[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = spin-dependent Wannier functions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4084 KiB  
Article
Electrostatically Interacting Wannier Qubits in Curved Space
by Krzysztof Pomorski
Materials 2024, 17(19), 4846; https://doi.org/10.3390/ma17194846 - 30 Sep 2024
Viewed by 921
Abstract
A derivation of a tight-binding model from Schrödinger formalism for various topologies of position-based semiconductor qubits is presented in the case of static and time-dependent electric fields. The simplistic tight-binding model enables the description of single-electron devices at a large integration scale. The [...] Read more.
A derivation of a tight-binding model from Schrödinger formalism for various topologies of position-based semiconductor qubits is presented in the case of static and time-dependent electric fields. The simplistic tight-binding model enables the description of single-electron devices at a large integration scale. The case of two electrostatically Wannier qubits (also known as position-based qubits) in a Schrödinger model is presented with omission of spin degrees of freedom. The concept of programmable quantum matter can be implemented in the chain of coupled semiconductor quantum dots. Highly integrated and developed cryogenic CMOS nanostructures can be mapped to coupled quantum dots, the connectivity of which can be controlled by a voltage applied across the transistor gates as well as using an external magnetic field. Using the anti-correlation principle arising from the Coulomb repulsion interaction between electrons, one can implement classical and quantum inverters (Classical/Quantum Swap Gate) and many other logical gates. The anti-correlation will be weakened due to the fact that the quantumness of the physical process brings about the coexistence of correlation and anti-correlation at the same time. One of the central results presented in this work relies on the appearance of dissipation-like processes and effective potential renormalization building effective barriers in both semiconductors and in superconductors between not bended nanowire regions both in classical and in quantum regimes. The presence of non-straight wire regions is also expressed by the geometrical dissipative quantum Aharonov–Bohm effect in superconductors/semiconductors when one obtains a complex value vector potential-like field. The existence of a Coulomb interaction provides a base for the physical description of an electrostatic Q-Swap gate with any topology using open-loop nanowires, with programmable functionality. We observe strong localization of the wavepacket due to nanowire bending. Therefore, it is not always necessary to build a barrier between two nanowires to obtain two quantum dot systems. On the other hand, the results can be mapped to the problem of an electron in curved space, so they can be expressed with a programmable position-dependent metric embedded in Schrödinger’s equation. The semiconductor quantum dot system is capable of mimicking curved space, providing a bridge between fundamental and applied science in the implementation of single-electron devices. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

Figure 1
<p><bold>Left</bold> (<bold>A</bold>): Position-based qubit, also known as a Wannier qubit, in a CMOS circuit as implementated in [<xref ref-type="bibr" rid="B14-materials-17-04846">14</xref>,<xref ref-type="bibr" rid="B15-materials-17-04846">15</xref>,<xref ref-type="bibr" rid="B16-materials-17-04846">16</xref>,<xref ref-type="bibr" rid="B23-materials-17-04846">23</xref>]. <bold>Right</bold>: (<bold>B</bold>) Electrostatic inverter (Quantum Swap Gate) made from position-based qubits, also known as Wannier qubits; (<bold>C</bold>): Controllable NOT gate. The generalized version of an electrostatic double quantum dot system (qubit) is given in <xref ref-type="fig" rid="materials-17-04846-f003">Figure 3</xref> and a generalized Quantum Swap Gate is depicted in <xref ref-type="fig" rid="materials-17-04846-f004">Figure 4</xref>.</p>
Full article ">Figure 2
<p><bold>Upper page</bold>: Effective potentials V(x) for a single electron under different voltage biasing circumstances [<xref ref-type="bibr" rid="B24-materials-17-04846">24</xref>]. <bold>Current page</bold>: Electron wave−functions for aforementioned effective potentials with subsequent different effective eigenergy [<xref ref-type="bibr" rid="B24-materials-17-04846">24</xref>] obtained by Wannier qubit in different electrostatic polarization. Maximum localized functions can be constructed for various qubit electrostatic biasing potentials expressed by effective potential.</p>
Full article ">Figure 2 Cont.
<p><bold>Upper page</bold>: Effective potentials V(x) for a single electron under different voltage biasing circumstances [<xref ref-type="bibr" rid="B24-materials-17-04846">24</xref>]. <bold>Current page</bold>: Electron wave−functions for aforementioned effective potentials with subsequent different effective eigenergy [<xref ref-type="bibr" rid="B24-materials-17-04846">24</xref>] obtained by Wannier qubit in different electrostatic polarization. Maximum localized functions can be constructed for various qubit electrostatic biasing potentials expressed by effective potential.</p>
Full article ">Figure 3
<p>Schematic movement of wave-packet across a curved nanowire that can be simplified as a quasi-one-dimensional object after proper transformation from 3D or 2D to 1D (dimension), visualized by Marcin Piontek.</p>
Full article ">Figure 4
<p>Generalized Q−Swap gate (Q−Inverter) for the case of two bent semiconductor or superconducting nanowires.</p>
Full article ">Figure 5
<p>(<bold>Upper Page</bold>) Case of bent position-based qubit from <xref ref-type="fig" rid="materials-17-04846-f001">Figure 1</xref> with shape incorporated in functions dependence <inline-formula><mml:math id="mm281"><mml:semantics><mml:mstyle><mml:mfrac><mml:mrow><mml:msup><mml:mi>y</mml:mi><mml:mrow><mml:mo>″</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac></mml:mstyle></mml:semantics></mml:math></inline-formula> (<bold>left</bold>) and of <inline-formula><mml:math id="mm282"><mml:semantics><mml:mstyle><mml:mfrac><mml:mrow><mml:msup><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac></mml:mstyle></mml:semantics></mml:math></inline-formula> (<bold>right</bold>) for <inline-formula><mml:math id="mm283"><mml:semantics><mml:mrow><mml:mi>y</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mi>a</mml:mi><mml:mi>n</mml:mi><mml:mi>h</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>. Visualization of cable shapes is based on examples from <xref ref-type="fig" rid="materials-17-04846-f003">Figure 3</xref> and <xref ref-type="fig" rid="materials-17-04846-f004">Figure 4</xref>, and is constituting the emergence of an effective potential barrier during cable bending. This will lead to the methodology of description of position-based qubit generalization given by Figure 15. (<bold>Current Page</bold>) Probability distributions corresponding to eigenenergy wavefunctions for Tanh square nanowire (<inline-formula><mml:math id="mm284"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>) with three built−in q wells (<bold>UPPER</bold>), no q wells (<bold>MIDDLE</bold>) and for straight nanowire with two built−in q wells (<bold>LOWER</bold>).</p>
Full article ">Figure 5 Cont.
<p>(<bold>Upper Page</bold>) Case of bent position-based qubit from <xref ref-type="fig" rid="materials-17-04846-f001">Figure 1</xref> with shape incorporated in functions dependence <inline-formula><mml:math id="mm281"><mml:semantics><mml:mstyle><mml:mfrac><mml:mrow><mml:msup><mml:mi>y</mml:mi><mml:mrow><mml:mo>″</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac></mml:mstyle></mml:semantics></mml:math></inline-formula> (<bold>left</bold>) and of <inline-formula><mml:math id="mm282"><mml:semantics><mml:mstyle><mml:mfrac><mml:mrow><mml:msup><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac></mml:mstyle></mml:semantics></mml:math></inline-formula> (<bold>right</bold>) for <inline-formula><mml:math id="mm283"><mml:semantics><mml:mrow><mml:mi>y</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mi>a</mml:mi><mml:mi>n</mml:mi><mml:mi>h</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>. Visualization of cable shapes is based on examples from <xref ref-type="fig" rid="materials-17-04846-f003">Figure 3</xref> and <xref ref-type="fig" rid="materials-17-04846-f004">Figure 4</xref>, and is constituting the emergence of an effective potential barrier during cable bending. This will lead to the methodology of description of position-based qubit generalization given by Figure 15. (<bold>Current Page</bold>) Probability distributions corresponding to eigenenergy wavefunctions for Tanh square nanowire (<inline-formula><mml:math id="mm284"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>) with three built−in q wells (<bold>UPPER</bold>), no q wells (<bold>MIDDLE</bold>) and for straight nanowire with two built−in q wells (<bold>LOWER</bold>).</p>
Full article ">Figure 6
<p>Detailed analysis of probability distributions (for first 20 eigenenergy modes) for Tanh square nanowires in the case of presence [<bold>LEFT</bold>]/no presence [<bold>RIGHT</bold>] of 3 q-wells with <inline-formula><mml:math id="mm285"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The lack of built-in q-wells results in a gap in q-state presence in the middle of the curved nanowire.</p>
Full article ">Figure 7
<p>Detailed analysis of eigenenergy wavefunctions (for the first 20 eigenenergy modes) and with no built−in q−wells for Tanh square nanowires (with <inline-formula><mml:math id="mm286"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>), showing that the wave-functions are strongly localized due the non-zero curvature of the nanowire (equivalent to the condition that <inline-formula><mml:math id="mm287"><mml:semantics><mml:mrow><mml:mstyle><mml:mfrac><mml:mfrac><mml:msup><mml:mi>d</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mi>d</mml:mi><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac><mml:mi>y</mml:mi></mml:mfrac></mml:mstyle><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mstyle><mml:mfrac><mml:mi>d</mml:mi><mml:mrow><mml:mi>d</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:mfrac></mml:mstyle><mml:mi>y</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>≠</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 8
<p>Detailed analysis of eigenenergy wavefunctions (for the first 20 eigenenergy modes) and with three built−in q−wells for Tanh square nanowires (with <inline-formula><mml:math id="mm288"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>), showing that the wave-functions are strongly localized due to the non-zero curvature of the nanowire (equivalent to the condition that <inline-formula><mml:math id="mm289"><mml:semantics><mml:mrow><mml:mstyle><mml:mfrac><mml:mfrac><mml:msup><mml:mi>d</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mi>d</mml:mi><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac><mml:mi>y</mml:mi></mml:mfrac></mml:mstyle><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mstyle><mml:mfrac><mml:mi>d</mml:mi><mml:mrow><mml:mi>d</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:mfrac></mml:mstyle><mml:mi>y</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>≠</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>). Notice the difference in quantum wave-function behaviours compared to the case with no built−in q−wells shown in <xref ref-type="fig" rid="materials-17-04846-f007">Figure 7</xref>.</p>
Full article ">Figure 9
<p>The case of coefficient <inline-formula><mml:math id="mm290"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0.1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> reveals interesting eigenenergy wavefunction distributions for a cable with no built−in q−wells.</p>
Full article ">Figure 10
<p>The case of coefficient <inline-formula><mml:math id="mm291"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0.1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> reveals interesting eigenenergy wavefunction distitributions for a nanowire cable with three built−in q−wells.</p>
Full article ">Figure 11
<p>The case of local confining potentials as <inline-formula><mml:math id="mm292"><mml:semantics><mml:msub><mml:mi>V</mml:mi><mml:mi>a</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm293"><mml:semantics><mml:msub><mml:mi>V</mml:mi><mml:mi>b</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> for Tanh Square interacting nanowire cables without and with built-in q-wells.</p>
Full article ">Figure 12
<p>First 200 eigenenergy wavefunctions for Tanh Square V shape nanowire with no built-in quantum wells for <inline-formula><mml:math id="mm294"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0.1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 13
<p>Case of two V Tanh Square Lines interacting and probability distributions around each line for electrons A and B with <inline-formula><mml:math id="mm295"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> (10, 1, 0.1) for (<bold>UPPER</bold>, <bold>MIDDLE</bold>, <bold>LOWER</bold>) pictures with three quantum wells built-in [<bold>LEFT</bold>] and no quantum wells built-in [<bold>RIGHT</bold>].</p>
Full article ">Figure 14
<p>(<bold>Upper</bold>): Two particles (electrons) in semiconductor nanowires interacting electrostatically in classical picture and family of V-shaped lines parametrized by <inline-formula><mml:math id="mm296"><mml:semantics><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mo>∗</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>T</mml:mi><mml:mi>a</mml:mi><mml:mi>n</mml:mi><mml:mi>h</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>c</mml:mi><mml:mo>∗</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>d</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>Lower</bold>): The nanoline trajectory of the first particle is given in blue by <inline-formula><mml:math id="mm297"><mml:semantics><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> and of the second particle in orange <inline-formula><mml:math id="mm298"><mml:semantics><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>F</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 15
<p>Arbitrary curved quasi-one-dimensional nanowire in two dimensions can be approximated by a finite number of straight nanowires (<bold>A</bold>) that can mimic a varied class of tunable metrics that is implemented with a two-dimensional chain of nanowires (<bold>B</bold>) with specified single-electron injectors. In such a way, an electrostatically programmable space-metric for single-electrons in discretized space accounting for bounded or unbounded states can emerge and be technologically controlled on a massive scale as specified in (<bold>C</bold>). Self-interference effects for electron/hole propagating from one geometrical point to another point may occur as indicated in (<bold>C</bold>) as it is a confirmation of quantum particle propagation along infinite number of possible trajectories between two points in space. Visualization of (<bold>A</bold>,<bold>C</bold>) was enhanced by Marcin Piontek.</p>
Full article ">Figure 15 Cont.
<p>Arbitrary curved quasi-one-dimensional nanowire in two dimensions can be approximated by a finite number of straight nanowires (<bold>A</bold>) that can mimic a varied class of tunable metrics that is implemented with a two-dimensional chain of nanowires (<bold>B</bold>) with specified single-electron injectors. In such a way, an electrostatically programmable space-metric for single-electrons in discretized space accounting for bounded or unbounded states can emerge and be technologically controlled on a massive scale as specified in (<bold>C</bold>). Self-interference effects for electron/hole propagating from one geometrical point to another point may occur as indicated in (<bold>C</bold>) as it is a confirmation of quantum particle propagation along infinite number of possible trajectories between two points in space. Visualization of (<bold>A</bold>,<bold>C</bold>) was enhanced by Marcin Piontek.</p>
Full article ">
616 KiB  
Review
Group Theory of Wannier Functions Providing the Basis for a Deeper Understanding of Magnetism and Superconductivity
by Ekkehard Krüger and Horst P. Strunk
Symmetry 2015, 7(2), 561-598; https://doi.org/10.3390/sym7020561 - 5 May 2015
Cited by 11 | Viewed by 6715
Abstract
The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the [...] Read more.
The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the paper considers usual, as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors (Ekkehard Krüger) in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the optimally-localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly-correlated localized electrons makes clear predictions of whether or not the system can possess superconducting or magnetic eigenstates. Full article
(This article belongs to the Special Issue Crystal Symmetry and Structure)
Show Figures


<p>Band structure of Nb after Mattheis [<a href="#b37-symmetry-07-00561" class="html-bibr">37</a>]. The dotted line denotes the superconducting band.</p>
Full article ">
Back to TopTop