[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = nonlinear preconditioners

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5697 KiB  
Article
An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE
by Yingjie Wu, Han Zhang, Lixun Liu, Huanran Tang, Qinrong Dou, Jiong Guo and Fu Li
Energies 2024, 17(6), 1499; https://doi.org/10.3390/en17061499 - 21 Mar 2024
Viewed by 1020
Abstract
Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations in the nuclear engineering community, and has been successfully applied to steady-state neutron diffusion k-eigenvalue problems and multi-physics coupling problems. Preconditioning technique plays an important role in the JFNK algorithm, significantly [...] Read more.
Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations in the nuclear engineering community, and has been successfully applied to steady-state neutron diffusion k-eigenvalue problems and multi-physics coupling problems. Preconditioning technique plays an important role in the JFNK algorithm, significantly affecting its computational efficiency. The key point is how to automatically construct a high-quality preconditioning matrix that can improve the convergence rate and perform the preconditioning matrix factorization efficiently and robustly. A reordering-based ILU(k) preconditioner is proposed to achieve the above objectives. In detail, the finite difference technique combined with the coloring algorithm is utilized to automatically construct a preconditioning matrix with low computational cost. Furthermore, the reordering algorithm is employed for the ILU(k) to reduce the additional non-zero elements and pursue robust computational performance. A 2D LRA neutron steady-state benchmark problem is used to evaluate the performance of the proposed preconditioning technique, and a steady-state neutron diffusion k-eigenvalue problem with thermal-hydraulic feedback is also utilized as a supplement. The results show that coloring algorithms can automatically and efficiently construct the preconditioning matrix. The computational efficiency of the FDP with coloring could be about 60 times higher than that of the preconditioner without the coloring algorithm. The reordering-based ILU(k) preconditioner shows excellent robustness, avoiding the effect of the fill-in level k choice in incomplete LU factorization. Moreover, its performances under different fill-in levels are comparable to the optimal computational cost with natural ordering. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

Figure 1
<p>Schematic of LRA benchmark, (1) fuel 1 with rod, (2) fuel 1 without rod, (3) fuel 2 with rod, (4) fuel 2 without rod, (5) reflector.</p>
Full article ">Figure 2
<p>Preconditioning system in MOOSE.</p>
Full article ">Figure 3
<p>Preconditioning matrix and its compressed representation in steady-state neutron diffusion problem. (The color dots represent non-zero matrix elements, and each color represents a structurally orthogonal group) (<b>a</b>) Preconditioning matrix; (<b>b</b>) Its compressed representation.</p>
Full article ">Figure 4
<p>Sparse matrix and its corresponding graph. (<b>a</b>) Sparse matrix; (<b>b</b>) Corresponding graph with degrees.</p>
Full article ">Figure 5
<p>Matrix columns partitioned based on largest-first ordering. (<b>a</b>) Columns rearrangement in matrix form based on LF ordering; (<b>b</b>) Compressed matrix generation based on LF ordering; (<b>c</b>) Columns rearrangement in graph form based on LF ordering.</p>
Full article ">Figure 6
<p>Matrix structure of different reordering methods using ILU(20).</p>
Full article ">Figure 7
<p>Residual history in three coloring methods using FDP.</p>
Full article ">Figure 8
<p>The total computational time and factorization time in ILU(k) algorithm. (<b>a</b>) Computational time; (<b>b</b>) Factorization time.</p>
Full article ">Figure 9
<p>The linear steps and non-zeros after ILU factorization. (<b>a</b>) Total linear steps; (<b>b</b>) Number of non-zeros.</p>
Full article ">Figure 10
<p>The total computational time and non-zeros of ILU factorization for simplified PWR model. (<b>a</b>) Total computational time; (<b>b</b>) Number of non-zeros.</p>
Full article ">
27 pages, 11707 KiB  
Article
Critical Sample-Size Analysis for Uncertainty Aerodynamic Evaluation of Compressor Blades with Stagger-Angle Errors
by Haohao Wang, Limin Gao and Baohai Wu
Aerospace 2023, 10(12), 990; https://doi.org/10.3390/aerospace10120990 - 25 Nov 2023
Cited by 2 | Viewed by 1326
Abstract
Many probability-based uncertainty quantification (UQ) schemes require a large amount of sampled data to build credible probability density function (PDF) models for uncertain parameters. Unfortunately, the amounts of data collected as to compressor blades of aero-engines are mostly limited due to the expensive [...] Read more.
Many probability-based uncertainty quantification (UQ) schemes require a large amount of sampled data to build credible probability density function (PDF) models for uncertain parameters. Unfortunately, the amounts of data collected as to compressor blades of aero-engines are mostly limited due to the expensive and time-consuming tests. In this paper, we develop a preconditioner-based data-driven polynomial chaos (PDDPC) method that can efficiently deal with uncertainty propagation of limited amounts of sampled data. The calculation accuracy of a PDDPC method is closely related to the sample size of collected data. Therefore, the influence of sample size on this PDDPC method is investigated using a nonlinear test function. Subsequently, we consider the real manufacturing errors in stagger angles for compressor blades. Under three different operating conditions, the PDDPC method is applied to investigate the effect of stagger-angle error on UQ results of multiple aerodynamic parameters of a two-dimensional compressor blade. The results show that as the sample-size of measured data increases, UQ results regarding aerodynamic performance obtained by the PDDPC method gradually converge. There exists a critical sample size that ensures accurate UQ analysis of compressor blades. The probability information contained in the machining error data is analyzed through Kullback–Leibler divergence, and the critical sample size is determined. The research results can serve as a valuable reference for the fast and cheap UQ analysis of compressor blades in practical engineering. Full article
(This article belongs to the Special Issue Aero-Engine Design)
Show Figures

Figure 1

Figure 1
<p>Compressor blade geometry.</p>
Full article ">Figure 2
<p>Measurement of stagger angle: (<b>a</b>) real manufactured blade profiles; (<b>b</b>) histogram of stagger-angle error.</p>
Full article ">Figure 3
<p>Computational mesh and domain of compressor blade passage.</p>
Full article ">Figure 4
<p>Comparison between experimental measurement and numerical results.</p>
Full article ">Figure 5
<p>The schematic diagram of the PDDPC method.</p>
Full article ">Figure 6
<p>Convergence results of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>Y</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>Y</mi> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes.</p>
Full article ">Figure 7
<p>A schematic diagram of uncertainty propagation of stagger-angle errors.</p>
Full article ">Figure 8
<p>Histograms of each sample size used in UQ analysis.</p>
Full article ">Figure 9
<p>Convergence plots of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>ω</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>ω</mi> </mrow> </mfenced> </mrow> </semantics></math> under incidence <span class="html-italic">i</span> = −0.5°.</p>
Full article ">Figure 10
<p>Convergence plots of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> under incidence <span class="html-italic">i =</span> −0.5°.</p>
Full article ">Figure 11
<p>Convergence plots of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>ω</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>ω</mi> </mrow> </mfenced> </mrow> </semantics></math> under incidence <span class="html-italic">i =</span> 2.5°.</p>
Full article ">Figure 12
<p>Convergence plots of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> under incidence <span class="html-italic">i =</span> 2.5°.</p>
Full article ">Figure 13
<p>Convergence plots of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>ω</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>ω</mi> </mrow> </mfenced> </mrow> </semantics></math> under incidence <span class="html-italic">i =</span> 7°.</p>
Full article ">Figure 14
<p>Convergence plots of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi>π</mi> </mrow> </mfenced> </mrow> </semantics></math> under incidence <span class="html-italic">i =</span> 7°.</p>
Full article ">Figure 15
<p>Results of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators=""> <mrow> <mi>M</mi> </mrow> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes at incidence <span class="html-italic">i =</span> −0.5°.</p>
Full article ">Figure 16
<p>Results of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators=""> <mrow> <mi>M</mi> </mrow> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes at incidence <span class="html-italic">i =</span> −0.5°.</p>
Full article ">Figure 17
<p>Results of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators=""> <mrow> <mi>M</mi> </mrow> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes at incidence <span class="html-italic">i =</span> 2.5°.</p>
Full article ">Figure 18
<p>Results of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators=""> <mrow> <mi>M</mi> </mrow> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes at incidence <span class="html-italic">i =</span> 2.5°.</p>
Full article ">Figure 19
<p>Results of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators=""> <mrow> <mi>M</mi> </mrow> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes at incidence <span class="html-italic">i =</span> 7°.</p>
Full article ">Figure 20
<p>Results of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators=""> <mrow> <mi>M</mi> </mrow> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> with different sample sizes at incidence <span class="html-italic">i =</span> 7°.</p>
Full article ">Figure 21
<p><math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mfenced> </mrow> </semantics></math> contour with different sample sizes at incidence <span class="html-italic">i =</span> −0.5°.</p>
Full article ">Figure 22
<p><math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mfenced> </mrow> </semantics></math> contour with different sample sizes at incidence <span class="html-italic">i =</span> −0.5°.</p>
Full article ">Figure 23
<p><math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mfenced> </mrow> </semantics></math> contour with different sample sizes at incidence <span class="html-italic">i =</span> 2.5°.</p>
Full article ">Figure 24
<p><math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mfenced> </mrow> </semantics></math> contour with different sample sizes at incidence <span class="html-italic">i =</span> 2.5°.</p>
Full article ">Figure 25
<p><math display="inline"><semantics> <mrow> <mi>μ</mi> <mfenced separators="|"> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mfenced> </mrow> </semantics></math> contour with different sample sizes at incidence <span class="html-italic">i =</span> 7°.</p>
Full article ">Figure 26
<p><math display="inline"><semantics> <mrow> <mi>σ</mi> <mfenced separators="|"> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mfenced> </mrow> </semantics></math> contour with different sample sizes at incidence <span class="html-italic">i =</span> 7°.</p>
Full article ">Figure 27
<p>KL results for different sample sizes.</p>
Full article ">
19 pages, 2375 KiB  
Article
A GPU-Accelerated Method for 3D Nonlinear Kelvin Ship Wake Patterns Simulation
by Xiaofeng Sun, Miaoyu Cai and Junchen Ding
Appl. Sci. 2023, 13(22), 12148; https://doi.org/10.3390/app132212148 - 8 Nov 2023
Cited by 2 | Viewed by 1107
Abstract
The study of ship waves is important for ship detection, coastal erosion and wave drag. This paper proposed a highly paralleled numerical computation method for efficiently simulating three-dimensional nonlinear kelvin waves. First, a numerical model for nonlinear ship waves is established based on [...] Read more.
The study of ship waves is important for ship detection, coastal erosion and wave drag. This paper proposed a highly paralleled numerical computation method for efficiently simulating three-dimensional nonlinear kelvin waves. First, a numerical model for nonlinear ship waves is established based on potential flow theory, the Jacobian-free Newton–Krylov (JFNK) method and the boundary integral method. To reduce the amount of data stored in the JFNK method and improve the computational efficiency, a banded preconditioner method is then developed by formulating the optimal bandwidth selection rule. After that, a Graphics Process Unit (GPU)-based parallel computing framework is designed, and we used the Compute Unified Device Architecture (CUDA) language to develop a GPU solution. Finally, numerical simulations of 3D nonlinear ship waves under multiple scales are performed by using the GPU and CPU solvers. Simulation results show that the proposed GPU solver is more efficient than the CPU solver with the same accuracy. More than 66% GPU memory can be saved, and the computational speed can be accelerated up to 20 times. Hence, the computation time for Kelvin ship waves simulation can be significantly reduced by applying the GPU parallel numerical scheme, which lays a solid foundation for practical ocean engineering. Full article
Show Figures

Figure 1

Figure 1
<p>Flow field diagram.</p>
Full article ">Figure 2
<p>Calculation flow chart of the banded preconditioner JFNK method.</p>
Full article ">Figure 3
<p>The distribution of eigenvalues of <math display="inline"><semantics> <msub> <mi mathvariant="bold">J</mi> <mi mathvariant="bold-italic">t</mi> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">J</mi> <mi mathvariant="bold-italic">t</mi> </msub> <msup> <mrow> <mi mathvariant="bold">P</mi> </mrow> <mrow> <mo>−</mo> <mn mathvariant="bold">1</mn> </mrow> </msup> </mrow> </semantics></math> on a <math display="inline"><semantics> <mrow> <mn>31</mn> <mo>×</mo> <mn>11</mn> </mrow> </semantics></math> mesh.</p>
Full article ">Figure 4
<p>Construction of the banded preconditioner, the area marked in red lines indicates the bandwidth.</p>
Full article ">Figure 5
<p>The distribution of eigenvalues of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">J</mi> <mi mathvariant="bold-italic">t</mi> </msub> <msup> <mrow> <mi mathvariant="bold">P</mi> </mrow> <mrow> <mo>−</mo> <mn mathvariant="bold">1</mn> </mrow> </msup> </mrow> </semantics></math> on a <math display="inline"><semantics> <mrow> <mn>31</mn> <mo>×</mo> <mn>11</mn> </mrow> </semantics></math> mesh for: <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>=</mo> <mn>21</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The plot of runtime against the bandwidth computed on a <math display="inline"><semantics> <mrow> <mn>121</mn> <mo>×</mo> <mn>41</mn> </mrow> </semantics></math> mesh, <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>=</mo> <msup> <mi>b</mi> <mo>′</mo> </msup> <mo>×</mo> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Illustration of CUDA execution mode and thread organization hierarchy [<a href="#B23-applsci-13-12148" class="html-bibr">23</a>].</p>
Full article ">Figure 8
<p>The computation time distribution of a ship wave solver. The alphabet I represents the step of inverting the preconditioner matrix, the alphabet C represents the step of creating a nonlinear system, the alphabet B represents the step of building a preconditioner matrix, the alphabet S represents the step of solving linear equations by the GMRES algorithm and the alphabet O represents the step of other codes in the solver.</p>
Full article ">Figure 9
<p>The computational flow chart of GPU implementation.</p>
Full article ">Figure 10
<p>Optimal values of bandwidth <math display="inline"><semantics> <msup> <mi>b</mi> <mo>′</mo> </msup> </semantics></math> for different mesh sizes.</p>
Full article ">Figure 11
<p>A comparison of the centerline profiles for the simulation results of the CPU solver and GPU solver, which are computed on a <math display="inline"><semantics> <mrow> <mn>361</mn> <mo>×</mo> <mn>121</mn> </mrow> </semantics></math> mesh with <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <mo>Δ</mo> <mi>y</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <mi>F</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. The solid line represents the simulation result of the GPU solver, while the solid circles represent the simulation result of the CPU solver.</p>
Full article ">Figure 12
<p>The runtime of the GPU solver and CPU solver at different mesh sizes; red bars represent the GPU solver results and blue bars represent the CPU solver results.</p>
Full article ">Figure 13
<p>Wake pattern of real ship waves and the GPU solver computational results. The picture of a real speedboat wake pattern came from the internet <a href="https://www.quanjing.com" target="_blank">https://www.quanjing.com</a>, accessed on 1 September 2023; the picture of a real fishing ship wake came from <a href="https://www.shutterstock.com" target="_blank">https://www.shutterstock.com</a>, accessed on 1 September 2023; the picture of a real large vessel wake came from the internet <a href="https://blogs.worldbank.org" target="_blank">https://blogs.worldbank.org</a>, accessed on 6 September 2023.</p>
Full article ">
29 pages, 1311 KiB  
Article
Preconditioning Technique for an Image Deblurring Problem with the Total Fractional-Order Variation Model
by Adel M. Al-Mahdi
Math. Comput. Appl. 2023, 28(5), 97; https://doi.org/10.3390/mca28050097 - 22 Sep 2023
Cited by 1 | Viewed by 1751
Abstract
Total fractional-order variation (TFOV) in image deblurring problems can reduce/remove the staircase problems observed with the image deblurring technique by using the standard total variation (TV) model. However, the discretization of the Euler–Lagrange equations associated with the TFOV model generates a saddle point [...] Read more.
Total fractional-order variation (TFOV) in image deblurring problems can reduce/remove the staircase problems observed with the image deblurring technique by using the standard total variation (TV) model. However, the discretization of the Euler–Lagrange equations associated with the TFOV model generates a saddle point system of equations where the coefficient matrix of this system is dense and ill conditioned (it has a huge condition number). The ill-conditioned property leads to slowing of the convergence of any iterative method, such as Krylov subspace methods. One treatment for the slowness property is to apply the preconditioning technique. In this paper, we propose a block triangular preconditioner because we know that using the exact triangular preconditioner leads to a preconditioned matrix with exactly two distinct eigenvalues. This means that we need at most two iterations to converge to the exact solution. However, we cannot use the exact preconditioner because the Shur complement of our system is of the form S=K*K+λLα which is a huge and dense matrix. The first matrix, K*K, comes from the blurred operator, while the second one is from the TFOV regularization model. To overcome this difficulty, we propose two preconditioners based on the circulant and standard TV matrices. In our algorithm, we use the flexible preconditioned GMRES method for the outer iterations, the preconditioned conjugate gradient (PCG) method for the inner iterations, and the fixed point iteration (FPI) method to handle the nonlinearity. Fast convergence was found in the numerical results by using the proposed preconditioners. Full article
Show Figures

Figure 1

Figure 1
<p>Cross sections.</p>
Full article ">Figure 2
<p>Right box.</p>
Full article ">Figure 3
<p>Middle box.</p>
Full article ">Figure 4
<p>Left box.</p>
Full article ">Figure 5
<p>TV-error.</p>
Full article ">Figure 6
<p>TFOV-error.</p>
Full article ">Figure 7
<p>Eigenvalues of <span class="html-italic">A</span>.</p>
Full article ">Figure 8
<p>Eigenvalues of <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>A</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Golden house image.</p>
Full article ">Figure 10
<p>Retinal image.</p>
Full article ">Figure 11
<p>Shape of the kernel.</p>
Full article ">Figure 12
<p>Residual versus iterations number when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Residual versus iterations number when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Golden house image (blurred).</p>
Full article ">Figure 15
<p>Retinal image (blurred).</p>
Full article ">Figure 16
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 23
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 24
<p>FGMRES vs. GMRES.</p>
Full article ">Figure 25
<p>Peppers image (exact).</p>
Full article ">Figure 26
<p>Peppers image (blurred).</p>
Full article ">Figure 27
<p>Using TV (<math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 28
<p>Using NP.</p>
Full article ">Figure 29
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 30
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 31
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>64</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 32
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>128</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 33
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 34
<p>Satel image (blurred).</p>
Full article ">Figure 35
<p>Using NFOV.</p>
Full article ">Figure 36
<p>Using NP.</p>
Full article ">Figure 37
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 38
<p>Using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>2</mn> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>.</p>
Full article ">
15 pages, 585 KiB  
Article
A Preconditioned Iterative Method for a Multi-State Time-Fractional Linear Complementary Problem in Option Pricing
by Xu Chen, Xinxin Gong, Siu-Long Lei and Youfa Sun
Fractal Fract. 2023, 7(4), 334; https://doi.org/10.3390/fractalfract7040334 - 17 Apr 2023
Cited by 2 | Viewed by 1484
Abstract
Fractional derivatives and regime-switching models are widely used in various fields of finance because they can describe the nonlocal properties of the solutions and the changes in the market status, respectively. The regime-switching time-fractional diffusion equations that combine both advantages are also used [...] Read more.
Fractional derivatives and regime-switching models are widely used in various fields of finance because they can describe the nonlocal properties of the solutions and the changes in the market status, respectively. The regime-switching time-fractional diffusion equations that combine both advantages are also used in European option pricing; however, to our knowledge, American option pricing based on such models and their numerical methods is yet to be studied. Hence, a fast algorithm for solving the multi-state time-fractional linear complementary problem arising from the regime-switching time-fractional American option pricing models is developed in this paper. To construct the solution strategy, the original problem has been converted into a Hamilton–Jacobi–Bellman equation, and a nonlinear finite difference scheme has been proposed to discretize the problem with stability analysis. A policy-Krylov subspace method is developed to solve the nonlinear scheme. Further, to accelerate the convergence rate of the Krylov method, a tri-diagonal preconditioner is proposed with condition number analysis. Numerical experiments are presented to demonstrate the validity of the proposed nonlinear scheme and the efficiency of the proposed preconditioned policy-Krylov subspace method. Full article
Show Figures

Figure 1

Figure 1
<p>Eigenvalues distribution: (<b>a</b>) eigenvalue of coefficient matrix <span class="html-italic">M</span>; (<b>b</b>) eigenvalue of preconditioned matrix <math display="inline"><semantics> <mrow> <msup> <mi>P</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>M</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Condition number of the coefficient matrix: (<b>a</b>) condition number of preconditioned matrix <math display="inline"><semantics> <mrow> <msup> <mi>P</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>M</mi> </mrow> </semantics></math>; (<b>b</b>) comparison of condition number of <math display="inline"><semantics> <mrow> <msup> <mi>P</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>M</mi> </mrow> </semantics></math> and <span class="html-italic">M</span>.</p>
Full article ">Figure 3
<p>Option value of three examples: (<b>a</b>) option value of two regimes; (<b>b</b>) option value of four regimes; (<b>c</b>) option value of eight regimes.</p>
Full article ">
21 pages, 2751 KiB  
Article
On the Numerical Solution of Sparse Linear Systems Emerging in Finite Volume Discretizations of 2D Boussinesq-Type Models on Unstructured Grids
by Anargiros I. Delis, Maria Kazolea and Maria Gaitani
Water 2022, 14(21), 3584; https://doi.org/10.3390/w14213584 - 7 Nov 2022
Viewed by 1857
Abstract
This work aims to supplement the realization and validation of a higher-order well-balanced unstructured finite volume (FV) scheme, that has been relatively recently presented, for numerically simulating weakly non-linear weakly dispersive water waves over varying bathymetries. We investigate and develop solution strategies for [...] Read more.
This work aims to supplement the realization and validation of a higher-order well-balanced unstructured finite volume (FV) scheme, that has been relatively recently presented, for numerically simulating weakly non-linear weakly dispersive water waves over varying bathymetries. We investigate and develop solution strategies for the sparse linear system that appears during this FV discretisation of a set of extended Boussinesq-type equations on unstructured meshes. The resultant linear system of equations must be solved at each discrete time step as to recover the actual velocity field of the flow and advance in time. The system’s coefficient matrix is sparse, un-symmetric and often ill-conditioned. Its characteristics are affected by physical quantities of the problem to be solved, such as the undisturbed water depth and the mesh topology. To this end, we investigate the application of different well-known iterative techniques, with and without the usage of preconditioners and reordering, for the solution of this sparse linear system. The iiterative methods considered are the GMRES and the BiCGSTAB, three preconditioning techniques, including different ILU factorizations and two different reordering techniques are implemented and discussed. An optimal strategy, in terms of computational efficiency and robustness, is finally proposed which combines the use of the BiCGSTAB method with the ILUT preconditioner and the Reverse Cuthill–McKee reordering. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Figure 1
<p>Median-dual computational cell implemented in the FV scheme (<b>left</b>) and the computational cell used for the gradient of the divergence in (<a href="#FD2-water-14-03584" class="html-disp-formula">2</a>) (<b>right</b>).</p>
Full article ">Figure 2
<p>Representative grid types: Equilateral, Orthogonal I, Orthogonal II, Distorted (left to right).</p>
Full article ">Figure 3
<p>Matrix sparsity patterns for the four different mesh types shown in <a href="#water-14-03584-f002" class="html-fig">Figure 2</a> for <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> with <math display="inline"><semantics> <msub> <mi>N</mi> <mi>z</mi> </msub> </semantics></math> the number of non-zero elements.</p>
Full article ">Figure 3 Cont.
<p>Matrix sparsity patterns for the four different mesh types shown in <a href="#water-14-03584-f002" class="html-fig">Figure 2</a> for <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> with <math display="inline"><semantics> <msub> <mi>N</mi> <mi>z</mi> </msub> </semantics></math> the number of non-zero elements.</p>
Full article ">Figure 4
<p>Eigenvalues of three matrices using the equilateral type of grid with <math display="inline"><semantics> <mrow> <mfrac> <mi>h</mi> <msub> <mi>h</mi> <mi>N</mi> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>0.058</mn> </mrow> </mfrac> </mrow> </semantics></math> (<b>top left</b>), <math display="inline"><semantics> <mfrac> <mn>1</mn> <mrow> <mn>0.031</mn> </mrow> </mfrac> </semantics></math> (<b>top right</b>) and <math display="inline"><semantics> <mfrac> <mn>100</mn> <mrow> <mn>0.058</mn> </mrow> </mfrac> </semantics></math> (<b>bottom</b>).</p>
Full article ">Figure 5
<p>Eigenvalues of three matrices using the Orthogonal I type of grid with <math display="inline"><semantics> <mrow> <mfrac> <mi>h</mi> <msub> <mi>h</mi> <mi>N</mi> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>0.0456</mn> </mrow> </mfrac> </mrow> </semantics></math> (<b>top left</b>), <math display="inline"><semantics> <mfrac> <mn>1</mn> <mrow> <mn>0.0232</mn> </mrow> </mfrac> </semantics></math> (<b>top right</b>) and <math display="inline"><semantics> <mfrac> <mn>100</mn> <mrow> <mn>0.0456</mn> </mrow> </mfrac> </semantics></math> (<b>bottom</b>).</p>
Full article ">Figure 5 Cont.
<p>Eigenvalues of three matrices using the Orthogonal I type of grid with <math display="inline"><semantics> <mrow> <mfrac> <mi>h</mi> <msub> <mi>h</mi> <mi>N</mi> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>0.0456</mn> </mrow> </mfrac> </mrow> </semantics></math> (<b>top left</b>), <math display="inline"><semantics> <mfrac> <mn>1</mn> <mrow> <mn>0.0232</mn> </mrow> </mfrac> </semantics></math> (<b>top right</b>) and <math display="inline"><semantics> <mfrac> <mn>100</mn> <mrow> <mn>0.0456</mn> </mrow> </mfrac> </semantics></math> (<b>bottom</b>).</p>
Full article ">Figure 6
<p>CPU time versus variable still water level to <math display="inline"><semantics> <msub> <mi>h</mi> <mi>N</mi> </msub> </semantics></math> ratio for GMRES (solid line) and BiCGStab (dashed line).</p>
Full article ">Figure 7
<p>CPU time versus <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <msub> <mi>h</mi> <mi>N</mi> </msub> </mrow> </semantics></math> for GMRES (solid line) and BiCGStab (dashed line) using the ILU(<span class="html-italic">k</span>) preconditioner with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>CPU time versus <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <msub> <mi>h</mi> <mi>N</mi> </msub> </mrow> </semantics></math> for GMRES (solid line) and BiCGStab (dashed line) applying the ILUT preconditioner with <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>CPU time versus <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <msub> <mi>h</mi> <mi>N</mi> </msub> </mrow> </semantics></math> for GMRES (solid line) and BiCGStab (dashed line) using the ILU(<span class="html-italic">k</span>) preconditioner and CMK reordering.</p>
Full article ">Figure 10
<p>CPU time versus variable water depth for GMRES (solid line) and BiCGStab (dashed line) using ILUT preconditioner with threshold <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> </semantics></math> (<b>right</b>) and CMK reordering, for Equilateral type of grid (<b>up</b>) and for Orthogonal I (<b>down</b>).</p>
Full article ">Figure 11
<p>CPU time versus variable water depth for GMRES (solid line) and BiCGStab (dashed line) using ILU(<span class="html-italic">k</span>) preconditioner and RCM reordering, for Equilateral type of grids (<b>left</b>) and for Orthogonal I types (<b>right</b>).</p>
Full article ">Figure 12
<p>CPU time versus variable water depth for GMRES (solid line) and BiCGStab (dashed line) using ILUT preconditioner with threshold <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> </semantics></math> (<b>right</b>) and RCM reordering for Equilateral type of grids (<b>up</b>) and Orthogonal I types (<b>down</b>).</p>
Full article ">Figure 13
<p>CPU times as a function of the free surface error measured in the <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math> norm.</p>
Full article ">Figure 14
<p>Non-zero elements as a function of <span class="html-italic">N</span> (<b>left</b>) and CPU times as a function of <span class="html-italic">N</span> (<b>right</b>).</p>
Full article ">
12 pages, 2605 KiB  
Article
A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues
by Mohamed Abdelsabour Fahmy
Appl. Sci. 2022, 12(14), 7174; https://doi.org/10.3390/app12147174 - 16 Jul 2022
Cited by 12 | Viewed by 1562
Abstract
The principal objective of this work was to develop a semi-implicit hybrid boundary element method (HBEM) to describe the nonlinear fractional biomechanical interactions in functionally graded anisotropic (FGA) soft tissues. The local radial basis function collocation method (LRBFCM) and general boundary element method [...] Read more.
The principal objective of this work was to develop a semi-implicit hybrid boundary element method (HBEM) to describe the nonlinear fractional biomechanical interactions in functionally graded anisotropic (FGA) soft tissues. The local radial basis function collocation method (LRBFCM) and general boundary element method (GBEM) were used to solve the nonlinear fractional dual-phase-lag bioheat governing equation. The boundary element method (BEM) was then used to solve the poroelastic governing equation. To solve equations arising from boundary element discretization, an efficient partitioned semi-implicit coupling algorithm was implemented with the generalized modified shift-splitting (GMSS) preconditioners. The computational findings are presented graphically to display the influences of the graded parameter, fractional parameter, and anisotropic property on the bio-thermal stress. Different bioheat transfer models are presented to show the significant differences between the nonlinear bio-thermal stress distributions in functionally graded anisotropic biological tissues. Numerical findings verified the validity, accuracy, and efficiency of the proposed method. Full article
(This article belongs to the Special Issue Biomechanics Research on Biological Soft Tissues)
Show Figures

Figure 1

Figure 1
<p>Schematic flowchart representation of the considered problem.</p>
Full article ">Figure 2
<p>Boundary element model of the considered problem.</p>
Full article ">Figure 3
<p>Distribution of <span class="html-italic">σ</span><sub>11</sub> along the <span class="html-italic">x</span>-axis for various fractional-order parameter values.</p>
Full article ">Figure 4
<p>Distribution of <span class="html-italic">σ</span><sub>11</sub> along the <span class="html-italic">x</span>-axis for various graded parameter values.</p>
Full article ">Figure 5
<p>Distribution of <span class="html-italic">σ</span><sub>11</sub> along the <span class="html-italic">x</span>-axis for various bioheat models.</p>
Full article ">Figure 6
<p>Variation of the bio-thermal stress <span class="html-italic">σ</span><sub>11</sub> along the <span class="html-italic">x</span>-axis for different methods.</p>
Full article ">
18 pages, 35535 KiB  
Article
Numerical Simulation of the Kelvin Wake Patterns
by Xiaofeng Sun, Miaoyu Cai, Jingkui Wang and Chunlei Liu
Appl. Sci. 2022, 12(12), 6265; https://doi.org/10.3390/app12126265 - 20 Jun 2022
Cited by 8 | Viewed by 3513
Abstract
The ship wave is of great interest for wave drag and coastal erosion. This paper proposes a mechanism of ship wave transformation to explore the effects of ship speed and ship size on the waveform. Firstly, based on the theory of potential flow, [...] Read more.
The ship wave is of great interest for wave drag and coastal erosion. This paper proposes a mechanism of ship wave transformation to explore the effects of ship speed and ship size on the waveform. Firstly, based on the theory of potential flow, the boundary integral equations for the Kelvin ship waves are obtained by deploying the different Kelvin sources or Rankine sources. Then, these integral equations are numerically discretized to a set of nonlinear equations. Finally, the Jacobian−free Newton–Krylov method with a preconditioner is adopted to solve the nonlinear equations. Though imitating plenty of different Kelvin wave patterns, the mechanism of ship wave transformation is proposed to conveniently generate the polymorphic Kelvin wake patterns. The above numerical simulation scheme is verified by comparing simulation results with real ship waves. After that, the wake angle is discussed with the effects of Froude number, source strength and source type by following the mechanism of ship wave transformation. The results show that the wake angle tends to decrease with ship speed but increase with ship size. In addition, for high ship speeds, the effect on the wake angle can be more dramatic. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

Figure 1
<p>Illustration of the disposition about the fluid.</p>
Full article ">Figure 2
<p>Schematic diagram of the fluid volume and its bounding surface.</p>
Full article ">Figure 3
<p>Illustration of the discrete unknowns at an <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>×</mo> <mi>M</mi> </mrow> </semantics></math> mesh, the left black dots are the locations of <math display="inline"><semantics> <msup> <mo>ϕ</mo> <mo>′</mo> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mo>ζ</mo> <mo>′</mo> </msup> </semantics></math>, the congruent triangles are the locations of the <math display="inline"><semantics> <mrow> <msub> <msup> <mo>ϕ</mo> <mo>′</mo> </msup> <mi>x</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <msup> <mo>ζ</mo> <mo>′</mo> </msup> <mi>x</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Perspective view of the free surface using Ranking source, for the case <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.7</mn> <mrow> <mo> </mo> <mi>and</mi> </mrow> <mo> </mo> <msup> <mi>μ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, computed on a 151 × 51 mesh with <math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mrow> <mo> </mo> <mo>=</mo> <mo> </mo> <mn>0.3</mn> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mo>,</mo> <mo> </mo> <mrow> <msup> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>y</mi> </mrow> <mo>′</mo> </msup> <mo> </mo> <mo>=</mo> <mo> </mo> <mn>0.3</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Comparisons between the three types of real ship waves and the corresponding simulation results. The pictures of real ship wave patterns come from internet: (<b>a</b>) speedboat wake, from <a href="https://commons.wikimedia.org/wiki/File:Fjordn_surface_wave_boat.jpg" target="_blank">https://commons.wikimedia.org/wiki/File:Fjordn_surface_wave_boat.jpg</a> accessed on 5 January 2022; (<b>c</b>) pilot boat wake, from <a href="https://www.shutterstock.com/zh/image-photo/small-ferry-boat-route-mainland-during-1706813791" target="_blank">https://www.shutterstock.com/zh/image-photo/small-ferry-boat-route-mainland-during-1706813791</a> accessed on 1 May 2022; (<b>e</b>) large vessel wake, from <a href="https://www.istockphoto.com/photo/aerial-top-view-oil-ship-tanker-full-speed-transportation-oil-from-refinery-on-the-gm1159334567-316959177" target="_blank">https://www.istockphoto.com/photo/aerial-top-view-oil-ship-tanker-full-speed-transportation-oil-from-refinery-on-the-gm1159334567-316959177</a> accessed on 5 January 2022.</p>
Full article ">Figure 6
<p>Perspectives and plans view of the free surfaces past Ranking source, computed on a <math display="inline"><semantics> <mrow> <mn>181</mn> <mo>×</mo> <mn>61</mn> </mrow> </semantics></math> mesh with <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>x</mi> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>y</mi> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, for the cases <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>5.0</mn> </mrow> </semantics></math>. The top three free surface patterns are the perspectives and the bottom three free surface patterns are the plans. The red line marks the edge of the wake angle in each plan view.</p>
Full article ">Figure 7
<p>A contour plot of the nonlinear free surface profile for flow past the Rankine source with the Froude number <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> and the source strength <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1.0</mn> <mo>,</mo> </mrow> </semantics></math> computed on a <math display="inline"><semantics> <mrow> <mn>181</mn> <mo>×</mo> <mn>61</mn> </mrow> </semantics></math> mesh with <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>x</mi> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <msup> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>y</mi> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>A plot of apparent wake angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math> against Froude number <math display="inline"><semantics> <msup> <mi>F</mi> <mo>′</mo> </msup> </semantics></math>. for a flow past the Rankine source, with the source strength <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> (the red circles) and <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> (the blue circles). The black solid lines are the trendlines of the wake angles with Froude numbers.</p>
Full article ">Figure 9
<p>Perspectives and plans view of the free surfaces past Kelvin source, computed for the cases <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>ϵ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1.0</mn> <mo>,</mo> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>ϵ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>ϵ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>. The top three free surface patterns are the perspectives and the bottom three free surface patterns are the plans. The red line marks the edge of the wake angle in each plan view.</p>
Full article ">Figure 10
<p>A plot of apparent wake angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math> against Froude number <math display="inline"><semantics> <msup> <mi>ϵ</mi> <mo>′</mo> </msup> </semantics></math> for a flow past the Kelvin source, with the source strength <math display="inline"><semantics> <mrow> <mo> </mo> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> (the red circles) and <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math> (the blue circles).</p>
Full article ">Figure 11
<p>Perspectives and plans view of the free surface computed for <math display="inline"><semantics> <msup> <mi>F</mi> <mo>′</mo> </msup> </semantics></math> = 0.8: (<b>a</b>) Kelvin source with <math display="inline"><semantics> <mrow> <msup> <mi>ϵ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>; (<b>b</b>) Rankine source with <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. The top two free surface patterns are the perspectives and the bottom two free surface patterns are the plans. The red line marks the edge of the wake angle in each plan view.</p>
Full article ">Figure 12
<p>Measured apparent wake angles <math display="inline"><semantics> <mi>θ</mi> </semantics></math> in degrees plotted against the Froude number for the flow past a Kelvin source with <math display="inline"><semantics> <mrow> <msup> <mi>ϵ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>a</b>) and a Rankine source with <span class="html-italic">μ′</span> = 0.5 (<b>b</b>).</p>
Full article ">
25 pages, 869 KiB  
Article
Nonlinearly Preconditioned FETI Solver for Substructured Formulations of Nonlinear Problems
by Camille Negrello, Pierre Gosselet and Christian Rey
Mathematics 2021, 9(24), 3165; https://doi.org/10.3390/math9243165 - 8 Dec 2021
Cited by 5 | Viewed by 2643
Abstract
We consider the finite element approximation of the solution to elliptic partial differential equations such as the ones encountered in (quasi)-static mechanics, in transient mechanics with implicit time integration, or in thermal diffusion. We propose a new nonlinear version of preconditioning, dedicated to [...] Read more.
We consider the finite element approximation of the solution to elliptic partial differential equations such as the ones encountered in (quasi)-static mechanics, in transient mechanics with implicit time integration, or in thermal diffusion. We propose a new nonlinear version of preconditioning, dedicated to nonlinear substructured and condensed formulations with dual approach, i.e., nonlinear analogues to the Finite Element Tearing and Interconnecting (FETI) solver. By increasing the importance of local nonlinear operations, this new technique reduces communications between processors throughout the parallel solving process. Moreover, the tangent systems produced at each step still have the exact shape of classically preconditioned linear FETI problems, which makes the tractability of the implementation barely modified. The efficiency of this new preconditioner is illustrated on two academic test cases, namely a water diffusion problem and a nonlinear thermal behavior. Full article
(This article belongs to the Special Issue Advanced Numerical Methods in Computational Solid Mechanics)
Show Figures

Figure 1

Figure 1
<p>Local numbering, interface numbering, trace and assembly operators.</p>
Full article ">Figure 2
<p>Richards equation: soil column with water diffusion in two directions.</p>
Full article ">Figure 3
<p>Nonlinear thermal problem.</p>
Full article ">Figure 4
<p>Temperature map for the nonlinear thermal problem with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>6</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 570 KiB  
Article
A Survey of Low-Rank Updates of Preconditioners for Sequences of Symmetric Linear Systems
by Luca Bergamaschi
Algorithms 2020, 13(4), 100; https://doi.org/10.3390/a13040100 - 21 Apr 2020
Cited by 15 | Viewed by 4370
Abstract
The aim of this survey is to review some recent developments in devising efficient preconditioners for sequences of symmetric positive definite (SPD) linear systems A k x k = b k , k = 1 , arising in many scientific applications, such [...] Read more.
The aim of this survey is to review some recent developments in devising efficient preconditioners for sequences of symmetric positive definite (SPD) linear systems A k x k = b k , k = 1 , arising in many scientific applications, such as discretization of transient Partial Differential Equations (PDEs), solution of eigenvalue problems, (Inexact) Newton methods applied to nonlinear systems, rational Krylov methods for computing a function of a matrix. In this paper, we will analyze a number of techniques of updating a given initial preconditioner by a low-rank matrix with the aim of improving the clustering of eigenvalues around 1, in order to speed-up the convergence of the Preconditioned Conjugate Gradient (PCG) method. We will also review some techniques to efficiently approximate the linearly independent vectors which constitute the low-rank corrections and whose choice is crucial for the effectiveness of the approach. Numerical results on real-life applications show that the performance of a given iterative solver can be very much enhanced by the use of low-rank updates. Full article
Show Figures

Figure 1

Figure 1
<p>Eigenvalues and angle between eigenvectors of <span class="html-italic">A</span> and IC-preconditioned <span class="html-italic">A</span>.</p>
Full article ">Figure 2
<p>Number of iterations to solve each linear system in the sequence by MINRES with: no update, BFGS update with previous solutions, spectral update with previous solutions, BFGS update with leftmost eigenvectors. On the right also the CPU time is reported.</p>
Full article ">Figure 3
<p>3D domain and triangulation.</p>
Full article ">Figure 4
<p>Number of iterations for each linear system in the sequence and various preconditioning strategies. Initial preconditioner: IC (<math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>1</mn> <mi>e</mi> <mo>−</mo> <mn>5</mn> </mrow> </semantics></math>) (upper plots) and IC (<math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>1</mn> <mi>e</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>) lower plots.</p>
Full article ">Figure 5
<p>Number of iterations for the Newton phase with fixed, SR1 tuned and generalized block tuned (GBT) preconditioners. In red the (scaled) logarithm of the indicator <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>j</mi> </msub> </semantics></math>.</p>
Full article ">
17 pages, 800 KiB  
Article
On C-To-R-Based Iteration Methods for a Class of Complex Symmetric Weakly Nonlinear Equations
by Min-Li Zeng and Guo-Feng Zhang
Mathematics 2020, 8(2), 208; https://doi.org/10.3390/math8020208 - 6 Feb 2020
Viewed by 1961
Abstract
To avoid solving the complex systems, we first rewrite the complex-valued nonlinear system to real-valued form (C-to-R) equivalently. Then, based on separable property of the linear and the nonlinear terms, we present a C-to-R-based Picard iteration method and a nonlinear C-to-R-based splitting (NC-to-R) [...] Read more.
To avoid solving the complex systems, we first rewrite the complex-valued nonlinear system to real-valued form (C-to-R) equivalently. Then, based on separable property of the linear and the nonlinear terms, we present a C-to-R-based Picard iteration method and a nonlinear C-to-R-based splitting (NC-to-R) iteration method for solving a class of large sparse and complex symmetric weakly nonlinear equations. At each inner process iterative step of the new methods, one only needs to solve the real subsystems with the same symmetric positive and definite coefficient matrix. Therefore, the computational workloads and computational storage will be saved in actual implements. The conditions for guaranteeing the local convergence are studied in detail. The quasi-optimal parameters are also proposed for both the C-to-R-based Picard iteration method and the NC-to-R iteration method. Numerical experiments are performed to show the efficiency of the new methods. Full article
(This article belongs to the Special Issue Computational Methods in Applied Analysis and Mathematical Modeling)
245 KiB  
Article
A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity
by Fayyaz Ahmad, Toseef Akhter Bhutta, Umar Shoaib, Malik Zaka Ullah, Ali Saleh Alshomrani, Shamshad Ahmad and Shahid Ahmad
Algorithms 2017, 10(1), 17; https://doi.org/10.3390/a10010017 - 18 Jan 2017
Cited by 4 | Viewed by 4227
Abstract
A modification to an existing iterative method for computing zeros with unknown multiplicities of nonlinear equations or a system of nonlinear equations is presented. We introduce preconditioners to nonlinear equations or a system of nonlinear equations and their corresponding Jacobians. The inclusion of [...] Read more.
A modification to an existing iterative method for computing zeros with unknown multiplicities of nonlinear equations or a system of nonlinear equations is presented. We introduce preconditioners to nonlinear equations or a system of nonlinear equations and their corresponding Jacobians. The inclusion of preconditioners provides numerical stability and accuracy. The different selection of preconditioner offers a family of iterative methods. We modified an existing method in a way that we do not alter its inherited quadratic convergence. Numerical simulations confirm the quadratic convergence of the preconditioned iterative method. The influence of preconditioners is clearly reflected in the numerically achieved accuracy of computed solutions. Full article
Back to TopTop