[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = inflationary era

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 996 KiB  
Review
Primordial Black Holes: Formation, Spin and Type II
by Tomohiro Harada
Universe 2024, 10(12), 444; https://doi.org/10.3390/universe10120444 - 30 Nov 2024
Cited by 1 | Viewed by 565
Abstract
Primordial black holes (PBHs) may have formed through the gravitational collapse of cosmological perturbations that were generated and stretched during the inflationary era, later entering the cosmological horizon during the decelerating phase, if their amplitudes were sufficiently large. In this review paper, we [...] Read more.
Primordial black holes (PBHs) may have formed through the gravitational collapse of cosmological perturbations that were generated and stretched during the inflationary era, later entering the cosmological horizon during the decelerating phase, if their amplitudes were sufficiently large. In this review paper, we will briefly introduce the basic concept of PBHs and review the formation dynamics through this mechanism, the estimation of the initial spins of PBHs and the time evolution of type II fluctuations, with a focus on the radiation-dominated and (early) matter-dominated phases. Full article
(This article belongs to the Special Issue Primordial Black Holes from Inflation)
Show Figures

Figure 1

Figure 1
<p>The schematic figure for the evolution of the scales of fluctuations generated by inflation. The quantum fluctuations generated by inflation are stretched to length scales that are much larger than the Hubble horizon scale <math display="inline"><semantics> <mrow> <mi>c</mi> <msup> <mi>H</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and are classical. In the decelerated phase after inflation, the scale of the fluctuation expands slower than the Hubble horizon scale. The time when the fluctuation scale becomes as large as the Hubble scale is called the horizon entry of the perturbation. After the horizon entry, the perturbation can collapse into a black hole leading to PBH formation if its amplitude is sufficiently large.</p>
Full article ">Figure 2
<p>Schematic figure of long-wavelength solutions. The long-wavelength solutions are obtained under the assumption that the comoving length scale <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>k</mi> </mrow> </semantics></math> of the perturbation in consideration is much longer than the Hubble horizon length <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mo>(</mo> <mi>a</mi> <mi>H</mi> <mo>)</mo> </mrow> </semantics></math>, which gives the size of Hubble patches denoted with small blue disks.</p>
Full article ">Figure 3
<p>EOS dependence of the PBH formation threshold. The horizontal axis is the parameter <span class="html-italic">w</span> for the EOS <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>w</mi> <mi>ρ</mi> </mrow> </semantics></math>, while the vertical axis is the threshold value in terms of <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>H</mi> </msub> </semantics></math>, the density perturbation over the overdense region, <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, at its horizon entry in the comoving slice. The crosses show the numerical result obtained in Ref. [<a href="#B38-universe-10-00444" class="html-bibr">38</a>]. The purple curve is the plot of Equation (<a href="#FD18-universe-10-00444" class="html-disp-formula">18</a>), which shows an agreement with the numerical result within ∼<math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math>, while the green curve shows Carr’s formula <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>H</mi> </msub> <mo>≃</mo> <mi>w</mi> </mrow> </semantics></math>. See Ref. [<a href="#B39-universe-10-00444" class="html-bibr">39</a>] for more details.</p>
Full article ">Figure 4
<p>Schematic illustration of the scenario on the anisotropic effect in the formation of PBHs in matter domination. <math display="inline"><semantics> <mi mathvariant="script">C</mi> </semantics></math> denotes the hoop of the surface of the gravitating object of mass <span class="html-italic">M</span>. The scenario is the following. The collapse of a dust ball is unstable against nonspherical perturbations towards the pancake. Whether or not a horizon forms around the pancake is subject to the hoop conjecture. If the condition <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>≲</mo> <mn>4</mn> <mi>π</mi> <mi>M</mi> </mrow> </semantics></math> is satisfied, a black hole forms. Otherwise, the collapse leads to virialization by acquiring velocity dispersion through violent relaxation. See Ref. [<a href="#B58-universe-10-00444" class="html-bibr">58</a>] for details.</p>
Full article ">Figure 5
<p>Contour maps of the distribution functions of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>M</mi> <mo>,</mo> <msub> <mi>a</mi> <mo>*</mo> </msub> <mo>)</mo> </mrow> </semantics></math> for isolated PBHs on the top panel, <span class="html-italic">M</span> and <math display="inline"><semantics> <msub> <mi>a</mi> <mo>*</mo> </msub> </semantics></math> are the mass and the nondimensional Kerr parameter, respectively, and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>χ</mi> <mi>eff</mi> </msub> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>χ</mi> <mi>eff</mi> </msub> <mo>,</mo> <mi mathvariant="script">M</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="script">M</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> for binary PBHs from left to right on the bottom panels, where <math display="inline"><semantics> <msub> <mi>χ</mi> <mi>eff</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="script">M</mi> </semantics></math> and <span class="html-italic">q</span> are the effective spin parameter, the Chirp mass and the mass ratio of the binary PBHs, respectively. The definitions of <span class="html-italic">q</span>, <math display="inline"><semantics> <mi mathvariant="script">M</mi> </semantics></math> and <math display="inline"><semantics> <msub> <mi>χ</mi> <mi>eff</mi> </msub> </semantics></math> are <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>:</mo> <mo>=</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="script">M</mi> <mo>:</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mn>3</mn> <mo>/</mo> <mn>5</mn> </mrow> </msup> <mo>/</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>χ</mi> <mi>eff</mi> </msub> <mo>:</mo> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mo>*</mo> <mn>1</mn> </mrow> </msub> <mo form="prefix">cos</mo> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>q</mi> <msub> <mi>a</mi> <mrow> <mo>*</mo> <mn>2</mn> </mrow> </msub> <mo form="prefix">cos</mo> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, respectively, where <math display="inline"><semantics> <msub> <mi>M</mi> <mi>i</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>a</mi> <mrow> <mo>*</mo> <mi>i</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>i</mi> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </semantics></math>) are individual masses, individual nondimensional Kerr parameters and the angles of individual spins with respect to the orbital angular momentum, respectively, with <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>≥</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> </mrow> </semantics></math> being assumed. Taken from Ref. [<a href="#B96-universe-10-00444" class="html-bibr">96</a>].</p>
Full article ">Figure 6
<p>Schematic illustration of the first-order effect to generate angular momentum. The blue region <span class="html-italic">V</span> denotes the region that will collapse, which is approximated by an ellipsoid. The red arrows denote the velocity perturbation <math display="inline"><semantics> <mi mathvariant="bold-italic">u</mi> </semantics></math> with a wave number vector being parallel to the vertical direction. Since the ellipsoidal region <span class="html-italic">V</span> is misaligned with the wave number <math display="inline"><semantics> <mi mathvariant="bold-italic">k</mi> </semantics></math> of the velocity perturbation, it carries nonvanishing angular momentum. The angular momentum can increase in time as the perturbation grows. This can also be understood through the effect of torque exerted on the boundary <math display="inline"><semantics> <mrow> <mo>∂</mo> <mi>V</mi> </mrow> </semantics></math>. See Ref. [<a href="#B65-universe-10-00444" class="html-bibr">65</a>] for details.</p>
Full article ">Figure 7
<p>The initial density perturbation is on the left panel and the apparent horizon formation in the course of gravitational collapse is on the right panel. We can see that an apparent horizon forms in the central region, which is very small compared to the size of the whole computational domain. It implies that to resolve the apparent horizon for the near-critical collapse requires very high resolution at least near the center. Both were taken from Ref. [<a href="#B100-universe-10-00444" class="html-bibr">100</a>] with permission.</p>
Full article ">Figure 8
<p>The three-zone model of the positive density perturbation. Regions I and III are described by the closed and flat FLRW solutions, while region II is an underdense matching layer. The spheres of <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <msub> <mi>χ</mi> <mi>a</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <msub> <mi>r</mi> <mi>b</mi> </msub> </mrow> </semantics></math> give the outer edge of region I and the inner edge of region III, respectively. See Refs. [<a href="#B39-universe-10-00444" class="html-bibr">39</a>,<a href="#B61-universe-10-00444" class="html-bibr">61</a>] for more details.</p>
Full article ">Figure 9
<p>Classification of spatial configurations of overdense perturbations. The type II configuration is with the throat structure in the spatial geometry, while the type I is not. Note that the sequence does not correspond to the time evolution but to different initial curvature perturbations.</p>
Full article ">Figure 10
<p>Structures of trapping horizons and trapped regions inferred by numerical simulations. The structures indicated on the top, middle and bottom panels are called type A, marginal and type B, respectively. The signs of the radial null expansions <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mo>−</mo> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mo>+</mo> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </semantics></math> are shown for each region. The regions are divided by trapping horizons, where <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mo>+</mo> </msub> <msub> <mi>θ</mi> <mo>−</mo> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The future and past trapping horizons are denoted by the red and blue curves, respectively. The bifurcating trapping horizons are denoted by open circles. The black dashed lines denote spacetime singularities, while the black solid lines denote the regular centers and the null infinities. This figure is comparable to Figure 7 of Ref. [<a href="#B103-universe-10-00444" class="html-bibr">103</a>]. See text for more details.</p>
Full article ">Figure 10 Cont.
<p>Structures of trapping horizons and trapped regions inferred by numerical simulations. The structures indicated on the top, middle and bottom panels are called type A, marginal and type B, respectively. The signs of the radial null expansions <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mo>−</mo> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mo>+</mo> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </semantics></math> are shown for each region. The regions are divided by trapping horizons, where <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mo>+</mo> </msub> <msub> <mi>θ</mi> <mo>−</mo> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The future and past trapping horizons are denoted by the red and blue curves, respectively. The bifurcating trapping horizons are denoted by open circles. The black dashed lines denote spacetime singularities, while the black solid lines denote the regular centers and the null infinities. This figure is comparable to Figure 7 of Ref. [<a href="#B103-universe-10-00444" class="html-bibr">103</a>]. See text for more details.</p>
Full article ">
21 pages, 622 KiB  
Article
Reheating Constraints and the H0 Tension in Quintessential Inflation
by Jaume de Haro and Supriya Pan
Symmetry 2024, 16(11), 1434; https://doi.org/10.3390/sym16111434 - 28 Oct 2024
Viewed by 1085
Abstract
In this work, we focus on two important aspects of modern cosmology: reheating and Hubble constant tension within the framework of a unified cosmic theory, namely the quintessential inflation connecting the early inflationary era and late-time cosmic acceleration. In the context of reheating, [...] Read more.
In this work, we focus on two important aspects of modern cosmology: reheating and Hubble constant tension within the framework of a unified cosmic theory, namely the quintessential inflation connecting the early inflationary era and late-time cosmic acceleration. In the context of reheating, we use instant preheating and gravitational reheating, two viable reheating mechanisms when the evolution of the universe is not affected by an oscillating regime. After obtaining the reheating temperature, we analyze the number of e-folds and establish its relationship with the reheating temperature. This allows us to connect, for different quintessential inflation models (in particular for models coming from super-symmetric theories such as α-attractors), the reheating temperature with the spectral index of scalar perturbations, thereby enabling us to constrain its values. In the second part of this article, we explore various alternatives to address the H0 tension. From our perspective, this tension suggests that the simple Λ-Cold Dark Matter model, used as the baseline by the Planck team, needs to be refined in order to reconcile its results with the late-time measurements of the Hubble constant. Initially, we establish that quintessential inflation alone cannot mitigate the Hubble tension by solely deviating from the concordance model at low redshifts. The introduction of a phantom fluid, capable of increasing the Hubble rate at the present time, becomes a crucial element in alleviating the Hubble tension, resulting in a deviation from the Λ-Cold Dark Matter model only at low redshifts. On a different note, by utilizing quintessential inflation as a source of early dark energy, thereby diminishing the physical size of the sound horizon close to the baryon–photon decoupling redshift, we observe a reduction in the Hubble tension. This alternative avenue, which has the same effect of a cosmological constant changing its scale close to the recombination, sheds light on the nuanced interplay between the quintessential inflation and the Hubble tension, offering a distinct perspective on addressing this cosmological challenge. Full article
Show Figures

Figure 1

Figure 1
<p>The shape of the potential in Lorentzian quintessential inflation. Inflation ends when <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mi>END</mi> </msub> <mo>≅</mo> <mo>−</mo> <mn>0.078</mn> <msub> <mi>M</mi> <mrow> <mi>p</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, and kination starts when <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>∼</mo> <msub> <mi>H</mi> <mi>kin</mi> </msub> <mo>≅</mo> <mn>4</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>8</mn> </mrow> </msup> <msub> <mi>M</mi> <mi>pl</mi> </msub> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mi>kin</mi> </msub> <mo>≅</mo> <mo>−</mo> <mn>0.03</mn> <msub> <mi>M</mi> <mi>pl</mi> </msub> </mrow> </semantics></math>. The figure has been taken from [<a href="#B89-symmetry-16-01434" class="html-bibr">89</a>].</p>
Full article ">Figure 2
<p>Evolution of the effective EoS parameter. The figure has been taken from [<a href="#B88-symmetry-16-01434" class="html-bibr">88</a>].</p>
Full article ">Figure 3
<p>Numerical (in dots) and analytic values for the maximum reheating temperature. The values of the parameters are <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <msub> <mi>M</mi> <mrow> <mi>p</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>124</mn> </mrow> </semantics></math>. The figure has been taken from [<a href="#B118-symmetry-16-01434" class="html-bibr">118</a>].</p>
Full article ">Figure 4
<p>Two-dimensional contours at 68%, 95%, and 99% confidence levels in the (<math display="inline"><semantics> <msub> <mi>n</mi> <mi>s</mi> </msub> </semantics></math>, <span class="html-italic">N</span>) plane for the Starobinsky model. The gray vertical band indicates the typical range of <span class="html-italic">e</span>-folds expansion, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>∈</mo> <mo>[</mo> <mn>50</mn> <mo>,</mo> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mo>]</mo> </mrow> </semantics></math>, expected during inflation. The upper bound, <math display="inline"><semantics> <mrow> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mo>≤</mo> <mn>73</mn> </mrow> </semantics></math>, is shown by the black dashed line. This figure is adapted from [<a href="#B119-symmetry-16-01434" class="html-bibr">119</a>].</p>
Full article ">Figure 5
<p>Plot of the potential (<a href="#FD54-symmetry-16-01434" class="html-disp-formula">54</a>) as a function of the field, taking some typical values of the parameters involved, namely, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>λ</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>φ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>10</mn> <msub> <mi>M</mi> <mrow> <mi>p</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">
43 pages, 639 KiB  
Tutorial
Graviton Physics: A Concise Tutorial on the Quantum Field Theory of Gravitons, Graviton Noise, and Gravitational Decoherence
by Jen-Tsung Hsiang, Hing-Tong Cho and Bei-Lok Hu
Universe 2024, 10(8), 306; https://doi.org/10.3390/universe10080306 - 24 Jul 2024
Cited by 5 | Viewed by 1786
Abstract
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave (GW) astronomy capable of probing the strong field dynamics of black holes and neutron stars. It has opened up an exciting new window for laboratory and space tests [...] Read more.
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave (GW) astronomy capable of probing the strong field dynamics of black holes and neutron stars. It has opened up an exciting new window for laboratory and space tests of Einstein’s theory of classical general relativity (GR). In recent years, two interesting proposals have aimed to reveal the quantum nature of perturbative gravity: (1) theoretical predictions on how graviton noise from the early universe, after the vacuum of the gravitational field was strongly squeezed by inflationary expansion; (2) experimental proposals using the quantum entanglement between two masses, each in a superposition (gravitational cat, or gravcat) state. The first proposal focuses on the stochastic properties of quantum fields (QFs), and the second invokes a key concept of quantum information (QI). An equally basic and interesting idea is to ask whether (and how) gravity might be responsible for a quantum system becoming classical in appearance, known as gravitational decoherence. Decoherence due to gravity is of special interest because gravity is universal, meaning, gravitational interaction is present for all massive objects. This is an important issue in macroscopic quantum phenomena (MQP), underlining many proposals in alternative quantum theories (AQTs). To fully appreciate or conduct research in these exciting developments requires a working knowledge of classical GR, QF theory, and QI, plus some familiarity with stochastic processes (SPs), namely, noise in quantum fields and decohering environments. Traditionally a new researcher may be conversant in one or two of these four subjects: GR, QFT, QI, and SP, depending on his/her background. This tutorial attempts to provide the necessary connective tissues between them, helping an engaged reader from any one of these four subjects to leapfrog to the frontier of these interdisciplinary research topics. In the present version, we shall address the three topics listed in the title, excluding gravitational entanglement, because, despite the high attention some recent experimental proposals have received, its nature and implications in relation to quantum gravity still contain many controversial elements. Full article
(This article belongs to the Special Issue Quantum Field Theory of Open Systems)
Show Figures

Figure 1

Figure 1
<p>The physical effects of polarizations of the metric perturbations. Different colors correspond to different times.</p>
Full article ">
21 pages, 378 KiB  
Article
Reconstructing Modified and Alternative Theories of Gravity
by Dalia Saha, Manas Chakrabortty and Abhik Kumar Sanyal
Universe 2024, 10(1), 44; https://doi.org/10.3390/universe10010044 - 17 Jan 2024
Cited by 1 | Viewed by 1498
Abstract
A viable radiation-dominated era in the early universe is best described by the standard (FLRW) model of cosmology. In this short review, we demonstrate reconstruction of the forms of F(R) in the modified theory of gravity and the metric compatible [...] Read more.
A viable radiation-dominated era in the early universe is best described by the standard (FLRW) model of cosmology. In this short review, we demonstrate reconstruction of the forms of F(R) in the modified theory of gravity and the metric compatible F(T) together with the symmetric F(Q) in alternative teleparallel theories of gravity, from different perspectives, primarily rendering emphasis on a viable FLRW radiation era. Inflation has also been studied for a particular choice of the scalar potential. The inflationary parameters are found to agree appreciably with the recently released observational data. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
11 pages, 317 KiB  
Article
Stability Properties of Geometrothermodynamic Cosmological Models
by Nurzada Beissen, Medeu Abishev, Manas Khassanov, Temirbolat Aitassov, Sagira Mamatova and Saken Toktarbay
Entropy 2023, 25(10), 1391; https://doi.org/10.3390/e25101391 - 28 Sep 2023
Cited by 1 | Viewed by 1070
Abstract
We consider a particular isotropic and homogeneous cosmological model, in which the equation of state is obtained from a thermodynamic fundamental equation by using the formalism of geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which can be fixed to reproduce [...] Read more.
We consider a particular isotropic and homogeneous cosmological model, in which the equation of state is obtained from a thermodynamic fundamental equation by using the formalism of geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which can be fixed to reproduce the main aspects of the inflationary era and the ΛCDM paradigm. We use GTD to analyze the geometric properties of the corresponding equilibrium space and to derive the stability properties and phase transition structure of the cosmological model. Full article
(This article belongs to the Special Issue Geometrothermodynamics and Its Applications)
Show Figures

Figure 1

Figure 1
<p>Representation of the condition (<a href="#FD39-entropy-25-01391" class="html-disp-formula">39</a>) for the inflationary era. For concreteness, we assume that <math display="inline"><semantics> <mi>α</mi> </semantics></math> is positive.</p>
Full article ">Figure 2
<p>Representation of the condition (<a href="#FD40-entropy-25-01391" class="html-disp-formula">40</a>) for the inflationary era. The values of the pressure <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>p</mi> <mn>2</mn> </msub> </semantics></math> are the solutions of this condition. For concreteness, we assume that <math display="inline"><semantics> <mi>α</mi> </semantics></math> is positive.</p>
Full article ">
15 pages, 606 KiB  
Article
Is the Universe Anisotropic Right Now? Comparing the Real Universe with the Kasner’s Space-Time
by Serge Parnovsky
Particles 2023, 6(3), 819-833; https://doi.org/10.3390/particles6030052 - 7 Sep 2023
Cited by 1 | Viewed by 1259
Abstract
We investigate possible astronomical manifestations of space-time anisotropy. The homogeneous vacuum Kasner solution was chosen as a reference anisotropic cosmological model because there are no effects caused by inhomogeneity in this simple model with a constant degree of anisotropy. This anisotropy cannot become [...] Read more.
We investigate possible astronomical manifestations of space-time anisotropy. The homogeneous vacuum Kasner solution was chosen as a reference anisotropic cosmological model because there are no effects caused by inhomogeneity in this simple model with a constant degree of anisotropy. This anisotropy cannot become weak. The study of its geodesic structure made it possible to clarify the properties of this space-time. It showed that the degree of manifestation of anisotropy varies significantly depending on the travel time of the light from the observed object. For nearby objects, for which it does not exceed half the age of the universe, the manifestations of anisotropy are very small. Distant objects show more pronounced manifestations; for example, in the distribution of objects over the sky and over photometric distances. These effects for each of the individual objects decrease with time but, in general, the manifestations of anisotropy in the Kasner space-time remain constant due to the fact that new sources come from beyond the cosmological horizon. We analyze observable signatures of the Kasner-type anisotropy and compare it to observations. These effects were not found in astronomical observations, including the study of the CMB. We can assume that the Universe has always been isotropic or almost isotropic since the recombination era. This does not exclude the possibility of its significant anisotropy at the moment of the Big Bang followed by rapid isotropization during the inflationary epoch. Full article
Show Figures

Figure 1

Figure 1
<p>Null geodesics on surfaces passing through two axes of the coordinate system. Surfaces <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> correspond to panels (<b>a</b>–<b>c</b>). The quantities <span class="html-italic">X</span>, <span class="html-italic">Y</span> and <span class="html-italic">Z</span> are plotted on the axes. The dark circles correspond to the propagation time of light, which is a multiple of 1/10 of the age of the Universe. Far ends of the lines correspond to <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.999</mn> </mrow> </semantics></math> near the cosmological horizon.</p>
Full article ">Figure 2
<p>The same as in <a href="#particles-06-00052-f001" class="html-fig">Figure 1</a>, but in “astronomical” coordinates <math display="inline"><semantics> <msup> <mi>ξ</mi> <mi>i</mi> </msup> </semantics></math>.</p>
Full article ">
22 pages, 637 KiB  
Article
Impact of Climate Change on Inflation in 26 Selected Countries
by Cunpu Li, Xuetong Zhang and Jing He
Sustainability 2023, 15(17), 13108; https://doi.org/10.3390/su151713108 - 31 Aug 2023
Cited by 3 | Viewed by 3978
Abstract
In the era of persistent globalization, climate governance has emerged as a prominent concern within both the theoretical community and government departments of diverse nations. Of particular interest in academic research is the adverse effect of climate shocks on the global economy. This [...] Read more.
In the era of persistent globalization, climate governance has emerged as a prominent concern within both the theoretical community and government departments of diverse nations. Of particular interest in academic research is the adverse effect of climate shocks on the global economy. This paper employs average temperature as a surrogate indicator for climate shocks and examines the influence of temperature fluctuations on inflation levels using a balanced panel dataset from 1995 to 2021. The findings indicate a positive association between temperature change and inflation within the country, which remains consistent even after subjecting the analysis to multiple robustness tests. Furthermore, accounting for heterogeneity reveals variations in the magnitude of response of inflation levels to temperature fluctuations. Regarding the analysis of underlying mechanisms, this study underscores the significance of energy demand as a pivotal pathway influencing inflationary pressures at the national level. Lastly, by incorporating GDP per capita as a threshold, this research reveals a nonlinear relationship between temperature change and inflation levels. Full article
(This article belongs to the Special Issue Resource Price Fluctuations and Sustainable Growth)
Show Figures

Figure 1

Figure 1
<p>LR chart of GDP per capita threshold estimates.</p>
Full article ">
22 pages, 380 KiB  
Review
Geometrothermodynamic Cosmology
by Orlando Luongo and Hernando Quevedo
Entropy 2023, 25(7), 1037; https://doi.org/10.3390/e25071037 - 10 Jul 2023
Cited by 4 | Viewed by 1350
Abstract
We review the main aspects of geometrothermodynamics, a formalism that uses contact geometry and Riemannian geometry to describe the properties of thermodynamic systems. We show how to handle in a geometric way the invariance of classical thermodynamics with respect to Legendre transformations, which [...] Read more.
We review the main aspects of geometrothermodynamics, a formalism that uses contact geometry and Riemannian geometry to describe the properties of thermodynamic systems. We show how to handle in a geometric way the invariance of classical thermodynamics with respect to Legendre transformations, which means that the properties of the systems do not depend on the choice of the thermodynamic potential. Moreover, we show that, in geometrothermodynamics, it is possible to apply a variational principle to generate thermodynamic fundamental equations, which can be used in the context of relativistic cosmology to generate cosmological models. As a particular example, we consider a fundamental equation that relates the entropy with the internal energy and the volume of the Universe, and construct cosmological models with arbitrary parameters, which can be fixed to reproduce the main aspects of the inflationary era and the standard cosmological paradigm. Full article
(This article belongs to the Special Issue Geometrothermodynamics and Its Applications)
Show Figures

Figure 1

Figure 1
<p>Geometric structure of GTD.</p>
Full article ">
13 pages, 1023 KiB  
Article
Post-Inflationary Production of Dark Matter after Inflection Point Slow Roll Inflation
by Anish Ghoshal, Gaetano Lambiase, Supratik Pal, Arnab Paul and Shiladitya Porey
Symmetry 2023, 15(2), 543; https://doi.org/10.3390/sym15020543 - 17 Feb 2023
Cited by 3 | Viewed by 1646
Abstract
We explore a feasible model that combines near-inflection point small-field slow roll inflationary scenario driven by single scalar inflaton with the production of non-thermal vector-like fermionic dark matter, χ, during the reheating era. For the inflationary scenario, we consider two separate polynomial [...] Read more.
We explore a feasible model that combines near-inflection point small-field slow roll inflationary scenario driven by single scalar inflaton with the production of non-thermal vector-like fermionic dark matter, χ, during the reheating era. For the inflationary scenario, we consider two separate polynomial forms of the potential; one is symmetric about the origin, and the other is not. We fix the coefficients of the potentials satisfying current Planck-Bicep data. We calculate the permissible range of yχ and mχ for the production of enough dark matter to explain the total Cold Dark Matter (CDM) mass density of the present universe while satisfying Cosmic Background Radiation (CMBR) measurements and other cosmological bounds. Full article
Show Figures

Figure 1

Figure 1
<p>The <b>left</b> panel presents the inflaton-potential of Model I inflation for benchmark value from <a href="#symmetry-15-00543-t002" class="html-table">Table 2</a>, and the <b>right</b> panel shows potential-slow-roll parameters <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>V</mi> </msub> <mo>,</mo> <mo>−</mo> <msub> <mi>η</mi> <mi>V</mi> </msub> <mo>,</mo> <msub> <mi>ξ</mi> <mi>V</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>V</mi> </msub> </semantics></math>. The horizontal dashed line stands for 1.</p>
Full article ">Figure 2
<p>Inflaton-potential (<b>left</b> panel) of Model II for the benchmark value from <a href="#symmetry-15-00543-t003" class="html-table">Table 3</a>, and the absolute values of four potential slow roll parameters (<math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>V</mi> </msub> <mo>,</mo> <mo>−</mo> <msub> <mi>η</mi> <mi>V</mi> </msub> <mo>,</mo> <msub> <mi>ξ</mi> <mi>V</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>V</mi> </msub> </mrow> </semantics></math>) as a function of <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>/</mo> <msub> <mi>M</mi> <mi>P</mi> </msub> </mrow> </semantics></math>. The dashed line specifies the value 1.</p>
Full article ">Figure 3
<p>The unshaded triangular region on the (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mi>χ</mi> </msub> </mrow> </semantics></math>) plane indicates the allowed region: <b>Left panel</b> is for Model I, whereas <b>right panel</b> is for Model II. The colored zones are coming from different bounds: (a) the horizontal stripe of light green color: <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>h</mi> </mrow> </msub> </semantics></math> should be more than <math display="inline"><semantics> <mrow> <mn>4</mn> <mspace width="0.166667em"/> <mi>MeV</mi> </mrow> </semantics></math> (Big Bang Nucleosynthesis (BBN) temperature) [<a href="#B63-symmetry-15-00543" class="html-bibr">63</a>] (see also [<a href="#B64-symmetry-15-00543" class="html-bibr">64</a>,<a href="#B65-symmetry-15-00543" class="html-bibr">65</a>,<a href="#B66-symmetry-15-00543" class="html-bibr">66</a>]), (b) the horizontal stripe of blue color: from the maximum permissible value of <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>12</mn> </msub> </semantics></math> from the stability analysis of <a href="#sec3-symmetry-15-00543" class="html-sec">Section 3</a>, (c) the light pink colored region in the top-left corner: from the allowed maximum value of <math display="inline"><semantics> <msub> <mi>y</mi> <mi>χ</mi> </msub> </semantics></math> from the stability analysis of <a href="#sec3-symmetry-15-00543" class="html-sec">Section 3</a>, (d) the green (medium sea green) colored vertical strip on right from the maximum possible value of <math display="inline"><semantics> <msub> <mi>m</mi> <mi>χ</mi> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>m</mi> <mi>χ</mi> </msub> </semantics></math> must be &lt;<math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>Φ</mi> <mo>(</mo> <mi>φ</mi> <mo>)</mo> </mrow> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>), (e) the peach (peach puff) colored region shows bound from Ly-<math display="inline"><semantics> <mi>α</mi> </semantics></math> estimation : <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>h</mi> </mrow> </msub> <mo>≳</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>m</mi> <mi>Φ</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>m</mi> <mi>χ</mi> </msub> </mrow> </semantics></math> or <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>h</mi> </mrow> </msub> <mo>≳</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>m</mi> <mi>φ</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>m</mi> <mi>χ</mi> </msub> </mrow> </semantics></math> [<a href="#B52-symmetry-15-00543" class="html-bibr">52</a>]. The diagonal discontinuous lines correspond to different values of <math display="inline"><semantics> <msub> <mi>y</mi> <mi>χ</mi> </msub> </semantics></math> and represent the allowed range of <math display="inline"><semantics> <msub> <mi>y</mi> <mi>χ</mi> </msub> </semantics></math> satisfying present-day CDM yield, provided that <math display="inline"><semantics> <mi>χ</mi> </semantics></math> is produced solely from the decay channel of inflation during the reheating era.</p>
Full article ">Figure 4
<p>Comparison of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>χ</mi> </msub> <mo>×</mo> <msub> <mi>Y</mi> <mrow> <mi>I</mi> <mi>S</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> (continuous lines) for different values of <math display="inline"><semantics> <msub> <mi>m</mi> <mi>χ</mi> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>χ</mi> </msub> <mo>×</mo> <msub> <mi>Y</mi> <mrow> <mi>CDM</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> (dashed horizontal line) for Model I in the left panel and for Model II inflation in the right panel.</p>
Full article ">
36 pages, 1683 KiB  
Article
What Is Needed of a Scalar Field If It Is to Unify Inflation and Late Time Acceleration?
by Nur Jaman and Mohammad Sami
Galaxies 2022, 10(2), 51; https://doi.org/10.3390/galaxies10020051 - 23 Mar 2022
Cited by 13 | Viewed by 3673
Abstract
Quintessential inflation refers to scenarios in which a single scalar field is used to describe inflation and late time acceleration. This review is dedicated to the framework of quintessential inflation, with a focus on the building blocks of formalism. Consistent unification of inflation [...] Read more.
Quintessential inflation refers to scenarios in which a single scalar field is used to describe inflation and late time acceleration. This review is dedicated to the framework of quintessential inflation, with a focus on the building blocks of formalism. Consistent unification of inflation and late time acceleration using a single scalar field asks for a shallow field potential initially followed by steep behaviour thereafter and shallow again around the present epoch. The requirement of non-interference of the scalar field with thermal history dictates the steep nature of potential in the post-inflationary era, with a further restriction that late time physics be independent of initial conditions. We describe, in detail, the scaling and asymptotic scaling solutions and the mechanism of exit from the scaling regime to late time acceleration. The review includes a fresh look at scaling solutions that are central to the theme of unification of inflation and late time acceleration. As for the exit mechanism, special attention is paid to the coupling of massive neutrino matter to the scalar field, which builds up dynamically and can give rise to late time acceleration. We present a detailed analytical treatment of scalar field dynamics in the presence of coupling. We briefly discuss the distinguishing feature of quintessential inflation, namely the blue spectrum of gravity waves produced during the transition from inflation to the kinetic regime. Full article
Show Figures

Figure 1

Figure 1
<p>The figure displays a typical scalar field potential required to realise quintessential inflation: potential shallow initially, followed by steep behaviour thereafter, and shallow again around the present epoch.</p>
Full article ">Figure 2
<p>(<b>a</b>) shows evolution of field energy density <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> </semantics></math> and background matter density (radiation/cold matter) versus <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> </semantics></math> for a potential shallower than the exponential potential (<math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics></math>)—for instance, inverse power law potentials, <math display="inline"><semantics> <mrow> <mi>V</mi> <mspace width="0.166667em"/> <mo>∼</mo> <mspace width="0.166667em"/> <msup> <mi>ϕ</mi> <mrow> <mo>−</mo> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mi>n</mi> </mrow> </semantics></math>. After recovery from the freezing regime, the field on the steep part of the potential evolves with an equation of state parameter close to that of the background. In this case, the slope of the potential gradually decreases and the scalar field slowly moves towards the background and overtakes it and joins the slow roll with a diminishing value of the slope <math display="inline"><semantics> <mover accent="true"> <mi mathvariant="normal">a</mi> <mo>^</mo> </mover> </semantics></math><span class="html-italic">la</span> a <span class="html-italic">tracker</span>. (<b>b</b>) shows schematic representation of thawing quintessence, where the field is frozen on a flat potential due to Hubble damping. When <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> </semantics></math> approaches the background energy density at late times, the field resumes slow roll and accounts for late time acceleration.</p>
Full article ">Figure 3
<p>Qualitative behaviour of <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> </semantics></math> for the potential used in Ref. [<a href="#B63-galaxies-10-00051" class="html-bibr">63</a>] (<math display="inline"><semantics> <mrow> <mi>V</mi> <mspace width="0.166667em"/> <mo>∼</mo> <mspace width="0.166667em"/> <mo form="prefix">exp</mo> <mfenced separators="" open="[" close="]"> <mn>1</mn> <mo>−</mo> <mo form="prefix">tanh</mo> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mfenced> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>), which is shallow initially and at late stages and steep in between. In this case, overshoot is deep enough that the field freezes at the shallow part of the potential. After recovering from Hubble damping, it rolls slowly and adheres to late time acceleration (figure is adapted from Ref. [<a href="#B63-galaxies-10-00051" class="html-bibr">63</a>]).</p>
Full article ">Figure 4
<p>Figure shows the qualitative behaviour of <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> </semantics></math> along with the energy density of background matter (cold matter/radiation) versus <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mi>a</mi> </mrow> </semantics></math> for a steep potential. As <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> </semantics></math> overshoots the background energy density (<math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> <mo>≪</mo> <msub> <mi>ρ</mi> <mi>b</mi> </msub> </mrow> </semantics></math><math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>b</mi> </msub> </semantics></math> designates background matter energy density), the field freezes on its potential due to Hubble damping. After the recovery from freezing, field evolution crucially depends upon the nature of the steepness of the potential. (<b>a</b>) In case of the exponential potential (<math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>), the field catches up with the background and tracks it forever. (<b>b</b>) exhibits the general feature of scalar field dynamics for a field potential steeper than the exponential potential (<math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math>): after recovery from freezing, <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>ϕ</mi> </msub> </semantics></math> evolves in steps (down and right) and eventually catches up with the background [<a href="#B130-galaxies-10-00051" class="html-bibr">130</a>]—asymptotic scaling solution. (<b>c</b>,<b>d</b>) show exit from scaling and asymptotic scaling regimes to late time acceleration at the present epoch <math display="inline"><semantics> <mover accent="true"> <mi mathvariant="normal">a</mi> <mo>^</mo> </mover> </semantics></math> <span class="html-italic">la</span> a <span class="html-italic">perfect tracker</span>. Exit is triggered due a late time feature in the runaway potential that makes it shallow at late stages of evolution.</p>
Full article ">Figure 5
<p>Schematic diagram showing the effective potential (green line); the original runaway type of potential is depicted by blue line. Coupling of field <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> to massive neutrino matter manifests itself in the effective potential (<a href="#FD108-galaxies-10-00051" class="html-disp-formula">108</a>) through <math display="inline"><semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>^</mo> </mover> <mi>ν</mi> </msub> </mrow> </semantics></math> [<math display="inline"><semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mrow> <mo>(</mo> <mi>α</mi> <mi>γ</mi> <mi>ϕ</mi> <mo>/</mo> <msub> <mi>M</mi> <mi>Pl</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>], shown by dashed lines. The graph shows that for smaller values of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>, the minimum of effective potential hits larger values of the field.</p>
Full article ">Figure 6
<p>Figure shows the plot of <math display="inline"><semantics> <mo>Γ</mo> </semantics></math> for effective potential given by (<a href="#FD111-galaxies-10-00051" class="html-disp-formula">111</a>). <math display="inline"><semantics> <mo>Γ</mo> </semantics></math> increases rapidly during slow roll, which happens here around the minimum, which shifts towards larger values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> for smaller values of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>. The plot is for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and the potential is normalised by <math display="inline"><semantics> <msub> <mi>V</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 7
<p>Evolution of <math display="inline"><semantics> <msubsup> <mi>w</mi> <mi>ν</mi> <mi>eff</mi> </msubsup> </semantics></math> versus the red shift in case of the generalised exponential potential (<a href="#FD69-galaxies-10-00051" class="html-disp-formula">69</a>) for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mi>γ</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>, compatible with observation [<a href="#B115-galaxies-10-00051" class="html-bibr">115</a>]; solid blue line corresponds to <math display="inline"><semantics> <mrow> <msubsup> <mi>w</mi> <mi>ν</mi> <mi>eff</mi> </msubsup> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>. Figure shows that <math display="inline"><semantics> <msubsup> <mi>w</mi> <mi>ν</mi> <mi>eff</mi> </msubsup> </semantics></math> oscillates and eventually settles close to minus one.</p>
Full article ">Figure 8
<p>Plot of energy densities versus the red shift on the log scale for generalised exponential potential (<a href="#FD69-galaxies-10-00051" class="html-disp-formula">69</a>). Evolution is shown from the end of inflation. Field is shown to track the background with exit to de Sitter at late times followed by the massive neutrino matter density. Figure corresponds to numerical values of parameters: <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>800</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>8</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>2.55</mn> </mrow> </semantics></math> &amp; <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>d</mi> <mi>u</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>The GW spectrum versus the frequency in Hz for the paradigm of quintessential inflation. The blue tilt in the spectrum is visible on the high-frequency side due to the presence of a long kinetic epoch. Instant preheating is assumed as the reheating mechanism with coupling constant <span class="html-italic">g</span> (consistent with nucleosynthesis constraint); see <a href="#sec2dot2-galaxies-10-00051" class="html-sec">Section 2.2</a> and Ref. [<a href="#B173-galaxies-10-00051" class="html-bibr">173</a>].</p>
Full article ">
20 pages, 1077 KiB  
Article
Hilltop Inflation and Generation of Helical Magnetic Field
by Sumanta Chakraborty, Supratik Pal and Soumitra SenGupta
Universe 2022, 8(1), 26; https://doi.org/10.3390/universe8010026 - 2 Jan 2022
Cited by 10 | Viewed by 1701
Abstract
Primordial magnetic field generated in the inflationary era can act as a viable source for the present day intergalactic magnetic field of sufficient strength. We present a fundamental origin for such a primordial generation of the magnetic field, namely through anomaly cancellation of [...] Read more.
Primordial magnetic field generated in the inflationary era can act as a viable source for the present day intergalactic magnetic field of sufficient strength. We present a fundamental origin for such a primordial generation of the magnetic field, namely through anomaly cancellation of U(1) gauge field in quantum electrodynamics in the context of hilltop inflation. We have analysed at length the power spectrum of the magnetic field, thus generated, which turns out to be helical in nature. We have also found that magnetic power spectrum has significant scale-dependence giving rise to a non-trivial magnetic spectral index, a key feature of this model. Interestingly, there exists a large parameter space, where magnetic field of significant strength can be produced. Full article
(This article belongs to the Special Issue Probing the Dark Universe with Theory and Observations)
Show Figures

Figure 1

Figure 1
<p>Scale dependance of the magnetic power spectrum has been demonstrated. The figure on the left demonstrates normalized magnetic power spectrum for negative values of <math display="inline"><semantics> <mi>ν</mi> </semantics></math>, while that on the right demonstrates the same for positive choices of <math display="inline"><semantics> <mi>ν</mi> </semantics></math>. As evident, for smaller values of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mrow> <mi>b</mi> <mo>|</mo> </mrow> </mrow> </semantics></math> the scale dependance of the power spectrum weaker. See, text for more discussion.</p>
Full article ">Figure 2
<p>The above figures demonstrate scale dependance of electric power spectrum. The figure on the left demonstrates the normalized electric power spectrum for negative choices of <math display="inline"><semantics> <mi>ν</mi> </semantics></math>, while that on the right demonstrates the same for positive values <math display="inline"><semantics> <mi>ν</mi> </semantics></math>. Alike the magnetic power spectrum, these figures also depict a very similar scale dependant nature of electric power spectrum.</p>
Full article ">Figure 3
<p>The above figure demonstrates the magnetic field strength in Gauss in the present epoch with positive values for <math display="inline"><semantics> <mi>ν</mi> </semantics></math> (determined by the parameter <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mrow> <mi>b</mi> <mo>|</mo> </mrow> </mrow> </semantics></math>), with both the pivot scale <span class="html-italic">k</span> (in Mpc<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>) and the parameter <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mi>b</mi> </mrow> </semantics></math>. Each contour depicts one constant value of the magnetic field. As evident from the colour coding the strength of the magnetic field varies from <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo>∼</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> </mrow> </semantics></math> Gauss for large <span class="html-italic">k</span> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mrow> <mi>b</mi> <mo>|</mo> </mrow> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo>∼</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> </mrow> </semantics></math> Gauss for small <span class="html-italic">k</span> and small <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mrow> <mi>b</mi> <mo>|</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The above figure demonstrates the magnetic spectral index <math display="inline"><semantics> <msub> <mi>n</mi> <mi>B</mi> </msub> </semantics></math> with both the pivot scale <span class="html-italic">k</span> (in Mpc<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>) and the parameter <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mi>b</mi> </mrow> </semantics></math>. Each contour depicts one constant value of the magnetic spectral index. As evident from the colour coding the spectral index varies from values greater than unity to values less than unity, while passing through one, which would depict scale invariance power spectrum.</p>
Full article ">
43 pages, 865 KiB  
Review
Torsion in String-Inspired Cosmologies and the Universe Dark Sector
by Nick E. Mavromatos
Universe 2021, 7(12), 480; https://doi.org/10.3390/universe7120480 - 6 Dec 2021
Cited by 16 | Viewed by 3036
Abstract
Several aspects of torsion in string-inspired cosmologies are reviewed. In particular, its connection with fundamental, string-model independent, axion fields associated with the massless gravitational multiplet of the string are discussed. It is argued in favour of the role of primordial gravitational anomalies coupled [...] Read more.
Several aspects of torsion in string-inspired cosmologies are reviewed. In particular, its connection with fundamental, string-model independent, axion fields associated with the massless gravitational multiplet of the string are discussed. It is argued in favour of the role of primordial gravitational anomalies coupled to such axions in inducing inflation of a type encountered in the “Running-Vacuum-Model (RVM)” cosmological framework, without fundamental inflaton fields. The gravitational-anomaly terms owe their existence to the Green–Schwarz mechanism for the (extra-dimensional) anomaly cancellation, and may be non-trivial in such theories in the presence of (primordial) gravitational waves at early stages of the four-dimensional string universe (after compactification). The paper also discusses how the torsion-induced stringy axions can acquire a mass in the post inflationary era, due to non-perturbative effects, thus having the potential to play the role of (a component of) dark matter in such models. Finally, the current-era phenomenology of this model is briefly described with emphasis placed on the possibility of alleviating tensions observed in the current-era cosmological data. A brief phenomenological comparison with other cosmological models in contorted geometries is also made. Full article
(This article belongs to the Special Issue Beyond Riemannian Geometry in Classical and Quantum Gravity)
Show Figures

Figure 1

Figure 1
<p>The double-well gravitino-condensate potential <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>V</mi> <mo>˜</mo> </mover> <mrow> <mo>(</mo> <mi>σ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> vs. the condensate field <math display="inline"><semantics> <mi>σ</mi> </semantics></math>, for dynamical supergravity breaking [<a href="#B63-universe-07-00480" class="html-bibr">63</a>,<a href="#B64-universe-07-00480" class="html-bibr">64</a>,<a href="#B129-universe-07-00480" class="html-bibr">129</a>,<a href="#B130-universe-07-00480" class="html-bibr">130</a>], in which there is an effective lift of the degeneracy of the two vacua due to percolation effects in the early universe that lead to different occupation probabilities for the two ground states [<a href="#B131-universe-07-00480" class="html-bibr">131</a>,<a href="#B132-universe-07-00480" class="html-bibr">132</a>]. The reader should notice that the values of the potential at these ground states are both positive, consistent with the dynamical breaking of supergravity [<a href="#B129-universe-07-00480" class="html-bibr">129</a>,<a href="#B130-universe-07-00480" class="html-bibr">130</a>]. This bias between the two vacua leads to the formation of unstable domain walls, whose non-spherical collapse, or collisions produce Gravitational Waves (GW). The lowest of these two vacua indicates dynamical breaking of supergravity, with a stabilised gravitino condensate, which also implies GW-induced RVM inflation. The model may have a hill-top first inflation, near the origin of the gravitino condensate field <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>≃</mo> <mn>0</mn> </mrow> </semantics></math>, as indicated, which ensures that any spatial inhomogeneities are washed out well before the entrance of the universe intro the RVM inflationary phase, induced by GW condensation. Figure taken from [<a href="#B63-universe-07-00480" class="html-bibr">63</a>,<a href="#B64-universe-07-00480" class="html-bibr">64</a>].</p>
Full article ">Figure 2
<p>Diagram of the Hublle parameter (<span class="html-italic">H</span>) vs. the scale factor <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in the stringy RVM in the scenario with two inflationary epochs, separated by a stiff-KR-axion dominated era. The first (hill-top) inflation, near the Big Bang (<math display="inline"><semantics> <mrow> <mi>a</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>→</mo> <mn>0</mn> </mrow> </semantics></math>), occurs in models with dynamical supergravity breaking, as a result of gravitino condensation [<a href="#B133-universe-07-00480" class="html-bibr">133</a>]. The second inflation is of RVM type and is due to GW-induced condensation of gravitational anomalies, which characterise the string-inspired gravitational model at early epochs. In string theory models, due to higher-curvature corrections in the low-energy target-space effective action, an initial singularity of the universe might be avoided. This is a featured shared with the RVM cosmology. Figure taken from [<a href="#B63-universe-07-00480" class="html-bibr">63</a>,<a href="#B64-universe-07-00480" class="html-bibr">64</a>].</p>
Full article ">
9 pages, 721 KiB  
Communication
The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe
by Ol’ga Babourova and Boris Frolov
Universe 2020, 6(12), 230; https://doi.org/10.3390/universe6120230 - 4 Dec 2020
Cited by 6 | Viewed by 1882
Abstract
The stage of a super-early (primordial) scale-invariant Universe is considered on the basis of the Poincaré–Weyl gauge theory of gravity in a Cartan–Weyl space-time. An approximate solution has been found that demonstrates an inflationary behavior of the scale factor and, at the same [...] Read more.
The stage of a super-early (primordial) scale-invariant Universe is considered on the basis of the Poincaré–Weyl gauge theory of gravity in a Cartan–Weyl space-time. An approximate solution has been found that demonstrates an inflationary behavior of the scale factor and, at the same time, a sharp exponential decrease in the effective cosmological constant from a huge value at the beginning of the Big Bang to an extremely small (but not zero) value in the modern era, which solves the well-known “cosmological constant problem.” Full article
Show Figures

Figure 1

Figure 1
<p>Model of behavior of the functions <math display="inline"><semantics> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>С</mi> <mi>β</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> at small values of time <math display="inline"><semantics> <mi>t</mi> </semantics></math>.</p>
Full article ">Figure 2
<p>Model of behavior of the functions <math display="inline"><semantics> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>С</mi> <mi>β</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> at large values of time <math display="inline"><semantics> <mi>t</mi> </semantics></math>.</p>
Full article ">
163 pages, 3693 KiB  
Review
Predictions of Spectral Parameters by Several Inflationary Universe Models in Light of the Planck Results
by Øyvind Grøn
Universe 2018, 4(2), 15; https://doi.org/10.3390/universe4020015 - 29 Jan 2018
Cited by 20 | Viewed by 4143
Abstract
I give a review of predictions of values of spectral parameters for a large number of inflationary models. The present review includes detailed deductions and information about the approximations that have been made, written in a style that is suitable for text book [...] Read more.
I give a review of predictions of values of spectral parameters for a large number of inflationary models. The present review includes detailed deductions and information about the approximations that have been made, written in a style that is suitable for text book authors. The Planck data have the power of falsifying several models of inflation as shown in the present paper. Furthermore, they fix the beginning of the inflationary era to a time about 10−36 s, and the typical energy of a particle at this point of time to 1016 GeV, only a few orders of magnitude less than the Planck energy, and at least 12 orders of magnitude larger than the most energetic particle produced by CERN’s particle accelerator, LHC. This is a phenomenological review with contents as given in the list below. It includes systematic presentations of the different types of slow roll parameters that have been in use, and also of the N-formalism. Full article
(This article belongs to the Special Issue Inflationary Universe Models: Predictions and Observations)
Show Figures

Figure 1

Figure 1
<p>The tensor-to-scalar-ratio plotted as a function of <italic>p</italic> for an inflationary model with <italic>N</italic> = 60, <italic>δ<sub>ns</sub></italic> = 0.032.</p>
Full article ">Figure 2
<p>The parameter <italic>δ<sub>ns</sub></italic> plotted as a function of <italic>α</italic> for 1.20 &lt; <italic>α</italic> &lt; 1.35 with <italic>r</italic> = 0.05.</p>
Full article ">Figure 3
<p>The tensor-to-scalar ratio plotted as function of <italic>q</italic> for <italic>β</italic> = 1 and <italic>δ<sub>ns</sub></italic> = 0.032.</p>
Full article ">Figure 4
<p>The tensor-to-scalar ratio plotted as function of <italic>p</italic> for <italic>β</italic> = 1 and <italic>δ<sub>ns</sub></italic> = 0.032.</p>
Full article ">Figure 5
<p>The tensor-to-scalar ratio as a function of the magnitude of the inflaton field of the Hilltop inflation for <italic>n<sub>s</sub></italic> = 0.968, <italic>η</italic><sub>0</sub> = 0.016 and <inline-formula> <mml:math id="mm1254" display="block"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mover accent="true"> <mml:mi>ϕ</mml:mi> <mml:mo stretchy="false">˜</mml:mo> </mml:mover> <mml:mo>&lt;</mml:mo> <mml:mn>2</mml:mn> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>P</mml:mi></mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. For larger inflaton field <italic>r</italic> approaches the value 0.128.</p>
Full article ">Figure 6
<p>Predicted values of <italic>r</italic> given in Equation (6.3.12) as a function of <italic>M</italic> for <inline-formula><mml:math id="mm1362" display="block"><mml:semantics><mml:mrow><mml:mi>M</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>10</mml:mn><mml:mtext> </mml:mtext><mml:msub><mml:mi>M</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm1363" display="block"><mml:semantics><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mi>S</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>0.968</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 7
<p>The predicted values of the tensor-to-scalar ratio <italic>r</italic> by the M-flation model are here shown by plotting <italic>r</italic> as a function of <inline-formula><mml:math id="mm1714" display="block"><mml:semantics><mml:mrow><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mi>μ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>/</mml:mo><mml:msubsup><mml:mi>M</mml:mi><mml:mi>P</mml:mi><mml:mn>2</mml:mn></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula> for <inline-formula><mml:math id="mm1715" display="block"><mml:semantics><mml:mrow><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>μ</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>100</mml:mn><mml:mtext> </mml:mtext><mml:msub><mml:mi>M</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 8
<p>The relationship (6.11.14) plotted with <italic>δ<sub>ns</sub></italic> = 0.032.</p>
Full article ">Figure 9
<p>The spectral parameters <italic>r</italic> and <inline-formula><mml:math id="mm2148" display="block"><mml:semantics><mml:mrow><mml:msub><mml:mi>α</mml:mi><mml:mi>S</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> as given in Equation (6.24.6).</p>
Full article ">Figure 10
<p>The number of e-folds <italic>N</italic> as given in Equation (6.33.37) plotted as function of <italic>r</italic>.</p>
Full article ">Figure 11
<p>The number of e-folds <italic>N</italic> as given in Equation (6.33.53) plotted as function of <italic>r</italic>.</p>
Full article ">Figure 12
<p>The tensor to scalar ratio as given in Equation (6.33.111) for <inline-formula><mml:math id="mm3139" display="block"><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>≠</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> plotted as function of <italic>A</italic> in the region <inline-formula><mml:math id="mm3140" display="block"><mml:semantics><mml:mrow><mml:mn>0.20</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>A</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>0.315</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> for <inline-formula><mml:math id="mm3141" display="block"><mml:semantics><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>50</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm3142" display="block"><mml:semantics><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>0.032</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 13
<p>The parameter <italic>p</italic> plotted as a function of <italic>N</italic> as given in Equation (6.33.136) for <inline-formula><mml:math id="mm3231" display="block"><mml:semantics><mml:mrow><mml:mn>50</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>N</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>60</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 14
<p>Tensor to scalar ratio as function of <italic>β</italic>.</p>
Full article ">
1 pages, 116 KiB  
Abstract
Unifying the Early-Time Inflationary Era with Late-Time Dark Epoch Universe: The Case of Modified Gravity
by Sergei Odintsov
Proceedings 2018, 2(1), 31; https://doi.org/10.3390/proceedings2010031 - 4 Jan 2018
Viewed by 1314
Abstract
We discuss various theories of modified gravity which aim to describe the whole evolution of the universe, from early-time inflation via radiation/matter dominance and finally to the dark energy era. Such unified evolution may be described in frames of the same modified gravity. [...] Read more.
We discuss various theories of modified gravity which aim to describe the whole evolution of the universe, from early-time inflation via radiation/matter dominance and finally to the dark energy era. Such unified evolution may be described in frames of the same modified gravity. Special attention is paid to F(R) gravity where R is scalar curvature and modified Gauss- Bonnet gravity. The modified gravity solves the problem of universe acceleration without the need to introduce inflation or unknown dark fluid. The explicit models of such F(R) gravity are presented where quantum gravity effects may also be taken into account. The possible generalizations of modified gravity to non-local gravity, string-inspired gravity, and teleparallel gravity are briefly discussed. A number of applications such as the qualitative change of mass-radius relation in neutron stars or the anti-evaporation effect in multiple-horizon black holes are mentioned. Full article
(This article belongs to the Proceedings of The First International Conference on Symmetry)
Back to TopTop