate DRAM capacity and hardware threads. An alternative
solution is to push the query computation into storage servers.

In this paper we present an in-storage Analytics QUery
Offloading MAchiNe (AQUOMAN) to “offload” most SQL oper-
ators, including multi-way joins, to SSDs. AQUOMAN executes
Table Tasks, which apply a static dataflow graph of SQL operators
to relational tables to produce an output table. Table Tasks use a
streaming computation model, which allows AQUOMAN to process
queries with a reasonable amount of DRAM for intermediate
results. AQUOMAN is a general analytic query processor, which
can be integrated in the database software stack transparently.
We have built a prototype of AQUOMAN in FPGAs, and using
TPC-H benchmarks on 1TB data sets, shown that a single
instance of 1TB AQUOMAN disk, on average, can free up 70%
CPU cycles and reduce DRAM usage by 60%. One way to
visualize this saving is to think that if we run queries sequentially
and ignore inter-query page cache reuse, MonetDB running on a
4-core, 16GB-DRAM machine with AQUOMAN augmented SSDs
performs, on average, as well as a MonetDB running on a 32-core,
128GB-DRAM machine with standard SSDs.

Index Terms—Accelerator; SQL analytics; Near-data comput-
ing; FPGA; Flash storage; Database

I. INTRODUCTION

Multi-terabyte/petabyte datasets are now commonplace for

analytic workloads. In 2017, Uber generated 100TB of trip-

tables daily, and analysed 100PB of data for business intel-

ligence [5]. In many cases, the data is stored in relational

format on hard drives and analyzed by SQL database software

such as Presto [2], Vertical [1], and MonetDB [4]. To process

an analytic query, the database software brings the input

data on demand from hard drives to DRAM, and then uses

powerful CPUs to compute with this data. In a data warehousing

architecture in the cloud, application servers and storage servers

are separate and connected via a network [6]. Application

servers initiate analytical queries, fetch data from the central

storage and then process it. Such a “disaggregated” architecture

is popular in the cloud because customers can scale the

application servers and storage servers independently. For

fast query responses, analytical software typically requires

application servers to have sufficient hardware threads (i.e.,

virtual cores) and DRAM to hold the input data to overcome

the long latency, large access granularity and limited bandwidth

of central storage accesses. In April 2020 the largest storage-

optimized Amazon EC2 server (i3.metal) can accommodate

8 1.9TB SSDs, and is equipped with 72 virtual cores and

512GB DRAM. Such large processing power and DRAM are

needed to be able to fully exploit the high-bandwidth of SSDs.

Storage throughput, because of advances in flash technology,

has improved by 13X in the past decade [42], and has greatly

outpaced CPUs ability to process data in memory [20, 37].

As denser and faster storage devices become available in the

future, it will become increasingly difficult for storage servers

to provide sufficient CPUs and DRAM to have a cost-effective

balanced system.

An alternative solution is to push part of query process-

ing to the storage to eliminate unnecessary data movement.

Such a solution has been deployed in several commercial

systems, for example, Oracle Exadata Server [22], IBM

Netezza Machine [46], and IDM [48]. One of the most recent

systems is Amazon Web Services (AWS)’s “S3 Select” feature,

which pushes filter operation to the shared cloud storage

service, and can get up to 4X performance benefits for these

operations [3]. In this paper we propose an in-storage Analytic

QUery Offloading MAchiNe (AQUOMAN), which pushes this

idea of “off-loading” query processing to storage much more

aggressively.

AQUOMAN’s programming model is based on a sequence

of Table Tasks, each of which applies a static dataflow graph

of SQL operators on an input table in a streaming manner

to produce an output table. It takes inputs from flash, in a

file format used by column-oriented database like MonetDB,

because it is better suited for analytic workloads. Given the SQL

query execution plan - a tree of SQL operators - we identify

the subtrees that can be directly translated into Table Tasks. By

employing a streaming model, AQUOMAN significantly reduces

the DRAM requirement for intermediate tables.

We want to keep the memory in AQUOMAN to be small

enough, say 16GB per 1TB-SSD, so that AQUOMAN can

be embedded in an SSD. This prevents us from fully off-

loading some queries, for example, a multi-way join, whose

intermediate tables exceed the DRAM capacity of AQUOMAN.

Despite these limitations (Sec. VI-E), AQUOMAN can profitably

execute the majority of queries in the TPC-H benchmark suite

on a 1TB dataset, giving us an opportunity to reduce both

number of hardware threads and DRAM usage in the host. We

will show, using TPC-H benchmarks on 1TB data sets, that a

single instance of 1TB AQUOMAN disk, on average, can free

up 70% CPU cycles and reduce DRAM usage by 60%. Thus,

386

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00041

Accel. Type Related Work Impl. Supported SQL operator Evaluated TPC-H Queries Data Sz.(GB)

In-memory Q100 [52, 53],MasterOfNone [35] ASIC All All 22 queries w/o regular expression 0.01

In-storage

SmartSSD [18]
ARMs

Filter, Aggregate Group-By Q6, 2 custom queries 100

Summarizer [33] Filter Q1,6,14, a custom query 0.1

Biscuit [23], YourSQL [28] ARMs/ASIC Filter All (8 is partially offloaded) 100

Ibex [51]

FPGA

Filter, Aggregate Group-By Q13, 6 custom queries 10

Insider [42] Filter A Custom Query 60

FCAccel [50] Filter, Aggregate Group-By, Arithmetic Q1,6, and a custom query 100

AQUOMAN FPGA All All (14 are fully offloaded) 1000

TABLE I: Representative near-data SQL accelerators

replacing standard SSDs with AQUOMAN SSDs in database

systems is a sound economic proposition.

One way to visualize this saving is to think that if we run

queries sequentially and ignore inter-query page cache reuse,

MonetDB running on a 4-core, 16GB-DRAM machine with

AQUOMAN augmented SSDs performs, on average, as well as

a MonetDB running on a 32-core, 128GB-DRAM machine

with standard SSDs.

We make the following contributions in this paper:

1. AQUOMAN, a novel microarchitecture for an in-storage

accelerator capable of stream processing a Table Task which

is a static dataflow graph of operators;

2. A complete in-storage solution which can be fully integrated

into a database management software (DBMS);

3. An FPGA-based implementation of AQUOMAN, which can

process data stream at the line-rate of our flash controller;

4. An end-to-end evaluation of AQUOMAN using TPC-H

benchmarks on 1TB data-set against the baseline of an

x86 server with 16 dual-threaded cores and 128GB DRAM.

Paper Organization: We begin with related work in Section

II, followed by examples of translating SQL queries into

dataflow maps (Section III). We then give an overview of AQUO-

MAN (Section IV) and its programming model (Section V).

It is followed by the detailed microarchitecture (Section VI)

and implementation of AQUOMAN (Section VII). We evaluate

the performance of AQUOMAN in Section VIII, followed by a

brief conclusion (Section IX).

II. RELATED WORK

There is a long history of attempts to use specialized

hardware to accelerate database query processing [9, 16, 17] but

it has never caught on. One reason is that the dramatic increase

in processing power and DRAM capacity of commodity

hardware over the last four decades has reduced the incentive

to use special hardware. However, with the rise of specialized

hardware in datacenters [11, 29, 41, 44] and the increase of

storage throughput in the last decade [42], there is a resurgence

of interest in accelerating analytical workload using FPGAs

or ASICs.

Table I gives a summary of the recent work to accelerate

database operations near storage. The first family of In-Storage

Processing (ISP) architectures leverages the existing ARM cores

of the SSD controller to offload simple tasks like filtering [18,

33]. However, the embedded cores in the SSD controller can be

100X slower than x86 cores [47], and offloaded programs can

suffer 10X slowdowns [13]. Biscuit [23] and YourSQL [28] use

embedded processors in conjunction with a pattern-matching

ASIC to offload filtering. They showed offloading filtering is

profitable only when the selectivity is sufficiently high.

Another class of ISP (e.g. Insider [42]) uses FPGAs to

add processing power to SSDs for a variety of applications

to saturate large internal disk bandwidths. One example

application of Insider is offloading database filtering, and it

provides performance benefits similar to the one provided by

a high-end ARM-based solution. Ibex [51] and FCAccel [50]

use FPGAs to offload more SQL operators, such as Aggregate

Group-By, but do not provide a plan to offload a join, which

is one of the most dominant operators in analytic queries such

as TPC-H.

Unlike existing ISP approaches, AQUOMAN offloads all major

types of SQL operators in storage, including the computation-

intensive join. AQUOMAN, given an SQL query plan, regroups

SQL operators as Table Tasks, which is the programming

model for AQUOMAN’s streaming architecture. This enables

a transparent integration of ISP with the existing DBMS

software. It is also important to note that previous database

accelerator research has used much smaller data sets (10MB to

100GB [14, 18, 23, 28, 33, 50, 52]) for evaluation (Table I) and

has not addressed the issue of computing with large dataset. In

the rest of this section we provide a more detailed discussion

of the related work.

In-storage big data analytics framework: As early as 1980’s,

researchers looked for methods to push computation down into

mass storage to process terabytes or even petabytes of data [17].

Following are some of the in-storage frameworks that have

been proposed: DBMS [18, 28, 50], graph analytics [31, 34, 36],

HPC applications [47] or general workloads [13, 15, 23, 26, 30,

33, 38, 42, 43].

The main difference between databases and other big data

applications is that the later usually requires running complex

programs on large data structures designed for the purpose,

while databases are more specific and focus on running

structured queries on relational tables. The shared concerns

include how to reduce DRAM requirements, reduce network

traffic, and exploit the massive internal flash bandwidth.

General database accelerators: Q100 [52, 53] and its newer

variant [35] are general query accelerators based on a pro-

grammable spatial-array architecture. Both systems assume

inputs and outputs are consumed and produced in the main

memory. In terms of executing SQL operators in a data-flow

style, AQUOMAN is similar to Q100 and its variant but it

addresses the main bottlenecks that both architectures ignored:

1. Scalability to larger dataset: Q100’s speedup over single-

thread software dropped 10X-100X on 1GB TPC-H, and it

disappeared almost completely in comparison to multi-threaded

software [52]. The functional tiles for sort and join in Q100’s

ASIC prototype can handle up to 1024 records at 315MHz

387

on a 256-bit datapath (10.08GB/s) [52, 53]. This forces Q100

to divide-and-conquer large input tables to a huge number

of small partitions which causes poor scalability. We have

drastically improved the sorter and the join functional units

in AQUOMAN. Our FPGA sorter can stream-sort 1GB data at

12GB/s, and 256GB data at 6GB/s if there is enough DRAM

accessible to the sorter. We ran AQUOMAN on a 1TB TPC-H

and still showed speedup over a 32-thread software baseline.

2. Routing between functional tiles: Q100 architecture [53]

is built around a complex 2D-mesh network-on-chip (NOC),

which takes 30-50% of the area and could be challenging to

implement in practice. In their more recent work [35], instead

of establishing arbitrary connections between heterogeneous

tiles, they chose a fixed grid of homogeneous core. The

routing simpler but now each tile needed the capabilities of

all the heterogeneous cores of [53]. If the tiles are designed

to process big workloads, its size will become too big to

be realistic. AQUOMAN addresses this issue using a hybrid

solution, which supports the common dataflow with a fixed

pipeline of three different programmable units: selection, map,

SQL swissknife(join/sort/aggregate).

Oracle’s RAPID [7, 8] has a rack-scale many-core system spe-

cialized for big data analytics. At its core sits a power-efficient

general-purpose processor aided by hardware acceleration for

data movement and data partitioning. Unlike AQUOMAN’s

streaming model, the execution model of RAPID is essentially

running map-reduce on many cores. Only very primitive SQL

operators, bit-vector load and filter, are hardware-accelerated

and exposed as special CPU instructions. Mondrian Database

Engine [19] employs a similar approach but uses general-

purpose cores with SIMD extension as a near-memory processor

(NMP) on the logic-layer of a stacked Hybrid-Memory Cube

(HMC).

Accelerators for certain database operators: Examples of

research focused on implementing specific database operators in

hardware include: selection [10, 28, 51, 54], hash join [24, 32],

sort-merge join [10, 12], group-by aggregation [51], pattern

matching [40, 45], and table histogram generation [27]. Most

of these accelerators are attached to memory while a few

operate in storage [27, 28, 51]. Operator-specific accelerators

assist host-side query execution by task offloading. Our work

may use similar operator implementation but our focus is on

entire query execution in storage.

FCAccel [50] aggregates SQL accelerators for selection,

data aggregation, and hashing on a PCIe-attached FPGA. Like

AQUOMAN, FCAccel allows stream processing of selection

and aggregation, but used a different technique by dividing

tables into small data segments buffered in DRAM. FCAccel

is reported to have similar performance as MonetDB running

on RAM-disk. FCAccel proposes a collaborative solution with

the DBMS software for two-way join. Using a custom query

FCAccel shows two tables can be filtered and pre-aggregated

and later hash-joined by the host opportunistically. Unlike

AQUOMAN, it does not offer a plan to offload multi-way joins.

Query-specific reconfigurable accelerators: To avoid the

complexity of designing a general query accelerator, some

researchers propose to reconfigure FPGAs for a specific query.

SQL operators are implemented as hardware libraries in

advance, and are then called and assembled for a particular

analytical workload. For example, [14, 49, 55] provide flexible

hardware templates for common database operators, while [35]

proposes a CGRA architecture where reconfigurable tiles are

organized in a systolic manner. The cost of this methodology

comes from both the reconfiguration overhead as well as the

requirement of using reconfigurable hardware. Baidu [39] has

a hybrid solution; certain fixed-function tiles are connected by

default in a way that is similar to Q100, but some tiles are

reconfigured on demand.

III. DATAFLOW MAP OF A QUERY

We will first discuss the anatomy of query processing on

tables and then describe how these steps are mapped on

AQUOMAN.

Single table query: First, consider the query over a single table

sales_transactions shown in Fig. 1.

SELECT

department,

sum(price*(1-discount)) \

as netsale,

sum(price*(1-discount)*\

(1+tax)) as revenue,

FROM sales_transactions

WHERE saledate<=’2018-12-01’

GROUP BY department;

filter (X <= 1998-12-01)

accNetsale accRevenue
Accumulate

Per Department

discntdpt sdate price tax

discntdpt sdate price tax

X*(1-Y)

X*(1+Y)

netsaledpt revenue

netsaledpt revenue

Fig. 1: Dataflow of an Aggregate Query

The columns of the sales_transactions table

are <tr-ansactionID, department, saledate,

price, disc-ount, tax>. Each row corresponds to a

purchase identified by a unique transactionID, which is

the primary key for this table and the cheapest way to refer to

its rows. From a semantics perspective, the query of Fig. 1

should return the net sale and revenue of each department

before 2018-12-01. To produce such an answer, the DBMS

typically makes what is called a query plan, for example:

1. Filter all rows of the table verifying a predicate: here the

saledate value should be smaller than 2018-12-01.

2. Produce a new intermediate table of three columns <depa-
rtment, netsale, revenue>. Each row of this in-

termediate table is computed purely from each row selected

in Step 1. The department value is directly reported from

the incoming row, while the net sale and revenue values

are simple arithmetic computation based on the price, the

tax and the discount value of the input row.

3. Produce the output table by aggregating the data in the

intermediate table, grouped by department.

Note that the first two operations are map: they apply

functions on each row independently. The last step aggregates

data coming from different rows. Those 3 steps can be thought

of as a dataflow graph which define how rows of the input table

contribute to the query’s answer (See Fig. 1). Actually, the

388

Row

Selector

Page Read Requests/Response

RowVecIDs

NAND Flash (1TB)

Flash Page Buffer (1MB)

Row

Transformer

Update Read

Task

Queue

configure

Table Tasks

Row-Mask Vector

Circular Buffer

(256KB)

Inter.

Columns SQL

Swiss-

knife

DMA

To Host

Table task Response

Operator

Memory

Access

Table task Output

DMA

From

Host

AQUOMAN DRAM

MaskSrc∅
RowID

Sorter

Fig. 2: Overall Architecture of AQUOMAN

User Space

Linux Kernel

Flash Drive

Block Device Driver

Filesystem (e.g. RFS, Ext4..)

Flash Device Driver

AQUOMAN Executor

AQUOMAN Compiler

AQUOMAN-enabled DBMS

NAND Flash Chips DB files

PCIe

AQUOMAN

programs

AQUOMAN

Flash Controller Switch

Host I/O Queues

AQUOMAN

Results

Query Compiler

Query Executor

Fig. 3: System Stack with AQUOMAN

SELECT

sum(price) as shoe_sales

FROM inventory as ti,

sales_transactions as ts

WHERE

ti.invtID=ts.invtID

and ti.category="Shoes"

and ts.saledate>’2018-3-15’;

ti.invtID ts.invtID

Merge when

ti.invtID==ts.invtID

sorted sorted

sorted

… …

Fig. 4: Dataflow of a join query

dataflow of this particular query illustrates a common plan of

row filtering, intermediate table generation and final reductions.

Of course the functions used for row filtering, table creation

and reductions are query specific.The commonality and high

value of this fixed but parameterized dataflow in analytics query

processing makes it possible to design a fixed accelerator to

process such queries efficiently.

Join - a multiple table query: Suppose the sales_transac-

tions table has an extra column to indicate the pur-

chased item. The purchased item is represented as

the inventoryID, which is the primary key of an-

other table, the inventory table. The inventory table

has many columns: <inventoryID, category, quan-

tity, productname, ...>, where category represents

the type of an item.

The following query (Fig. 4) computes the total sale of

shoes sold after ”2018-03-15”.

This query needs to compute a so-called inner equi-join

on the tables inventory and sales_transactions.

Typically, this join query would be processed as follows:

1. Select all the rows that have category ”shoes” in the

inventory.

2. Produce an intermediate table <transactionID,
inve-ntoryID> from the sales_transactions ta-

ble; to get all the items (referred to by inventoryID)

that were sold after 2018-03-15.

3. Merge the two intermediate tables produced by the two

previous step: every items that are shoes (intermediate table

out of Step1) is filtered based on if there exists a sale of

that item within the date specified (intermediate table from

Step 2).

Notice that the Step 1 and 2 are similar to the steps in the

previous example; however in this example they are working

on two different tables. In contrast, Step 3 does not seem to

fit into the fixed dataflow illustrated in the previous example:

it merges data from two intermediate tables.

If we assume that the intermediate tables are generated

sequentially and stored in the accelerator DRAM, then a

streaming sorter can be placed between the producer and the

DRAM, to make the joining easy. Typically these intermediate

data (the keys involved in the join) are small enough to be stored

in few Gigabytes for Terabytes datasets. In rare cases where

the intermediate tables is bigger than the accelerator DRAM,

AQUOMAN would relinquish processing to the host. Joins

require fast hardware sorters to keep up with the streaming

rate of the underlying storage. Two-way join generalizes to

multi-way join by iteratively storing the sorted intermediate

tables in the accelerator DRAM.

IV. OVERVIEW OF AQUOMAN ARCHITECTURE

AQUOMAN targets accelerating column-oriented databases

like MonetDB. We chose MonetDB because in our TPC-H

benchmark evaluation, on average MonetDB was 2X faster

than a commercial row-oriented database. In column-oriented

database systems, a relational table is stored as a collection

of column files. Each column file stores a sequence of

column values in ascending row order in either compressed or

uncompressed format.

A modern flash drive has huge I/O bandwidth which can

easily produce more than one column value per “data beat”.

For example, a flash hardware controller running at 125MHz

with 4GB/s bandwidth is able to produce 32 bytes - equivalent

to 8 32-bit column values - per clock cycle.

To allow line-rate data processing, AQUOMAN processes

the column data files as a collection of Row Vectors, which

consists of 32 column values of consecutive rows, indexed by

Row-Vector ID. A bit-vector that marks which rows have been

selected for processing is also stored as part of the table. The

overall architecture of AQUOMAN is shown in Figure 2.

The heart of AQUOMAN consists of 3 accelerators Row Selec-

tor, Row Transformer and a SQL Swissknife, corresponding to

accelerators for the three kind of dataflow operators identified

in the previous section. AQUOMAN also relies on one extra

Sorter to keep the intermediate streams ordered on the required

keys.

The Row Selector generates the bitvector masks used to

efficiently select the input table data (see Section VI for more

details on the expressivity of the Row Selector). The columns

of the rows that have not been masked and are necessary to

compute the intermediate table are then streamed to the Row

389

Transformer. The Row Transformer is composed of a collection

of Processing Elements organized to apply a stateless function

on each row to produce a new intermediate table. Finally, the

generated rows are fed into the SQL Swissknife. The SQL

Swissknife contains accelerators to perform the standard SQL

operators: accumulate, sort, merge, computes the biggest k

values . . .

The SQL Swissknife is equipped with a direct access to

AQUOMAN’s DRAM, it can leave an intermediate reduced table

in it, or consume an intermediate table from it. We will see the

usefulness of that patterns when discussing the acceleration of

joins. The dataflow between the three accelerators of AQUOMAN

is fixed - the generality and programmability of AQUOMAN

comes from the predicates the Row Selector applies, the

functions the Row Transformer computes, and the operators

the SQL Swissknife runs.

Architecturally speaking, the Row Transformer directly

streams the intermediate table to the SQL Swissknife without

materializing it in DRAM. In the benchmark we evaluated, this

drastically reduced the need of DRAM for AQUOMAN.

V. PROGRAMMING AQUOMAN

Software Interface: As shown in Figure 3, AQUOMAN is

located inside the flash drive, so has direct data access to

the NAND flash arrays. AQUOMAN and the x86-host can both

access NAND flash simultaneously via a flash controller switch

inside the flash device, which fairly arbitrates flash commands

of page read, page write, block erase. User-level applications

can access the flash drive via legacy operating I/O stack, such

as filesytem and block device drive.

In addition to legacy I/O path, AQUOMAN-enabled software

can also send AQUOMAN programs to AQUOMAN inside the

flash drive, which directly reads the required database files,

executes the program and returns their result to the host.

In general a SQL query is compiled to a graph of Table

Task(s). We first describe the structure of a Table Task:

• table specifies the input table of the Table Task.

• maskSrc specifies the source of the row processing masks,

which is generated by a Row Selection Program. It can

come from the Host software, or from AQUOMAN DRAM

if produced by a previous Table Task.

• rowSel specifies a Row Selection Program. This selection

mechanism can only compute single column predicates, but

it provides a fast layer of selectivity to avoid having to

stream all the data to later stages.

• rowTransf specifies a straightline Row Transformation

Program, which is mapped over all the rows to transform

each one into a row of the new intermediate table. The

columns of the intermediate table may be different from

those of the source table.

• operator specifies a reduction function in the SQL

Swissknife as an SQL operation on the output table of Row

Transformation Program. There are seven operators with self-

explanatory names: TOPK, SORT, AGGREGATE_GROUPBY,

AGGREGATE, NOP, MERGE and SORT_MERGE.

• Output specifies the output destination of the Table Task,

which can be either AQUOMAN or the Host.

For simple queries such as the Aggregate Group-By query

of Fig 1, it should be clear from the previous section that only

one table task is needed.

For more complex queries, AQUOMAN programs can have

multiple Table Tasks, each of them run sequentially using an

SQL operator in SQL Swissknife that consumes the data left

by the previous Table Task in the AQUOMAN’s DRAM (See

Sec. VI-D).

auto tabletask_0 = TableTask{

.table = "inventory",

.maskSrc = RowSelectionProgram,

.rowSel = [predicate: category == "shoes"],

.rowTransf = [in: inventoryID][out: inventoryID],

.operator = NOP,

.output = AQUOMAN_MEM_0};

auto tabletask_1 = TableTask{

.table = "sales_transactions",

.maskSrc = RowSelectionProgram,

.rowSel = [predicate: saledate> 2018-03-15’],

.rowTransf = [in: inventoryID][out: inventoryID];

.operator = SORT_MERGE[with AQUOMAN_MEM_0],

.output = AQUOMAN_MEM_1};

auto tabletask_2 = TableTask{

.table = "lineitem",

.maskSrc = AQUOMAN_MEM_1,

.rowSel = [NOP]

.rowTransf = [in: price][out: price];

.operator = AGGREGATE

.output = Host};

Row

Select

Table

Transform

TableTask 0

Row

Select

Table

Transform

TableTask 1

Sort-

Merge
NOP

Join
Aggregate

NOP
Table

Transform

TableTask 2

Table: sales_transactionsTable: inventory

<processing mask><DB Table Data> <Immediate Table>

Fig. 5: JOIN query Table Tasks and their data-flow graph

For example, to accelerate the join query (Fig. 4), the user

can create the three Table Tasks and the associated dataflow

graph as shown in Fig. 5.

Since executing a single Table Task on AQUOMAN can

saturate the flash bandwidth, executing Table Tasks sequentially

is sufficient to keep up the line rate. AQUOMAN records the

intermediate results for the join in its DRAM.

VI. AQUOMAN MICROARCHITECTURE

To execute a Table Task, AQUOMAN first configures the

Row Selector, the Row Transformer and the SQL Swissknife

using the parameters of the first Table Task in the task queue.

Before processing a Row-Vector ID, the Row Selector reserves

a Row-Mask Vector slot in the Row-Mask Vector Array in

circular order. It notifies the Row Transformer by sending it

the Row-Vector ID.

The Row Transformer collects the Row Vectors of the base

table, and applies a table transformation on it to produce the

Row Vectors of the intermediate table. The Row Transformer

then releases the slot in the Row-Mask buffer and passes the

Row Vectors of the intermediate table to the SQL Swissknife

to apply the specified SQL operation on the intermediate table.

The output is written into AQUOMAN DRAM.

390

The AQUOMAN runs the three accelerators simultaneously

in a pipeline fashion, as long as it can reserve a slot in the

row-mask vector array. The maximum number of in-flight Row-

Vector IDs is determined by the depth of the flash command

queue, which determines the size of the Row-Mask Vector

Circular Buffer. For example, for a flash controller with a

command queue of depth of 128, the Row-Mask Vector Circular

Buffer needs to hold a maximum of 128×8K rows of 1-byte

elements or 32K 32-element Row Vectors.

A. Row Selector

The Row Selector is a vector unit in charge of evaluating the

predicate for selection. It accepts predicates in the form: Pr =
F(CP0, . . . ,CPn−1), where CPi is a comparison or an equality

to a constant for the value in column i, and F is a simple

boolean function. For example (price > 25)&(data < 2019−
11−26) is representable with F =& and CP0 = price> 25 and

CP1 < 2019−11−26. The maximum number of permissible

CP terms in a filter predicate is determined by the number of

Column Predicate Evaluators; 4 to 6 evaluators are enough for

most of the filter predicates in TPC-H. When the Row Selector

cannot compute a predicate, e.g. predicates which require more

than one column, or regular-expression filtering, it forwards

them to Row Transformer, the next stage in data-flow.

C
o

lu
m

n

P
re

d
E

va
l

0

C
o

lu
m

n

P
re

d
E

va
l

n
-1

C
o

lu
m

n

P
re

d
E

va
l

1

…

Slot

Reserve

Row-Mask Vector Circular Buffer

rd wr

…

Column 0 Column 1 Column n-1

rd wrrd wr

Predicate

Evaluator

Update

Row Mask

<andMask, orMask>

ColMask

Slot Content

{R
o

w
V

e
cI

D
,

M
a

sk
A

ll
Z

e
ro

}

{R
o

w
V

e
cI

D
,

M
a

sk
A

ll
Z

e
ro

}

Column

Reader

ColData

Flash I/O

Physical

Page ID List

{RowVecID,

MaskAllZero}

Fig. 6: Architecture of Row Vector Selection

B. Row Transformer

The Row Transformer has three components: the Table

Reader, the Row Transformation Systolic Array and the Mask

Reader, as shown in Figure 7.

The Table Reader initiates reading the flash drive when

it receives a Row-Vector ID from the Row Selector. It skips

reading a flash page if all its Row-Vector IDs are marked as

zero in the bitvector mask. The Table Reader streams out Row

Vectors to the Row Transformation Systolic Array in increasing

order of Row-Vector IDs; within each Row-Vector ID, streaming

is done from the leftmost column to the rightmost one.

Inside the Table Reader there is also a Regular-Expression

Accelerator. It pre-processes variable-sized (string) columns

to a one-bit column (true/false). The accelerator has a 1MB

memory to store the strings of the column. 1MB is sufficient

to cover many cases where the strings have a small domain,

for example, the ”country name” column.

The Row Transformation Systolic Array applies a mapping

function to each row of the input table to produce an

intermediate output table. That is, only column data of the

same row are taken together to calculate columns of a new

row.

The Row Transformation Systolic Array is a systolic ar-

chitecture where the transformation function implied by a

query is mapped to an array of PEs. Since the Table Reader

streams out Row Vectors per Row-Vector ID in a fixed order,

we can draw a data-flow graph of transformation steps from the

input columns to output columns. For example, the mapping

of the data-flow graph for the query in Fig. 9 is shown in

Fig. 10. An AQUOMAN compiler can balance transformation

data-flow graph by inserting PASS nodes (NOPs), so that it

can be mapped to the PE. It can share common subexpressions

used in computing several output columns by inserting FORK

nodes (Copy Instruction). The compiler must maintain the

invariant that the nodes of the compiled data-flow graph can

only have data transfers to their south and/or east neighbor(s).

In particular, no cycles are allowed in the dataflow graph.

Each PE performs transformation steps for multiple output

columns in a circular schedule. It also produces new Row-

Mask Vectors for filtering (sub)predicates which have not been

processed by the Row Selector. The Mask Reader then merges

the old Row-Mask Vector (produced by the Mask Reader) and

the new Row-Mask Vector and passes it to SQL Swissknife.

Finally, it releases the slot in the Row-Mask Vector Circular

Buffer.

Each processing engine (PE) in the Row Transformation

Systolic Array is a simple 4-stage integer arithmetic vector

processor with no branch instructions or data memory (Fig. 8).

It implements a simple 32-bit instruction set described in

Table II. Each PE has 7 general purpose registers (rf[1],. . . ,

rf[7]), an operand fifo (opReg). Finally it has a special fifo,

which can be accessed as a register (rf[0]), hardwired to be

read as input fifo and written into as the output of the PE.

Opcode AluOp Descr.

Pass rf[rd]<=rf[rs]

Copy rf[rd]<=rf[rs]; opReg<=rf[rs]

Store opReg<=rf[rs]

ALU(Imm)

Add rf[rd]<=rf[rs] + <OpReg|imm>.
Sub rf[rd]<=rf[rs] - <OpReg|imm>

Mul rf[rd]<=rf[rs] * <OpReg|imm>

Div rf[rd]<=rf[rs] / <OpReg|imm>

EQ rf[rd]<=rf[rs] == <OpReg|imm>

LT rf[rd]<=rf[rs] < <OpReg|imm>

GT rf[rd]<=rf[rs] > <OpReg|imm>

TABLE II: PE Instruction Set

The instruction memories of the PEs are initialized by the

Table Task. Since there are no branches, the program counter

(PC) will always increment by 1 and roll back to 0 at the

end of the program. The size of the instruction memory of

each PE should be bigger than the number of nodes in the

transformation diagram, which equals the number of input

columns to be transformed.

Once an instruction is fetched and decoded, the input Row

Vector is read either internally from the Register File or

externally (rs==0). The Row Vector is placed either in an

operand register waiting for the second operand, or sent to a

pipelined ALU with its other waiting operand. The Execute

391

Table

Reader
Mask

Reader

PE0 PE1 PEn-1
…

Row Transformer Systolic Array

Row Transformer
Flash I/O

RowVecID

Row-Mask Vector

Release Buffer

Inter. Row

Vector

Regex Accel.

Fig. 7: Row Transformer Architecture

Instr.

Mem

Instr 0

Instr 1

…

pc

+1
Instr.

Decode

Operand

Register

Instr.

Execute

ALU

imm.

Register File

Fetch

Decode Execute

Write

Back

In
p

u
t

R
o

w
 V

e
c
to

r

O
u

tp
u

t
R

o
w

 V
e

c
to

r

ScoreboardRow Transformer Processing Engine

Fig. 8: Micro-architecture of a Row Transformer PE

SELECT l_quantity as qty,

l_extendedprice as base_price,

l_extendedprice*(1-l_discount) as disc_price,

l_extendedprice*(1-l_discount)*(1+l_tax) as charge,

FROM lineitem WHERE l_shipdate <= date ’1998-09-01’;

Fig. 9: SQL Query Example for Table Transformation

quantity

qty

1 - 1 +

X

X

fork

fork

Pass Pass

Pass Pass

Pass Pass

extended_price discount l_tax

base_price disc_price charge

Input

Columns

Output

Columns

PE0

PE1

PE2

Time

Fig. 10: Data-Flow Execution Diagram of Table Transform

stage performs the operation and in the write-back stage, the

output of the ALU is either written in the register file or

streamed out (rd==0). The Register File is used only for data

passing vertically between nodes when multiple nodes of a

vertical slice of the graph are mapped to a single PE. Such

a case happens only when the number of PEs exceeds the

number of horizontal layers of the data-flow graph.

C. SQL Swissknife

The SQL Swissknife is configured by the Table Task, which

takes the intermediate table output from the Row Transformer,

and applies one of the SQL (sub)operations listed in Section V.

Inside the SQL Swissknife is an array of accelerators, whose

connection to the external input is configured by the Table

Task (Fig. 11). When Row Vectors are streamed in, they are

tagged with a Column ID which is needed for processing

a table of more than one columns (e.g the input table of

an Aggregate GroupBy). Each SQL operation is mapped to

its corresponding accelerator(s). SQL sub-operators of SORT,

MERGE and SORT_MERGE are mapped to two serially linked

accelerators: the Streaming Sorter and the Merger. For SORT

and MERGE, one of them is configured as a NOP.

New SQL operation accelerator can be added into SQL

Swissknife with or without DRAM access as needed. In our

current version of the SQL Swissknife, only the Streaming

Sorter and Merger are connected to the DRAM.

Aggregate GroupBy: The Aggregate GroupBy accelerator

handles grouping rows of the same group identifier into

summaries of aggregation attributes of sum, min, max, and

cnt. It does local Aggregate Group-By operation per Row-

Vector ID, and then scatters and updates the local group

aggregates to the corresponding global aggregates stored in

SRAM.

As shown in Figure 12, the Aggregate GroupBy accelerator

separates Row Vectors of columns into two different streams

using their Column IDs. If Row Vectors are used for identifying

groups, they are sent to the Column Zipper, otherwise they are

sent to the Reduce-By-Group-Number block, waiting for their

groupIDs to be assigned.

Column Zipper zips multiple Row Vectors of the same Row-

Vector ID into a super Row Vector named the Group Identifier

Vector. The Group Number Assign component assigns it a

Group Number using a hash-table of 1024 buckets. Each bucket

can hold at most one group identifier of maximum size of 16B.

New group numbers are assigned in an increasing order from

0 to 1023. In case of a hash collision of two group identifiers,

one group is kept and the other one is marked as a spill-over

group, which is sent to x86 host for processing. (more on this

in Section 6.5)

After a Group Identifier Vector is given a Group Number,

it is sent to the Reduce By Group Number block, in which

its corresponding Row Vector(s) are reduced per group. The

reduction results of sum, min, max, cnt are scattered

into an SRAM and accumulated with the global aggregates

indexed by group number. Each aggregate slot can store

aggregates for 8 individual columns.

Since the SRAMs are expected to scatter/gather a maximum

of 32 addresses per request, we have partitioned the SRAM

into 32 partitions by striping the address space, allowing bigger

bandwidth through banking. If addresses per scatter or gather

request are uniform, we can pipeline the requests without many

memory stalls.

TopK: The TopK accelerator takes in a stream of Row Vector

from a table and keeps the biggest k rows of the stream. In

software, the TopK operation is computed using minHeap,

which cannot be easily pipelined in hardware. Instead, we use

a chain of Vector Compare-And-Swap blocks (VCAS) to store

the k biggest elements, as illustrated in Figure 13. Each VCAS

stores n elements where n is the input vector size. When a

vector of size n is fed into a VCAS, VCAS compare-and-swaps

it with the n elements stored inside the VCAS, where the bigger

half of 2n elements are kept, and the smaller half is streamed

out. We can daisy-chain k/n VCAS to keep the top k elements.

Before sending it into the chain of VCAS, the input vector

is first sorted using a pipelined bitonic sorter. This is done

because the pipelining of VCAS operation for sorted vectors

can be done more efficiently, as shown in Figure 13. Each

VCAS operation of two sorted vectors of size n can be divided

into n steps of compare-and-swap element-wise, as shown in

392

Aggregate

GroupBy

SQL Swissknife

1GB-Block

Streaming Sorter
NOP MergerTopK

AQUOMAN DRAM

ColID Assign

Output

Inter. Table Row Vectors

Fig. 11: SQL Swissknife Architecture

Column

Zipper

Aggregate Group By

Reduce By

Group#

Scatter

Aggregates

Group#

Assign

Group

Aggregates

Inter. Table Row Vectors

HashTable

(Group#)

RowVec Distributor

Spill-Over Groups

A
g

g
re

g
a

te
 R

e
su

lt
s

SRAMs

Fig. 12: Aggregate-GroupBy Accel.

K/n VCAS, (n= Row Vector Size)

Pipelined Bitonic

Vector Sorter

Vector Compare-

And-Swap

(VCAS)

Tn-1

Tn-2

…

T0

Tn-1 Tn-1

Tn-2
VIn-1

VIn-2

..

VI0 CAS

Step 0

CAS

Step 1

CAS

Step n-1
…

VOn-1

VOn-2

..

VO0

VCAS VCAS…

S
o

rt
e

d
 I

n
p

u
t

V
e

ct
o

r

S
o

rt
e

d
 O

u
p

u
t

V
e

ct
o

r

Fig. 13: TopK Accelerator

Algorithm 1. The ith element-wise CAS step generates a partial

Algorithm 1 Vector Compare-and-Swap

Variables: InVec: Input Vector sorted in ascending order
TopVec: Top-n Vector sorted in ascending order

tailIn = tailTop = n−1
2: for i in 0..n−1 do

if InVec[tailIn]> TopVec[tailTop] then
4: swap(InVec[tailIn],TopVec[tailIn])

tailIn = tailIn−1
6: else

tailTop = tailTop−1
8: end if

end for

result of the top-i vector which can be consumed by the ith

step of the next input vector immediately. Therefore, a VCAS

hardware can be pipelined properly. Each ith pipeline stage

of the VCAS takes up reasonably small hardware resources

with one pair of i-to-1 muxes for compare, and one pair of

i-to-1 muxes for data update.

Merger: The Merger accelerator outputs the intersection of

two sorted list. The Merger accelerator first merges two sorted

list into one sorted list using 2-to-1 Merger, and then passes it

through an Intersection Engine where the non-intersected part

is dropped (Figure 14).

In case of duplicate values in the input sources, the merger

always tries to alternate the input sources. This way the

Intersection Engine only needs a look-ahead of one to decide

if it should drop a value or not. Indeed if in the final sorted

stream two consecutive values are equal but not coming from

the same source, one of them can be dropped knowing that

the same value from the other source could not arrive later.

Inside the 2-to-1 Merger, we have the Vector Compare-And-

Swap Engine which does the merging, and a Scheduler which

decides which input vectors of the two sorted streams should

be fetched. Since items of each input vector are sorted and the

input vectors per data stream are sorted, the Scheduler only

needs to compare the top items of the two input vectors and

send the input vector with the smaller top item to VCAS.

1GB-Block Streaming Sorter: The 1GB-Block Streaming

Sorter takes an unsorted stream of input vectors, and outputs a

stream of sorted 1GB blocks. The Streaming Sorter consists of

a Pipelined Bitonic Sorter which sorts 64-byte input vectors,

and merge 224 64 bytes vectors into a 1GB sorted stream using

three layers of 256-to-1 Mergers (Figure 15).

The first two layers of the 256-to-1 mergers merge 256 64B-

blocks to a 16KB block, and 256 16KB-blocks to 4MB-block

respectively. They store the immediate results on SRAMs. The

last layer merges 256 4MB-blocks to 1GB block using DRAM.

The SRAMs and DRAM need to be duplicated per layer to

maintain the line-rate of input stream. If the sorter had enough

DRAM, it can sort 256GB by folding the last 256-to-1 merging

step at the half of the streaming speed.

Each 256-to-1 Merger is constructed using a binary tree of

2-to-1 mergers which were introduced in Section VI-C. Since

the average of utilization of 2i 2-to-1 mergers at the same

depth i of the binary tree is only 1, we make 2-to-1 mergers

at the same depth share the same VCAS component capable

of keeping multiple contexts. In this way, we can decrease the

size of N-to-1 merger from O(2N−1) to (O(logN)) while still

able to keep up with the input rate.

To perform sort-merge join, both join-key columns don’t

have to be totally sorted. As long as one column is totally

sorted, a partially-sorted second column can be merged with it

at the cost of re-streaming the first one for every 1GB of data

stream. This can cause more than 1GB DRAM reads per 1GB

flash reads, but is OK because DRAM is an order-of-magnitude

faster than flash. In many cases, AQUOMAN doesn’t even need

to sort the first column, since primary keys are already stored

by MonetDB in its internal representation.

D. AQUOMAN Memory Management

Because of the fixed dataflow pipeline of AQUOMAN, a

SQL query often needs to be broken into multiple Table Tasks

which are executed on AQUOMAN sequentially. AQUOMAN

stores the intermediate tables produced by each Table Task

on DRAM and merge them using subsequent Table Tasks.

AQUOMAN’s memory management system only keeps the row

indices of tables and join keys in DRAM to compute multi-

way joins, which allows us to keep the DRAM footprint small.

AQUOMAN memory management does not buffer the results

of Aggregate Group-By and TopK operators, because such

operators are typically at the end of an SQL execution plan.

When such operators are not the last operator of the query, we

cannot off-load the part of the query following the Aggregate

Group-By or TopK operator. Such cases are uncommon and

AQUOMAN can often accelerate even partially offloaded queries

(see Sec. VIII-B).

A RowID column provides index to rows of a table. Such a

column is implicit and does not need to be stored in DRAM

or flash. A multi-way join is decomposed into two-way joins,

where each two-way join is executed using a sort-merge join

expressed by two Table Tasks. Each data flow arc which goes

into sort and sort-merge operations carries key-value pairs,

where the key field is used for sorting and merging, and the

value field has the RowID representing where the join key is

393

Vector Compare-

And-Swap (VCAS)

Scheduler.
.
.

.
.
.

.
.
.

2-to-1

Vector

Merger

Inters

ection

Fig. 14: Merger Architecture

1GB-Block

Streaming

Sorter

Pipelined

Bitonic Sorter

256-to-1

Vector Merger

256-to-1

Vector Merger

32KB

SRAM

16KB

SRAM
32KB

SRAM

4MB

SRAM
32KB

SRAM

1GB

DDR4

256-to-1

Vector Merger

Fig. 15: Streaming Sorter Architecture

read from. The Table Tasks of each two-way join produces

two intermediate tables. The intermediate tables produced

by sort Table Tasks are consumed by their subsequent sort-

merge Table Tasks, and can be garbage collected immediately.

The intermediate tables produced by sort-merge Table Tasks

store backward pointers, i.e. RowIDs, which are needed for

constructing the final result of a multi-way join. And they are

stored for the entire lifetime of a multi-way join query.

AQUOMAN also deploys MonetDB-specific optimizations to

save memory. MonetDB uses RowIDs to represent the primary

keys of tables internally, and for each foreign key column it

materializes an additional column of RowIDs referring to the

primary keys. MonetDB uses RowIDs to perform join whenever

is possible. AQUOMAN is aware of the internal structure used by

MonetDB and avoids loading the RowIDs to DRAM whenever

possible. Such an optimization opportunity arises when all the

primary keys of a table are used for a join operation, i.e. no row

of the table has been deleted or filtered out. No join operation is

required by AQUOMAN in this case since all foreign keys of the

second table are guaranteed to find their matching primary keys.

Therefore we can avoid using DRAM and directly construct

the join result using the materialized RowIDs on flash.

E. Suspending Query Processing on AQUOMAN

There are several reasons why a query may not be completely

processed by AQUOMAN:

1. A query has an Aggregate Group-By operator in the middle

of an execution plan, which breaks references to the base

tables on flash.

2. A query does regular-expression filtering on a variable-sized

string column which requires pointer references to a string

heap file. When there are many unique strings, such string

operations cause random reads to the string heap on the

flash and is unsuitable for processing by AQUOMAN.

3. An Aggregate Group-By operator in a query generates more

groups than what AQUOMAN’s SRAM can accommodate.

4. A multi-way join operation in a query produces intermediate

tables that exceed AQUOMAN’s DRAM capacity.

Conditions 1 and 2 can be detected by examining the query

plan, and AQUOMAN can simply suspend processing the query

at the appropriate point and pass the intermediate table of

results to the host, which can resume processing the query.

Since the host will need to access the AQUOMAN SSD when

it resumes the query processing, that SSD remains essentially

unavailable to AQUOMAN until the query to AQUOMAN has

been processed completely. Conditions 3 and 4 can be detected

only during query execution. If the database system has an

estimate for the size of the intermediate data structure for a

specific dataset, it may decide not to offload a part of the query

to AQUOMAN. Otherwise, AQUOMAN may use the suspension

strategy described next.

For large Aggregate Group-By operator, AQUOMAN computes

all the hashes but performs the accumulate operation on

some buckets in AQUOMAN, while the accumulation for the

“spillover” buckets is performed by the host. To not slow down

AQUOMAN, the host needs to keep up with the spills generated

by AQUOMAN.

For multi-way Joins, when the AQUOMAN DRAM becomes

full, it keeps sorting 1GB-data-blocks and sends them to the

host via DMA. The host completes the join operation by

merging these sorted blocks with the sorted data stored in

its DRAM.

A natural question to wonder about is how common are

these suspensions. As we will show in Sec. VIII, 14 out

of the 22 queries of TPC-H can be offloaded completely

to AQUOMAN with sufficient DRAM. Queries (11,17,18,22)

encounter Aggregate Group-By operator in the middle and

thus, had to be suspended; all except Q22 benefited by partial

offloading. There was no benefit to offload queries (9,13,16,20)

because they involved regular-expression filtering on a string

column.

Seven queries caused spillovers in the Aggregate Group-By

operation. Only Q18 caused a significant spillover (required

~1.5 billion buckets while AQUOMAN has only 1024 buckets!).

Partial offloading of Q18 was still profitable, assuming the host

could perform ~200 millions memory lookup-and-accumulates

per seconds. With 40GB DRAM in AQUOMAN there were no

suspensions due to multi-way Joins. A conservative approxi-

mation of the effect on performance of memory limitations is

discussed in the Evaluation Section VIII.

VII. AQUOMAN IMPLEMENTATION

AQUOMAN was first implemented on an FPGA, although

soon afterwards we discovered several reasons which prevented

us from evaluating most TPC-H queries on the FPGA prototype:

• Our FPGA evaluation board has only 4GB of DRAM, which

is not big enough to evaluate multi-way joins that generate

bigger intermediate tables.

• AQUOMAN with the Sorter exceeded the total area of the

FPGA in BlueDBM. Our bigger FPGA, VCU118, is not

compatible with the FMC port of the custom flash card in

BlueDBM.

• A robust regular-expression accelerator, which has been

done previously [21], is also needed for string columns but

required significantly more implementation effort than this

project justified.

• A full-blow compiler is needed to generate Table Tasks for

FPGA evaluation; manual compilation effort is too high for

394

most TPC-H queries. (Investment in such a compiler would

be justified only after the efficacy of AQUOMAN has been

established.)

In order to evaluate more queries and to properly evaluate

the AQUOMAN architecture, we also developed a trace-base

AQUOMAN simulator and fully integrated it in the MonetDB’s

software stack . We validated some of our simulation results

on the FPGA proptotype (Sec. VIII-D)

FPGA Prototype: We implemented AQUOMAN on

BlueDBM [30], where a hardware-accelerated storage

device is plugged into the PCIe bus of 12-core Xeon X5670

machine. Each storage device consists of a Xilinx Virtex

Ultrascale FPGA development board, VCU108, attached to

1TB of open-channel NAND flash array capable of 2.4GB/s

read access and 800MB/s write access. The Xilinx VCU108

FPGA also provides 4GB of DDR4 memory for a maximum

bandwidth of 36GB/s.

We synthesized the Sorter and the rest of AQUOMAN on two

different FPGAs because together their area exceeded the capac-

ity of the VCU108 FPGA. In our AQUOMAN implementation

(Table III) the Row Selector has 4 Column Predicate Evaluators,

and the Row Transformer has 4 processing engines each with

8 instructions. Our design meets the timing requirement for

125MHz and provides 4GB/s processing rate for AQUOMAN.

Module Name LUTs Flip-Flops RAMB36 DSP48

Row Selector 42023 36725 0 0

Row Transformer 47859 29660 0 256

SQL Swissknife (w/o sorter) 95077 76823 140 0

FlashPageBuffer 14087 17143 228 0

RowMask 190 41 58 0

VCU108 Total 302398 273245 448 256

(56%) (24%) (26%) (33%)

TABLE III: AQUOMAN resource usage on VCU108

1GB-Block Hardware Sorter: We synthesized the 1GB-block

streaming sorter for four data types: 32/64-bit integers, and key-

value pairs of 32/64-bit integers. All designs were synthesized

with a 512-bit data path and met the timing requirement for

200MHz on Xilinx UltrascalePlus VCU118. Flip-Flops usage

was around 40% for each configuration (see Table IV).

Element Type LUTs RAMB36 URAM

uint32 855867 (72%) 1133 (52%) 256 (27%)

256-to-1 Merger to 16KB 240567 (20%) 177 (8%) 0 (0%)

256-to-1 Merger to 4MB 263610 (22%) 291 (13%) 256 (27%)

256-to-1 Merger to 1GB 261400 (22%) 505 (23%) 0 (0%)

uint64 925572 (78%) 1133 (52%) 256 (27%)

kv<uint32,uint32> 720183(60%) 1133 (52%) 256 (27%)

kv<uint64,uint64> 900087(76%) 855 (40%) 256 (27%)

TABLE IV: Streaming Sorter resource usage on VCU118

The area of Sorter and AQUOMAN together exceeds the

Xilinx VCU118 capacity by 2% but we are confident that with

a few area optimization we can fit both of them on a VCU118.

Unfortunately VCU118 is incompatible with the custom flash

card in BlueDBM.

Although AQUOMAN uses 64-bit key and value pairs as the

Sorter configuration, we evaluated the streaming sorter for all

sorter configurations. As expected, all configurations have the

same throughput. Table V summarizes the performance of the

Sorter for different input lengths and sortedness using a traffic

generator. Hence our Sorter meets the goal of keeping up with

AQUOMAN processing bandwidth (4GB/s).

Input Length Input Sortedness

(GB) Sorted Reverse Sorted Random

1 4.4 GB/s 4.4 GB/s 6.2 GB/s

10 7.9 GB/s 7.9 GB/s 11.0 GB/s

100 8.5 GB/s 8.5 GB/s 11.9 GB/s

1000 8.6 GB/s 8.6 GB/s 12.0 GB/s

TABLE V: 1GB-Block Streaming Sorter Throughput

AQUOMAN Simulator: We implemented a trace-based AQUO-

MAN simulator which is fully integrated in MonetDB 11.27.9.

In MonetDB the software translates the SQL execution plan

into a customized middle-layer language, Monet Assembly Lan-

guage(MAL), which is then later optimized and interpreted [25].

We implemented the AQUOMAN simulator by extending MAL

to allow instrumenting traces for AQUOMAN Table Tasks.

The AQUOMAN simulator does not execute Table Tasks, but

executes the original SQL plan expressed in MAL and collects

AQUOMAN traces such as flash traffic, AQUOMAN memory

footprint, and sorter usage. The AQUOMAN simulator assumes

a flash drive of 8KB page access granularity and 2.4GB/s

flash read bandwidth, one streaming sorter and one regular

expression accelerator with 1MB cache for string heap. The

specifications of flash drive and streaming sorter in AQUOMAN

simulator are the same with the ones in the AQUOMAN FPGA

prototype in Section VII. We assume as big Row Selector

and Row Transformer as needed as their small relative sizes

compared to the sorter as shown in Section VII. When a

multi-way join query exceeds AQUOMAN memory size, we

assume that the host processes “handed-off” sub-query at the

same speed as the baseline solution, which is a conservative

assumption.

In the SQL frontend, we modified MonetDB’s query planner

to identify Table Tasks in the query execution plan tree, and

mark relevant nodes as AQUOMAN nodes which are targets

for offloading. We also changed MonetDB’s SQL plan to

MAL compiler, such that AQUOMAN tracing instrumentation

will be automatically inserted on identified Table Tasks. The

total execution time of a query with AQUOMAN simulator is

calculated by the sum of AQUOMAN execution time based on

the traces and non-AQUOMAN nodes’ execution time processed

by MonetDB.

VIII. EVALUATION

A. Experiment Setup

Evaluation Data-set: We used the TPC-H synthetic data-set

with a scaling factor of 1000, generating 1TB of tables. We

loaded the data-set on MonetDB-11.27.9, whose column files

are the inputs for AQUOMAN.

Baseline Setup: We ran MonetDB (11.27.9) with two setups

S and L to represent two different machine sizes (Table VI).

The baseline used five 1TB Samsung 970 EVO m.2 SSDs

capped at 2.4GB/s, to match the bandwidth of the BlueDBM

storage device. Such a setup was needed for a fair baseline

1) to mitigate side-effects of garbage collections with over-

provisioned capacity and 2) to provide 2.4GB/s average access

395

 0

 200

 400

 600

 800

 1000

1520
(a

)
R

u
n

T
im

e
(s

e
c
) S

L
S-AQUOMAN
L-AQUOMAN

S-AQUOMAN16

 0

 32

 64

 96

 128

(b
)

M
a
x

M
e
m

.(
G

B
) L-AQUOMAN: Max AQUOMAN Mem.

L-AQUOMAN: Max x86 Mem.
L: Max x86 Mem.
L-AQUOMAN: Avg x86 Mem.

L: Avg x86 Mem.

 0
 20
 40
 60
 80

 100

q01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

(c
)

x
8
6
 H

W
 S

a
v
in

g
(%

) L-AQUOMAN: Run Time % x86 CPU Cycle Saving

 0

 2000

 4000

 6000

 0

 32

 64

 96

 128

Total
 0
 20
 40
 60
 80
 100

Fig. 16: TPC-H SF-1000 AQUOMAN Performance Profiling

bandwidth unavailable in a single off-the-shelf SSD. When

MonetDB run out of DRAM for intermediate tables, it can

still process queries effectively by using its own disk-swap

management, which exploits fast sequential SSD writes.

MonetDB does not implement a page buffer pool for caching

hot pages, instead it relies on Linux’s LRU-based page cache to

take advantage of page locality. For 1TB dataset, we observed

that Linux’s page cache on a 128GB DRAM is ineffective

for TPC-H queries. In fact, for MonetDB hot runs are slightly

slower than cold runs, even though both runs experience a

similar level of page-cache misses. We hypothesize that the

cost of finding misses in a fully populated page-cache is larger

because the operating system needs to traverse a bigger page-

cache index structure to find nothing. Therefore our evaluations

assume cold page cache.

x86 Setup HW Threads x86 DRAM

S (Small) 4 Threads 16GB

L (Large) 32 Threads 128GB

AQUOMAN Setup DRAM

AQUOMAN 40GB

AQUOMAN16 16GB

TABLE VI: x86 Host and AQUOMAN Disk Setup

AQUOMAN Setup: All TPC-H queries are evaluated on the

AQUOMAN simulator, which has two setups: AQUOMAN

with 40GB memory and AQUOMAN16 with 16GB memory

(Table VI). The AQUOMAN implementation on FPGA could

be used for evaluating only a few TPC-H queries because of

the reasons discussed earlier (Sec. VII). However, the FPGA

implementation was very useful to validate the AQUOMAN

simulator (Sec. VIII-D).

B. AQUOMAN TPC-H Evaluation

We compare the performance of MonetDB running on a

system with ordinary SSDs with a system where the ordinary

SSDs are replaced by AQUOMAN SSDs. For an extensive

coverage of the design space, two host machines S, L (Fig. VI)

are used, each with and without AQUOMAN disks. We also

paired the small host system S with AQUOMAN16 disk, which

has 16GB of in-storage DRAM.

We first examine the runtime of each query, including the

breakdown of the time spent on AQUOMAN and the host. We

then perform a similar analysis for the memory footprint.

Run Time: The queries run time for the different systems

are presented in Fig. 16(a), while the fraction of processing

time each query spent on AQUOMAN for system (L) is shown

in Figure 16(c) . On average, 71% of the CPU time can be

saved by AQUOMAN when it is added to system L. Note that

AQUOMAN actually speeds up many queries, on average a

1.5X-2X speed-up over the baseline in Fig. 16(a). Still there

are some outliers, queries (17,18) show up to 13X speed-ups

for system L, while others show none. It is important to realize

that AQUOMAN cannot speed up a query if it is IO bound in the

baseline system. In such cases it can only save host resources.

For example, we found that two queries (6,14) can be almost

completely off-loaded to AQUOMAN but show little speedup

because they are disk-bound on the baseline systems.

For 14 out of the 22 queries are off-loaded to AQUOMAN

nearly 100% of the time. Even when AQUOMAN can only do

a part of the query, its resulting benefits can be significant.

For example, the runtimes of Q17 and Q18 decrease signifi-

cantly because the part that is off-loaded happens to execute

sequentially on the host, effectively using only one hardware

thread.

The reasons for queries to be suspended early were discussed

in Sec. VI-E. As we said earlier queries (17,18,22,11) corre-

sponds to cases with an early Aggregate Group-By node in the

execution plan. All of them except Q22 do enough processing

on AQUOMAN to show speedups. Queries (9,13,16,20) represent

the cases where the size of the string heap does not fit in

AQUOMAN and so have to be completely handled by the host.

Overall when a host machine replaces its SSDs with an

AQUOMAN disk, it can save on an average 71% of the CPU

time for TPC-H queries running on system L.

Memory Footprint: Figure 16 (b) shows the maximum and

average memory resident set size (RSS) of AQUOMAN and the

system-L baseline, respectively. When a query is adequately

offloaded, AQUOMAN reduces host memory footprint signifi-

cantly except when it has to aggregate on a huge number of

groups in the host as for Q18 (See Sec. VI-E). AQUOMAN

has 20~128GB smaller memory footprint than the baseline

even when most of the query is processed by AQUOMAN. The

memory saving is primarily because of the streaming model

of Table Tasks and only keeping row IDs in the DRAM. The

maximum memory requirement for the TPC-H benchmark by

AQUOMAN on 1TB data-set is 40GB. In fact when equipped

396

with 16GB DRAM, only 4 queries (4,5,8,21) are affected and

AQUOMAN can offload 12 of 22 TPC-H queries profitably. We

also note that while AQUOMAN reduces the average DRAM

used significantly (by a factor 3), the maximum DRAM needed

is left almost unchanged. Indeed an important part of Q18 has

to be processed by the host, and it requires almost 128GB of

DRAM.

C. Advantages of AQUOMAN

In the previous section we have shown significant hardware

threads and memory savings. In this section we propose a

way to visualize the benefits from those savings (70% of CPU

and 60% of the average memory). As a first approximation,

Fig. 16(a) shows that running the entire TPC-H benchmark

on a 32-cores machine with 128GB DRAM (system L) is on

average 1.6X as fast as running the same benchmark of on

a 4-core machine with 16GB DRAM (system S). However,

replacing the SSD of the small machine by an AQUOMAN

augmented SSD (S-AQUOMAN16) bridges that gap completely!

This comparison does not evaluate the opportunity for the

system to run many queries in parallel, which may show

different results because of inter-query data locality and

parallelization. Evaluating such a parallel system requires a

very different setup than what we have presented in this paper.

D. Validating simulation results on FPGA

The AQUOMAN FPGA prototype has the key AQUOMAN

components: Row Selector, Row Transformer, and SQL Swis-

sknife with a high-performance Sorter but is limited by 4 GB

of DRAM. We evaluated a subset of TPC-H queries using the

AQUOMAN FPGA prototype to validate some of our simulation

results.

 0
 25
 50
 75

 100

R
u
n
 T

im
e Simulator FPGA

 0

 1

 2

 3

 4

q01 q06 q03 q10

M
e
m

.
U

s
a
g
e

(G
B

)

Simulator FPGA

Fig. 17: TPC-H queries on FPGA prototype

We picked two classes of TPC-H queries and hand-coded

them to Table Tasks to execute on the FPGA prototype. The

first type of queries (1,6) have no join operations. Those queries

are evaluated end-to-end and produce the same query results

as the MonetDB software. The second type of queries (3,10)

are multi-way join queries but need less than 4GB AQUOMAN

DRAM. Since currently we cannot fit AQUOMAN and the Sorter

on a single FPGA, we are unable to run multi-join queries

end-to-end on AQUOMAN. In the AQUOMAN design, Table

Tasks are executed sequentially, so we executed each Table

Task of a query individually and summed up the execution

times for the end-to-end query run time. For the Table Tasks

that involve Sort, we use a traffic generator instead of real

data, throttled at the same speed as AQUOMAN’s flash card

(2.4GB/s). This is because our flash card is incompatible with

Xilinx VCU118’s newer version of the FMC+ connector. None

of the evaluated queries had regular expression selections.

For each query, we compared the run time and memory usage

of the FPGA prototype with those of AQUOMAN simulator

(Fig. 17). We can see the FPGA prototype has similar run

times and the same memory usage as the AQUOMAN simulator,

which validates the basic performance modeling of AQUOMAN.

Compared to FCAccel [50], our FPGA evaluation used 10X

the dataset size and evaluated more queries including fully-

offloaded joins. Therefore we cannot provide direct query

run-time comparison, but we can compare in terms of rows/sec

with FCAccel’s evaluation. AQUOMAN’s FPGA performance

is competitive to that of FCAccel. For the straightforward

filter-and-aggregate with high selectivity (Q6), AQUOMAN has

similar throughput (100.5M rows/s vs. 111M rows/s). When a

query has low selectivity and requires more computation, such

as row transform and Aggregate Group-By in Q1, AQUOMAN

is 2.5X better than FCAccel (69M rows/s vs. 27M rows/s).

This is thanks to AQUOMAN ’s systolic-array design for highly-

pipelined row transformation (Sec. VI-B), while FCAccel uses

on multi-cycle logic designs.

IX. CONCLUSION

We have presented AQUOMAN, an end-to-end DBMS system

solution for in-storage analytical SQL query acceleration.

AQUOMAN aggressively pushes the idea of “in-storage com-

puting” by offloading most of the query processing, including

multi-way Joins, for terabyte data-sets. AQUOMAN is based

on a novel stream-oriented microarchitecture to execute static

dataflow graphs of SQL operators organized as Table Tasks. We

have built a prototype of AQUOMAN using a Xilinx VCU108

FPGA development board, and shown that it computes Table

Tasks at a 4GB/s, saturating the flash-drive bandwidth. (For

power, cost and area reasons, a commercially viable version

of AQUOMAN will have to be implemented using ASICs). One

way to think of the savings provided by offloading queries

to AQUOMAN is to imagine running SQL queries on a one-

terabyte TPC-H benchmark data-set on two systems: MonetDB

running on a 4-core, 16GB-DRAM machine with AQUOMAN-

augmented SSDs and MonetDB running on a 32-core, 128GB-

DRAM machine with standard SSDs. We have shown that,

if we run queries sequentially and assume no reuse of page-

cache by different queries, the two system provide the same

performance. The future work on AQUOMAN requires (1) an

experimental setup to evaluate parallel execution of queries

and (2) distributed execution of queries whose data is spread

over multiple AQUOMAN SSDs.

ACKNOWLEDGMENT

We want to thank all anonymous reviewers for their com-

ments. This work is funded by Samsung Semiconductor (GRO

grants) and NSF (CCF-1725303). The DGIST team is supported

by the National Research Foundation (NRF) of Korea (NRF-

2018R1A5A1060031).

397

REFERENCES

[1] “Big Data Analytics On-Premises, in the Cloud, or on Hadoop — Vertica,”
https://vertica.com/, accessed: 2020-04-07.

[2] “Presto on Amazon EMR - Amazon Web Services (AWS),” https://aws.
amazon.com/emr/details/presto/, accessed: 2020-04-07.

[3] “S3 Select and Glacier Select – Retrieving Subsets of Objects,” https:
//aws.amazon.com/blogs/aws/s3-glacier-select/, accessed: 2020-04-07.

[4] “The column-store pioneer — MonetDB,” https://monetdb.org/home,
accessed: 2020-04-07.

[5] “Uber’s big data platform: 100+ petabytes with minute latency,” https:
//eng.uber.com/uber-big-data-platform/, accessed: 2020-04-07.

[6] “Amazon Redshift - Data Warehouse Solution - AWS,” https://aws.
amazon.com/redshift, May 2018.

[7] S. R. Agrawal, S. Idicula, A. Raghavan, E. Vlachos, V. Govindaraju,
V. Varadarajan, C. Balkesen, G. Giannikis, C. Roth, N. Agarwal,
and E. Sedlar, “A many-core architecture for in-memory data
processing,” in Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO-50 ’17. New York,
NY, USA: ACM, 2017, pp. 245–258. [Online]. Available: http:
//doi.acm.org/10.1145/3123939.3123985

[8] C. Balkesen, N. Kunal, G. Giannikis, P. Fender, S. Sundara,
F. Schmidt, J. Wen, S. Agrawal, A. Raghavan, V. Varadarajan,
A. Viswanathan, B. Chandrasekaran, S. Idicula, N. Agarwal, and
E. Sedlar, “Rapid: In-memory analytical query processing engine
with extreme performance per watt,” in Proceedings of the 2018

International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: ACM, 2018, pp. 1407–1419. [Online]. Available:
http://doi.acm.org/10.1145/3183713.3190655

[9] R. H. Canaday, R. D. Harrison, E. L. Ivie, J. L. Ryder, and L. A.
Wehr, “A back-end computer for data base management,” Commun.

ACM, vol. 17, no. 10, pp. 575–582, Oct. 1974. [Online]. Available:
http://doi.acm.org/10.1145/355620.361172

[10] J. Casper and K. Olukotun, “Hardware acceleration of database
operations,” in Proceedings of the 2014 ACM/SIGDA International

Symposium on Field-programmable Gate Arrays, ser. FPGA ’14.
New York, NY, USA: ACM, 2014, pp. 151–160. [Online]. Available:
http://doi.acm.org/10.1145/2554688.2554787

[11] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in The

49th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-49. Piscataway, NJ, USA: IEEE Press, 2016, pp. 7:1–7:13.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3195638.3195647

[12] R. Chen and V. K. Prasanna, “Accelerating equi-join on a cpu-fpga
heterogeneous platform,” in 2016 IEEE 24th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM),
May 2016, pp. 212–219.

[13] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active
disk meets flash: A case for intelligent ssds,” in Proceedings of the

27th International ACM Conference on International Conference on

Supercomputing, ser. ICS ’13. New York, NY, USA: ACM, 2013, pp. 91–
102. [Online]. Available: http://doi.acm.org/10.1145/2464996.2465003

[14] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,”
in Proceedings of the 40th Annual International Symposium on Computer

Architecture, ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 261–
272. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485945

[15] A. De, M. Gokhale, R. Gupta, and S. Swanson, “Minerva: Accelerating
data analysis in next-generation ssds,” in Proceedings of the 2013

IEEE 21st Annual International Symposium on Field-Programmable

Custom Computing Machines, ser. FCCM ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 9–16. [Online]. Available:
https://doi.org/10.1109/FCCM.2013.46

[16] D. J. DeWitt, “Direct - a multiprocessor organization for supporting
relational data base management systems,” in Proceedings of the

5th Annual Symposium on Computer Architecture, ser. ISCA ’78.
New York, NY, USA: ACM, 1978, pp. 182–189. [Online]. Available:
http://doi.acm.org/10.1145/800094.803046

[17] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar,
and M. Muralikrishna, “Gamma - a high performance dataflow database
machine,” in Proceedings of the 12th International Conference on Very

Large Data Bases, ser. VLDB ’86. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1986, pp. 228–237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645913.671463

[18] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart ssds: Opportunities and challenges,” in Proceedings

of the 2013 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp. 1221–
1230. [Online]. Available: http://doi.acm.org/10.1145/2463676.2465295

[19] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi,
B. Grot, and D. Pnevmatikatos, “The mondrian data engine,” SIGARCH

Comput. Archit. News, vol. 45, no. 2, p. 639–651, Jun. 2017. [Online].
Available: https://doi.org/10.1145/3140659.3080233

[20] P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan, “phoenix:
Memory speed hpc i/o with nvm,” in 2016 IEEE 23rd International

Conference on High Performance Computing (HiPC).

[21] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,
“Hare: Hardware accelerator for regular expressions,” in The 49th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
49. IEEE Press, 2016.

[22] R. Greenwald, M. Bhuller, R. Stackowiak, and M. Alam, Achieving

extreme performance with Oracle Exadata. McGraw-Hill, 2011.

[23] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit:
A framework for near-data processing of big data workloads,” in
Proceedings of the 43rd International Symposium on Computer

Architecture, ser. ISCA ’16. Piscataway, NJ, USA: IEEE Press, 2016,
pp. 153–165. [Online]. Available: https://doi.org/10.1109/ISCA.2016.23

[24] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes, P. Dube, S. Asaad,
and B. Iyer, “Accelerating join operation for relational databases with
fpgas,” in Proceedings of the 2013 IEEE 21st Annual International

Symposium on Field-Programmable Custom Computing Machines, ser.
FCCM ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
17–20. [Online]. Available: https://doi.org/10.1109/FCCM.2013.17

[25] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten, “MonetDB: Two Decades of Research in Column-oriented
Database Architectures,” IEEE Data Engineering Bulletin, vol. 35, no. 1,
pp. 40–45, 2012.

[26] Z. István, D. Sidler, and G. Alonso, “Caribou: Intelligent distributed
storage,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1202–1213, Aug.
2017. [Online]. Available: https://doi.org/10.14778/3137628.3137632

[27] Z. Istvan, L. Woods, and G. Alonso, “Histograms as a side effect of
data movement for big data,” in Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’14.
New York, NY, USA: ACM, 2014, pp. 1567–1578. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2612174

[28] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. G. Lee, and
J. Jeong, “Yoursql: A high-performance database system leveraging in-
storage computing,” Proc. VLDB Endow., vol. 9, no. 12, pp. 924–935, Aug.
2016. [Online]. Available: https://doi.org/10.14778/2994509.2994512

[29] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080246

[30] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and
Arvind, “Bluedbm: An appliance for big data analytics,” in Proceedings

of the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 1–13. [Online].
Available: http://doi.acm.org/10.1145/2749469.2750412

[31] S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind, “Grafboost: Using
accelerated flash storage for external graph analytics,” in Proceedings of

the 45th Annual International Symposium on Computer Architecture,

398

ser. ISCA ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 411–424.
[Online]. Available: https://doi.org/10.1109/ISCA.2018.00042

[32] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals for
in-memory databases,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 468–479. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540748

[33] G. Koo, K. K. Matam, T. I, H. V. K. G. Narra, J. Li, H.-W.
Tseng, S. Swanson, and M. Annavaram, “Summarizer: Trading
communication with computing near storage,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 219–231.
[Online]. Available: http://doi.acm.org/10.1145/3123939.3124553

[34] J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-J. Nam,
M. R. Nutter, and D. Jamsek, “Extrav: Boosting graph processing
near storage with a coherent accelerator,” Proc. VLDB Endow.,
vol. 10, no. 12, pp. 1706–1717, Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137776

[35] A. Lottarini, J. a. P. Cerqueira, T. J. Repetti, S. A. Edwards, K. A. Ross,
M. Seok, and M. A. Kim, “Master of none acceleration: A comparison of
accelerator architectures for analytical query processing,” in Proceedings

of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: ACM, 2019, pp. 762–773. [Online].
Available: http://doi.acm.org/10.1145/3307650.3322220

[36] K. K. Matam, G. Koo, H. Zha, H.-W. Tseng, and M. Annavaram,
“Graphssd: Graph semantics aware ssd,” in Proceedings of the 46th

International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: ACM, 2019, pp. 116–128. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322275

[37] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“an analysis of persistent memory use with whisper.”

[38] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “Sdf:
Software-defined flash for web-scale internet storage systems,” in
Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 471–484.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541959

[39] J. Ouyang, W. Qi, W. Yong, Y. Tu, J. Wang, and B. Jia, “Sda: Software-
defined accelerator for general-purpose distributed big data analysis
system,” in Hot Chips: A Symposium on High Performance chips,

Hotchips, 2016.
[40] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework

for hybrid cpu-fpga databases,” in 2017 IEEE 25th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM), April 2017, pp. 211–218.
[41] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,

J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceeding of the 41st Annual International

Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 13–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665678

[42] Z. Ruan, T. He, and J. Cong, “Insider: Designing in-storage computing
[44] R. Shu, P. Cheng, G. Chen, Z. Guo, L. Qu, Y. Xiong, D. Chiou, and

T. Moscibroda, “Direct universal access: Making data center resources
available to fpga,” in Proceedings of the 16th USENIX Conference

on Networked Systems Design and Implementation, ser. NSDI’19.
Berkeley, CA, USA: USENIX Association, 2019, pp. 127–140. [Online].
Available: http://dl.acm.org/citation.cfm?id=3323234.3323246

system for emerging high-performance drive,” in Proceedings of the

2019 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC ’19. Berkeley, CA, USA: USENIX Association,
2019, pp. 379–394. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3358807.3358840

[43] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin,
Y. Liu, and S. Swanson, “Willow: A user-programmable ssd,”
in Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, ser. OSDI’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 67–80. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2685048.2685055

[45] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid cpu-fpga architectures,” in Proceedings

of the 2017 ACM International Conference on Management of Data,
ser. SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 403–415.
[Online]. Available: http://doi.acm.org/10.1145/3035918.3035954

[46] M. Singh and B. Leonhardi, “Introduction to the ibm netezza warehouse
appliance,” in Proceedings of the 2011 Conference of the Center

for Advanced Studies on Collaborative Research, ser. CASCON ’11.
Riverton, NJ, USA: IBM Corp., 2011, pp. 385–386. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2093889.2093965

[47] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers,
and Y. Solihin, “Active flash: Towards energy-efficient, in-situ data
analytics on extreme-scale machines,” in Proceedings of the 11th

USENIX Conference on File and Storage Technologies, ser. FAST’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 119–132. [Online].
Available: http://dl.acm.org/citation.cfm?id=2591272.2591286

[48] M. Ubell, The Intelligent Database Machine (IDM). Berlin, Heidelberg:
Springer Berlin Heidelberg, 1985, pp. 237–247. [Online]. Available:
https://doi.org/10.1007/978-3-642-82375-6 14

[49] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational query
processing on opencl-based fpgas,” in 2016 26th International Conference

on Field Programmable Logic and Applications (FPL), Aug 2016, pp.
1–10.

[50] S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa, and H. Yoshino,
“Column-oriented database acceleration using fpgas,” in 2019 IEEE 35th

International Conference on Data Engineering (ICDE), April 2019, pp.
686–697.

[51] L. Woods, Z. István, and G. Alonso, “Ibex: An intelligent storage
engine with support for advanced sql offloading,” Proc. VLDB

Endow., vol. 7, no. 11, pp. 963–974, Jul. 2014. [Online]. Available:
http://dx.doi.org/10.14778/2732967.2732972

[52] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “The q100
database processing unit,” IEEE Micro, vol. 35, no. 3, pp. 34–46, 2015.

[53] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: The architecture and design of a database processing unit,”
in Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 255–268.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541961

[54] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond
the wall: Near-data processing for databases,” in Proceedings of the

11th International Workshop on Data Management on New Hardware,
ser. DaMoN ’15. New York, NY, USA: ACM, 2015, pp. 2:1–2:10.
[Online]. Available: http://doi.acm.org/10.1145/2771937.2771945

[55] D. Ziener, F. Bauer, A. Becher, C. Dennl, K. Meyer-Wegener,
U. Schürfeld, J. Teich, J.-S. Vogt, and H. Weber, “Fpga-based
dynamically reconfigurable sql query processing,” ACM Trans.

Reconfigurable Technol. Syst., vol. 9, no. 4, pp. 25:1–25:24, Aug. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2845087

399

