[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = heisenberg limit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3309 KiB  
Article
Quantum Thermometry for Ultra-Low Temperatures Using Probe and Ancilla Qubit Chains
by Asghar Ullah, Vipul Upadhyay and Özgür E. Müstecaplıoğlu
Entropy 2025, 27(2), 204; https://doi.org/10.3390/e27020204 - 14 Feb 2025
Viewed by 419
Abstract
We propose a scheme to enhance the range and precision of ultra-low temperature measurements by employing a probe qubit coupled to a chain of ancilla qubits. Specifically, we analyze a qubit chain governed by Heisenberg XX and Dzyaloshinskii–Moriya (DM) interactions. The precision [...] Read more.
We propose a scheme to enhance the range and precision of ultra-low temperature measurements by employing a probe qubit coupled to a chain of ancilla qubits. Specifically, we analyze a qubit chain governed by Heisenberg XX and Dzyaloshinskii–Moriya (DM) interactions. The precision limits of temperature measurements are characterized by evaluating quantum Fisher information (QFI). Our findings demonstrate that the achievable precision bounds, as well as the number of peaks in the QFI as a function of temperature, can be controlled by adjusting the number of ancilla qubits and the system’s model parameters. These results are interpreted in terms of the influence of energy transitions on the range and the number of QFI peaks as a function of temperature. This study highlights the potential of the probe qubit–ancilla chain system as a powerful and precise tool for quantum thermometry in the ultra-low temperature regime. Full article
(This article belongs to the Special Issue Simulation of Open Quantum Systems)
Show Figures

Figure 1

Figure 1
<p>A schematic representation of our thermometry scheme is shown. The system consists of a probe qubit with a transition frequency <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>p</mi> </msub> </semantics></math> located outside of the thermal sample. This qubit is used as a probe to measure the unknown temperature <span class="html-italic">T</span> of a sample. The measurement is facilitated by ancilla qubits with transition frequencies <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>i</mi> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>), which are immersed in the sample. The qubits are coupled via a combination of the Heisenberg <math display="inline"><semantics> <mrow> <mi>X</mi> <mi>X</mi> </mrow> </semantics></math> interaction (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>H</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>X</mi> <mi>X</mi> </mrow> </msub> </semantics></math>) with coupling strength <span class="html-italic">J</span>, and DM interaction (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>H</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>D</mi> <mi>M</mi> </mrow> </msub> </semantics></math>) characterized by strength <span class="html-italic">g</span>.</p>
Full article ">Figure 2
<p>(<b>a</b>) Energy transitions induced by the bath when the two qubits are resonant, such as <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>ω</mi> <mi>a</mi> </msub> </mrow> </semantics></math>. The two transitions <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math> are of almost the same order, such as <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>∼</mo> <msub> <mi>ω</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. (<b>b</b>) shows the transitions induced when the two qubits are off-resonant, such as (<math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>≠</mo> <msub> <mi>ω</mi> <mi>a</mi> </msub> </mrow> </semantics></math>). In this case, the transition energies <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>2</mn> </msub> </semantics></math> are of different orders.</p>
Full article ">Figure 3
<p>The behavior of the first derivative of the population <math display="inline"><semantics> <mrow> <msup> <mi>p</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of the excited state of the probe qubit as a function of temperature <span class="html-italic">T</span> for (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. We can see that there is an additional peak at lower temperatures when <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>≠</mo> <msub> <mi>ω</mi> <mi>a</mi> </msub> </mrow> </semantics></math>, while only one peak can be seen for the resonant qubits, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>ω</mi> <mi>a</mi> </msub> </mrow> </semantics></math>. The parameters are set to <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>) The first derivative of the population <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mo>−</mo> <mo>′</mo> </msubsup> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> as a function of <span class="html-italic">T</span> in the low-temperature limit, while (<b>b</b>) shows the first derivative of the population <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mo>+</mo> <mo>′</mo> </msubsup> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> as a function of <span class="html-italic">T</span> in the high-temperature limit. In both plots, the blue dashed curve represents the exact expression for the first derivative of <span class="html-italic">p</span> as given in Equation (<a href="#FD11-entropy-27-00204" class="html-disp-formula">11</a>), while the solid red curve corresponds to the approximate expressions given in Equations (<a href="#FD14-entropy-27-00204" class="html-disp-formula">14</a>) and (<a href="#FD17-entropy-27-00204" class="html-disp-formula">17</a>), respectively. The parameters are set to <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>) QFI <math display="inline"><semantics> <msub> <mi mathvariant="script">F</mi> <mi>Q</mi> </msub> </semantics></math> as a function of an unknown parameter <span class="html-italic">T</span> for different values of coupling strength <span class="html-italic">g</span> at <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. The solid magenta, orange dashed, and blue dot-dashed curves correspond to <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math>, respectively. We set <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. (<b>b</b>) QFI for the resonant qubits case, such as <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The solid magenta, orange dashed, and blue dot-dashed curves correspond to <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>, respectively. Here, we set <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>. All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>QFI <math display="inline"><semantics> <msub> <mi mathvariant="script">F</mi> <mi>Q</mi> </msub> </semantics></math> as a function of <span class="html-italic">T</span> for <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. The solid blue curves are obtained using exact QFI in Equation (<a href="#FD20-entropy-27-00204" class="html-disp-formula">20</a>), and the red dashed curve is plotted using approximate QFI in Equation (<a href="#FD24-entropy-27-00204" class="html-disp-formula">24</a>). All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>QFI of probe qubit as a function of temperature <span class="html-italic">T</span> for the case of two ancilla qubits attached to the bath (<math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>); (<b>a</b>–<b>c</b>) correspond to plots for <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.04</mn> <mo>,</mo> <mn>0.06</mn> <mo>,</mo> <mn>0.1</mn> </mrow> </semantics></math>, respectively. For each <math display="inline"><semantics> <msub> <mi>g</mi> <mn>1</mn> </msub> </semantics></math> value, we set <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.06</mn> <mo>,</mo> <mn>0.08</mn> <mo>,</mo> <mn>0.3</mn> </mrow> </semantics></math>, respectively. The remaining parameters are fixed as <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. The solid red vertical lines indicate the temperature values calculated using Equation (<a href="#FD33-entropy-27-00204" class="html-disp-formula">33</a>) for the eigenvalues of the M matrix defined in Equation (<a href="#FD27-entropy-27-00204" class="html-disp-formula">27</a>). All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>QFI of the probe qubit as a function of temperature <span class="html-italic">T</span> on a log–log scale is shown for the case of three ancilla qubits attached to the bath (<math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>); (<b>a</b>–<b>c</b>) correspond to the plots for <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0055</mn> <mo>,</mo> <mn>0.006</mn> <mo>,</mo> <mn>0.0065</mn> </mrow> </semantics></math>, respectively. For each <math display="inline"><semantics> <msub> <mi>g</mi> <mn>1</mn> </msub> </semantics></math> value, we set <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0075</mn> <mo>,</mo> <mn>0.008</mn> <mo>,</mo> <mn>0.0085</mn> </mrow> </semantics></math>. respectively. The rest of the parameters are fixed to <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.06</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>. The solid blue vertical lines indicate the temperature values calculated using Equation (<a href="#FD33-entropy-27-00204" class="html-disp-formula">33</a>) for the eigenvalues of the matrix in Equation (<a href="#FD27-entropy-27-00204" class="html-disp-formula">27</a>) associated with each peak. All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p><b>Top row:</b> (<b>a</b>) Transition energies <span class="html-italic">E</span> as a function of coupling strength <math display="inline"><semantics> <msub> <mi>g</mi> <mn>2</mn> </msub> </semantics></math> and (<b>b</b>) the corresponding QFI as a function of temperature <span class="html-italic">T</span> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, with the following parameter set: <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.007</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.06</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. For plotting QFI, we consider the weak coupling strength of <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. <b>Bottom row:</b> (<b>c</b>) Transition energies <span class="html-italic">E</span> as a function of coupling strength <math display="inline"><semantics> <msub> <mi>g</mi> <mn>2</mn> </msub> </semantics></math> and (<b>d</b>) the corresponding QFI as a function of temperature <span class="html-italic">T</span> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, with the following parameter set: <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. For plotting QFI, we consider a strong coupling strength of <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>QFI of the probe qubit as a function of temperature <span class="html-italic">T</span> in the case of four ancilla qubits attached to the bath (<math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>). (<b>a</b>–<b>c</b>) represent the plots for <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0005</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.00055</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0007</mn> </mrow> </semantics></math>, respectively. The rest of the parameters are fixed to <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.004</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0004</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.06</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>. The values of <span class="html-italic">J</span> are fixed as follows: <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.008</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.00095</mn> </mrow> </semantics></math>. The dashed blue vertical lines indicate the temperature values associated with each peak. All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure A1
<p>Fisher information calculated using (<a href="#FD19-entropy-27-00204" class="html-disp-formula">19</a>) and the optimal Fisher information based on the <math display="inline"><semantics> <msup> <mi>σ</mi> <mi>z</mi> </msup> </semantics></math> measurement, both plotted as functions of temperature <span class="html-italic">T</span>. The parameters are set to <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>. All the system parameters are scaled with the probe qubit frequency <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">
11 pages, 3516 KiB  
Article
Intensity-Product-Based Optical Sensing to Beat the Diffraction Limit in an Interferometer
by Byoung S. Ham
Sensors 2024, 24(15), 5041; https://doi.org/10.3390/s24155041 - 4 Aug 2024
Cited by 2 | Viewed by 769
Abstract
The classically defined minimum uncertainty of the optical phase is known as the standard quantum limit or shot-noise limit (SNL), originating in the uncertainty principle of quantum mechanics. Based on the SNL, the phase sensitivity is inversely proportional to K, where K [...] Read more.
The classically defined minimum uncertainty of the optical phase is known as the standard quantum limit or shot-noise limit (SNL), originating in the uncertainty principle of quantum mechanics. Based on the SNL, the phase sensitivity is inversely proportional to K, where K is the number of interfering photons or statistically measured events. Thus, using a high-power laser is advantageous to enhance sensitivity due to the K gain in the signal-to-noise ratio. In a typical interferometer, however, the resolution remains in the diffraction limit of the K = 1 case unless the interfering photons are resolved as in quantum sensing. Here, a projection measurement method in quantum sensing is adapted for classical sensing to achieve an additional K gain in the resolution. To understand the projection measurements, several types of conventional interferometers based on N-wave interference are coherently analyzed as a classical reference and numerically compared with the proposed method. As a result, the Kth-order intensity product applied to the N-wave spectrometer exceeds the diffraction limit in classical sensing and the Heisenberg limit in quantum sensing, where the classical N-slit system inherently satisfies the Heisenberg limit of π/N in resolution. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic of various interferometers. (<b>a</b>) Intensity-product-based SNL. Inset X: projection measurements for the Kth intensity product. (<b>b</b>) Grating-based interferometer. (<b>c</b>) N-slit interferometer. L: laser, BS: beam splitter, PZT: piezoelectric transducer.</p>
Full article ">Figure 2
<p>Numerical calculations of Equation (3) for K = 1 (black), 2 (green), 3 (red), 4 (blue), 8 (dotted), 50 (cyan), 100 (magenta). The ordered intensity products are normalized. (<b>b</b>) solid curve: 1/<math display="inline"><semantics> <mrow> <msqrt> <mi>K</mi> </msqrt> </mrow> </semantics></math>. Open red circles: data from the arrows (FWHMs) in the (<b>a</b>).</p>
Full article ">Figure 3
<p>Numerical calculations of intensity-order-dependent FWHMs. (<b>a</b>) Gaussian. (<b>b</b>) Linear. (<b>c</b>) FWHM ratio vs. intensity order. a: for (<b>a</b>); b: for (<b>b</b>). HL: Heisenberg limit (1/N). <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>C</mi> </mrow> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mfenced separators="|"> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </mfenced> </mrow> <mrow> <mi>K</mi> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Numerical simulations of N-slit interference. (<b>a</b>) First-order intensity correlation <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>N</mi> </mrow> </msub> <mo>(</mo> <mi>φ</mi> </mrow> </semantics></math>). (<b>b</b>,<b>c</b>) Blue (N = 2), red (N = 10), green (N = 40). (<b>d</b>) Resolution (full width at half maxima). Red curve: <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">π</mi> <mo>/</mo> <mi mathvariant="normal">N</mi> </mrow> </semantics></math>, a = 3b (see <a href="#sensors-24-05041-f001" class="html-fig">Figure 1</a>c), and N = 2, 4, …, 20.</p>
Full article ">Figure 5
<p>Numerical simulations of Kth intensity correlation in an N-slit interferometer. (<b>a</b>) N = 2~200, K = 40. (<b>b</b>) Normalized individual intensities for (<b>a</b>), where N = 2, 20, 200. K = 40. (<b>c</b>) Diamonds: K-dependent FWHM for N = 100 in (<b>a</b>). Red curve: SNL.</p>
Full article ">Figure 6
<p>Numerical calculations of N-slit interference. (<b>a</b>) Intensity <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics></math> for N = 1000 and K = 1. (<b>b</b>) Details of (<b>a</b>) for frequency resolution. (<b>c</b>) Enhanced frequency resolution with intensity-product order K = 100.</p>
Full article ">Figure 7
<p>Comparison between FPI and N-slit interferometer. (<b>Left-end</b>) FPI. (<b>Middle-left</b>) N-slit interferometer. (<b>Middle-right</b>) super-resolution. (<b>Right-end</b>) fringes. Red: FPI; dotted: N-slit; green: super-resolution.</p>
Full article ">Figure 8
<p>Schematic of intensity product measurements for a potential application. PD: 2D arrayed photodiode composed of N × N pixels.</p>
Full article ">
11 pages, 304 KiB  
Article
Matrix-Wigner Distribution
by Long Wang, Manjun Cui, Ze Qin, Zhichao Zhang and Jianwei Zhang
Fractal Fract. 2024, 8(6), 328; https://doi.org/10.3390/fractalfract8060328 - 30 May 2024
Cited by 1 | Viewed by 900
Abstract
In order to achieve time–frequency superresolution in comparison to the conventional Wigner distribution (WD), this study generalizes the well-known τ-Wigner distribution (τ-WD) with only one parameter τ to the multiple-parameter matrix-Wigner distribution (M-WD) with the parameter matrix M. According [...] Read more.
In order to achieve time–frequency superresolution in comparison to the conventional Wigner distribution (WD), this study generalizes the well-known τ-Wigner distribution (τ-WD) with only one parameter τ to the multiple-parameter matrix-Wigner distribution (M-WD) with the parameter matrix M. According to operator theory, we construct Heisenberg’s inequalities on the uncertainty product in M-WD domains and formulate two kinds of attainable lower bounds dependent on M. We solve the problem of lower bound minimization and obtain the optimality condition of M, under which the M-WD achieves superior time–frequency resolution. It turns out that the M-WD breaks through the limitation of the τ-WD and gives birth to some novel distributions other than the WD that could generate the highest time–frequency resolution. As an example, the two-dimensional linear frequency-modulated signal is carried out to demonstrate the time–frequency concentration superiority of the M-WD over the short-time Fourier transform and wavelet transform. Full article
137 pages, 3333 KiB  
Review
Monte Carlo Based Techniques for Quantum Magnets with Long-Range Interactions
by Patrick Adelhardt, Jan A. Koziol, Anja Langheld and Kai P. Schmidt
Entropy 2024, 26(5), 401; https://doi.org/10.3390/e26050401 - 1 May 2024
Cited by 10 | Viewed by 2076
Abstract
Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum–optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical [...] Read more.
Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum–optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations. Full article
Show Figures

Figure 1

Figure 1
<p>Susceptibility <inline-formula><mml:math id="mm2258"><mml:semantics><mml:msub><mml:mi>χ</mml:mi><mml:mi>L</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> of the long-range transverse-field Ising chain for different linear system sizes from <inline-formula><mml:math id="mm2259"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>64</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> to <inline-formula><mml:math id="mm2260"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>724</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The smaller the system, the farther away from the critical point the susceptibility starts to deviate from the thermodynamic limit and the farther the peak position shifts away from the critical point marked by the black dotted line.</p>
Full article ">Figure 2
<p>Rescaled correlation length according to Equation (<xref ref-type="disp-formula" rid="FD37-entropy-26-00401">37</xref>) for a model above the upper critical dimension with <inline-formula><mml:math id="mm2261"><mml:semantics><mml:mrow><mml:mo>ϙ</mml:mo><mml:mo>=</mml:mo><mml:mn>20</mml:mn><mml:mo>/</mml:mo><mml:mn>9</mml:mn><mml:mo>≈</mml:mo><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mover><mml:mn>2</mml:mn><mml:mo>¯</mml:mo></mml:mover></mml:mrow></mml:semantics></mml:math></inline-formula> (to be specific, the long-range transverse-field Ising chain with <inline-formula><mml:math id="mm2262"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>). The control parameter <inline-formula><mml:math id="mm2263"><mml:semantics><mml:mrow><mml:mi>r</mml:mi><mml:mo>∼</mml:mo><mml:mi>h</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mi>h</mml:mi><mml:mi mathvariant="normal">c</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> is proportional to the transverse field. The collapse of the data around the critical point <inline-formula><mml:math id="mm2264"><mml:semantics><mml:mrow><mml:mi>r</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> verifies the scaling Equation (<xref ref-type="disp-formula" rid="FD37-entropy-26-00401">37</xref>) and, therefore, demonstrates that <inline-formula><mml:math id="mm2265"><mml:semantics><mml:msub><mml:mi>ξ</mml:mi><mml:mi>L</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> is indeed—in contrast to the prior belief—not bound by the linear system size, but <inline-formula><mml:math id="mm2266"><mml:semantics><mml:mrow><mml:msub><mml:mi>ξ</mml:mi><mml:mi>L</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mrow><mml:mo>ϙ</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p>Schematic illustration of cluster additivity. The contribution of a disconnected cluster <inline-formula><mml:math id="mm2267"><mml:semantics><mml:mrow><mml:mi>A</mml:mi><mml:mo>∪</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> (clusters within dashed circle) made up of individual connected clusters <italic>A</italic> and <italic>B</italic> (yellow areas) is the sum of its individual parts.</p>
Full article ">Figure 4
<p>Illustration of the method of perturbative continuous unitary transformations (pCUTs) transforming the original Hamiltonian on the left to a block-diagonal quasiparticle-conserving effective Hamiltonian on the right. The desired effective Hamiltonian is given in the limit <inline-formula><mml:math id="mm2268"><mml:semantics><mml:mrow><mml:mo>ℓ</mml:mo><mml:mo>→</mml:mo><mml:mo>∞</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> of the flow parameter <italic>ℓ</italic> of the continuous unitary transformation <inline-formula><mml:math id="mm2269"><mml:semantics><mml:mrow><mml:mi mathvariant="script">H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mo>ℓ</mml:mo><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>U</mml:mi><mml:mo>†</mml:mo></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mo>ℓ</mml:mo><mml:mo>)</mml:mo></mml:mrow><mml:mi mathvariant="script">H</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mi>U</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mo>ℓ</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>. While the different quasiparticle sectors interact with each other by the off-diagonal blocks in the original Hamiltonian, the off-diagonal blocks are zero in the effective Hamiltonian as they are “rotated away” during the flow.</p>
Full article ">Figure 5
<p>Schematic illustration of cluster additivity (<bold>a</bold>) and particle additivity in the one-particle basis (<bold>b</bold>) on a disconnected cluster <inline-formula><mml:math id="mm2270"><mml:semantics><mml:mrow><mml:mi>A</mml:mi><mml:mo>∪</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> (grey area) consisting of individual connected clusters <italic>A</italic> and <italic>B</italic> (yellow areas). (<bold>a</bold>) Cluster additivity in the one-particle basis translates to one particle being on cluster <italic>A</italic> and zero on <italic>B</italic> and vice versa. To calculate the contribution on the disconnected cluster <inline-formula><mml:math id="mm2271"><mml:semantics><mml:mrow><mml:mi>A</mml:mi><mml:mo>∪</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, both contributions need to be considered including the cases of zero occupancy. (<bold>b</bold>) Particle additivity is fulfilled when the one-particle contribution on a disconnected cluster <inline-formula><mml:math id="mm2272"><mml:semantics><mml:mrow><mml:mi>A</mml:mi><mml:mo>∪</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> is simply the sum of one-particle contributions on the connected clusters <italic>A</italic> and <italic>B</italic>.</p>
Full article ">Figure 6
<p>For operators that are not cluster additive, the contribution on the disconnected cluster <inline-formula><mml:math id="mm2273"><mml:semantics><mml:mrow><mml:mi>A</mml:mi><mml:mo>∪</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> originates not only from the sum of the contributions where a single particle is on <italic>A</italic> or <italic>B</italic>, but also from contributions where the particle can hop between the two connected clusters.</p>
Full article ">Figure 7
<p>Illustration of a graph isomorphism <inline-formula><mml:math id="mm2274"><mml:semantics><mml:msub><mml:mi>φ</mml:mi><mml:mi>Iso</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> and automorphism <inline-formula><mml:math id="mm2275"><mml:semantics><mml:msub><mml:mi>φ</mml:mi><mml:mi>Auto</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> map for an example graph. (<bold>a</bold>) The mapping <inline-formula><mml:math id="mm2276"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Iso</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2277"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Iso</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and identity for the remaining vertices is a graph isomorphism preserving the adjacency of vertices. If such an isomorphism exists between two graphs, they are topologically equivalent. (<bold>b</bold>) Under a graph automorphism, the edge set <inline-formula><mml:math id="mm2278"><mml:semantics><mml:msub><mml:mi mathvariant="script">E</mml:mi><mml:mi mathvariant="script">G</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> remains invariant, i.e., the graph is mapped onto itself. Here, it is exemplified for the mapping <inline-formula><mml:math id="mm2279"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Auto</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2280"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Auto</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and identity for the remaining vertices. A graph automorphism is, therefore, a special case of a graph isomorphism, which leaves the edge set invariant.</p>
Full article ">Figure 8
<p>Depiction of a graph monomorphism <inline-formula><mml:math id="mm2281"><mml:semantics><mml:msub><mml:mi>φ</mml:mi><mml:mi>Mono</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> and a graph with colour attributes. (<bold>a</bold>) An example showing a graph monomorphism. The smaller graph on the left is mapped onto the bigger graph on the right, which is the same graph as in <xref ref-type="fig" rid="entropy-26-00401-f007">Figure 7</xref>. Explicitly, the mapping <inline-formula><mml:math id="mm2282"><mml:semantics><mml:msub><mml:mi>φ</mml:mi><mml:mi>Mono</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> is given by <inline-formula><mml:math id="mm2283"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Mono</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2284"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Mono</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2285"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Mono</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2286"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>Mono</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mn>5</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>b</bold>) A coloured graph with the “green” colour attribute assigned to vertices 0 and 2 (<inline-formula><mml:math id="mm2287"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="script">A</mml:mi><mml:mi mathvariant="script">V</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>green</mml:mi><mml:mo>}</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>green</mml:mi><mml:mo>}</mml:mo></mml:mrow><mml:mo>}</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>). If mappings are applied to coloured graphs, the colour set must be left invariant, i.e., vertices with a colour must be mapped onto each other and vertices with no colour as well.</p>
Full article ">Figure 9
<p>In contrast to the conventional approach using coloured graphs (left), where different expansion parameters or different interaction types are associated with an edge colour, for white graphs (centre) the edge colour is ignored in the topological classification of graphs. Instead additional information is tracked, e.g., by associating each link with abstract expansion parameters and only substituting these abstract contribution during the embedding procedure, reintroducing the correct colour information (right), hence the name white graphs. (<bold>a</bold>) For the problem of Equation (<xref ref-type="disp-formula" rid="FD137-entropy-26-00401">137</xref>) on linear graphs with two edges, there are three distinct graphs as the expansion parameters <inline-formula><mml:math id="mm2288"><mml:semantics><mml:msub><mml:mi>λ</mml:mi><mml:mo>⊥</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2289"><mml:semantics><mml:msub><mml:mi>λ</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula> are associated with individual edge colours (left), but there is only one white graph, as we associated one abstract expansion parameter for each edge (centre). When substituting the abstract expansion parameters with the physical one, reintroducing the correct colour, we can recover the polynomial contributions of the conventional approach (right) (cf. Ref. [<xref ref-type="bibr" rid="B152-entropy-26-00401">152</xref>]). (<bold>b</bold>) For the problem of Equation (<xref ref-type="disp-formula" rid="FD138-entropy-26-00401">138</xref>) also on linear graphs with two edges, there are also three topologically distinct graphs (left), but for the white graph contribution, we have to introduce multiple abstract expansion parameters for each edge, due to the three flavours <inline-formula><mml:math id="mm2290"><mml:semantics><mml:mrow><mml:mi>f</mml:mi><mml:mo>∈</mml:mo><mml:mo>{</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>,</mml:mo><mml:mi>z</mml:mi><mml:mo>}</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> (centre). The substitution works analogously to recover the polynomial contribution form the conventional approach (right). Parameters that are not explicitly set are set to zero (cf. Ref. [<xref ref-type="bibr" rid="B204-entropy-26-00401">204</xref>]).</p>
Full article ">Figure 10
<p>The graph with three edges given in <xref ref-type="fig" rid="entropy-26-00401-f008">Figure 8</xref> is embedded on the infinite lattice. We consider a coloured graph with additional colour attributes (yellow and green) for two specific vertices. The reason behind colouring the vertices might by to simply fix the graph due to translational and rotational symmetry of the lattice as it is done when calculating the ground-state energy or due to the presence of a one-quasiparticle process from one coloured site to the other. For the ground-state energy contribution, the embedding factor would be <inline-formula><mml:math id="mm2291"><mml:semantics><mml:mrow><mml:mi>w</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi mathvariant="script">G</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="script">L</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mfrac><mml:mi>q</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi mathvariant="script">G</mml:mi></mml:msub></mml:mfrac><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>Mono</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi mathvariant="script">G</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="script">L</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mfrac><mml:mn>4</mml:mn><mml:mn>6</mml:mn></mml:mfrac><mml:mo>×</mml:mo><mml:mn>6</mml:mn><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. There are six possible embeddings (monomorphisms) on the infinite lattice, when the coloured vertices on the graph are correctly mapped to the coloured sites on the lattice. There are only three geometrically distinct embeddings, but the number of monomorphisms is two-times bigger due to an ambiguity of mapping the subgraph on the graph as illustrated by the arrows.</p>
Full article ">Figure 11
<p>Exemplary Monte Carlo moves for a linear graph on a two-dimensional square lattice. (<bold>a</bold>) During a shift move, a vertex <inline-formula><mml:math id="mm2292"><mml:semantics><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mi>sel</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mo>⋯</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mi>s</mml:mi></mml:msub><mml:mo>}</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> is selected randomly from a uniform distribution. Then, a shift vector <inline-formula><mml:math id="mm2293"><mml:semantics><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">d</mml:mi></mml:mrow><mml:mi>prop</mml:mi></mml:msup></mml:semantics></mml:math></inline-formula> is drawn (uniformly for each component), which moves the selected site to <inline-formula><mml:math id="mm2294"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">i</mml:mi></mml:mrow><mml:mi>prop</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msub><mml:mi mathvariant="bold-italic">i</mml:mi><mml:msub><mml:mi>n</mml:mi><mml:mi>sel</mml:mi></mml:msub></mml:msub><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">d</mml:mi></mml:mrow><mml:mi>prop</mml:mi></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> if accepted. (<bold>b</bold>) For rift moves, a vertex is selected from <inline-formula><mml:math id="mm2295"><mml:semantics><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mi>sel</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mo>⋯</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mi>s</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>}</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>. Instead of drawing from uniform distributions, rift moves account for the correct asymptotic behaviour of the system by drawing a new distance to the next vertex from a <inline-formula><mml:math id="mm2296"><mml:semantics><mml:mi>ζ</mml:mi></mml:semantics></mml:math></inline-formula>-function distribution (from a normal <inline-formula><mml:math id="mm2297"><mml:semantics><mml:mi>ζ</mml:mi></mml:semantics></mml:math></inline-formula> function in one dimension and from a double-sided <inline-formula><mml:math id="mm2298"><mml:semantics><mml:mi>ζ</mml:mi></mml:semantics></mml:math></inline-formula> function in higher dimension for each component). If accepted, the vertices <inline-formula><mml:math id="mm2299"><mml:semantics><mml:mrow><mml:mi>n</mml:mi><mml:mo>&gt;</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mi>sel</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> are shifted to the new position <inline-formula><mml:math id="mm2300"><mml:semantics><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="bold-italic">i</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>&gt;</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mi>sel</mml:mi></mml:msub></mml:mrow><mml:mi>prop</mml:mi></mml:msubsup><mml:mo>=</mml:mo><mml:msub><mml:mi mathvariant="bold-italic">i</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>&gt;</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mi>sel</mml:mi></mml:msub></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">r</mml:mi></mml:mrow><mml:mi>prop</mml:mi></mml:msup><mml:mo>−</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">r</mml:mi></mml:mrow><mml:mi>curr</mml:mi></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 12
<p>Monte Carlo error <inline-formula><mml:math id="mm2301"><mml:semantics><mml:mrow><mml:msub><mml:mi>ε</mml:mi><mml:mi>MC</mml:mi></mml:msub><mml:mrow><mml:mo>=</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msubsup><mml:mi>p</mml:mi><mml:mn>2</mml:mn><mml:mi>exact</mml:mi></mml:msubsup><mml:mo>−</mml:mo><mml:msubsup><mml:mi>p</mml:mi><mml:mn>2</mml:mn><mml:mi>MC</mml:mi></mml:msubsup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo>/</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msubsup><mml:mi>p</mml:mi><mml:mn>2</mml:mn><mml:mi>exact</mml:mi></mml:msubsup><mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> (coloured data points) on a log–log scale as a function of the number of steps <inline-formula><mml:math id="mm2302"><mml:semantics><mml:msub><mml:mi>N</mml:mi><mml:mi>steps</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula>. The plot shows data from a hundred 12-hour-long MC runs with a distinct seed each. The MC error <inline-formula><mml:math id="mm2303"><mml:semantics><mml:msub><mml:mi>ε</mml:mi><mml:mi>MC</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> goes to zero following a <inline-formula><mml:math id="mm2304"><mml:semantics><mml:msubsup><mml:mi>N</mml:mi><mml:mrow><mml:mi>steps</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup></mml:semantics></mml:math></inline-formula> convergence behaviour (indicated by the black line), as generally expected from an MC algorithm.</p>
Full article ">Figure 13
<p>The workflow of the presented pCUT+MC method consists of several steps. There are three major steps. First, there is the graph generation, which only has to be performed once. Second is the calculation of the graph contributions with the pCUT method, and third is the Monte Carlo algorithm to embed the contributions on the lattice to determine the perturbative series of the quantity of interest in the thermodynamic limit.</p>
Full article ">Figure 14
<p>(<bold>a</bold>) An SSE configuration of a transverse-field Ising chain with <inline-formula><mml:math id="mm2305"><mml:semantics><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> sites and a sequence length <inline-formula><mml:math id="mm2306"><mml:semantics><mml:mrow><mml:mi mathvariant="script">L</mml:mi><mml:mo>=</mml:mo><mml:mn>27</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The spatial spin direction goes from left to right, and the imaginary-time dimension goes from bottom to top. The number of trivial operators in the operator sequence <inline-formula><mml:math id="mm2307"><mml:semantics><mml:msub><mml:mi>S</mml:mi><mml:mi mathvariant="script">L</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> is 8. Filled (empty) circles represent spins aligned in the <inline-formula><mml:math id="mm2308"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>σ</mml:mi><mml:mi>i</mml:mi><mml:mi>z</mml:mi></mml:msubsup><mml:mo>=</mml:mo><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mspace width="4pt"/><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> direction. The propagated states <inline-formula><mml:math id="mm2309"><mml:semantics><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:mi>α</mml:mi><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>〉</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> correspond to the <italic>p</italic>-th row from below with the lowest row being state <inline-formula><mml:math id="mm2310"><mml:semantics><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>α</mml:mi><mml:mo>〉</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>b</bold>) A depiction of the possible vertices for field operators. (<bold>c</bold>) A depiction of the possible vertices for constant operators. (<bold>d</bold>) A depiction of the allowed vertices for ferromagnetic Ising operators. Note that a ferromagnetic Ising vertex can only connect sites that are connected by a ferromagnetic bond in the Hamiltonian. (<bold>e</bold>) A depiction of the allowed vertices for antiferromagnetic Ising operators. Note that an antiferromagnetic Ising vertex can only connect sites that are connected by an antiferromagnetic bond in the Hamiltonian.</p>
Full article ">Figure 15
<p>Assignment of leg numbers to operator legs for an operator at propagation step <italic>p</italic>. (<bold>a</bold>) Illustration of a two-site operator with four real vertex legs. (<bold>b</bold>) Illustration of a single-site operator with only two real vertex legs and two ghost legs.</p>
Full article ">Figure 16
<p>Illustration for the segmentation and construction of the doubly linked list for an exemplary configuration of the ferromagnetic transverse-field Ising model. (<bold>a</bold>) Segmentation of a configuration into disjoint clusters including the numbers of the operator legs. Ghost legs are not depicted. The coloured lines with ellipses at each end depict the operator legs that are linked. Each colour represents one cluster in the off-diagonal update. (<bold>b</bold>) Depiction of a doubly linked list for the configuration shown in (<bold>a</bold>). The left column represents the entry numbers in the list and the right column the corresponding legs to which the entry is connected. The colour represents the clusters in (<bold>a</bold>) to which the connection belongs. Ghost legs are linked to the value <inline-formula><mml:math id="mm2311"><mml:semantics><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and are shaded in grey.</p>
Full article ">Figure 17
<p>(<bold>a</bold>) An SSE configuration of a Heisenberg chain with ten sites and a sequence length of 27. The number of trivial operators is 5. Filled (empty) circles represent spins in the <inline-formula><mml:math id="mm2312"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>σ</mml:mi><mml:mi>i</mml:mi><mml:mi>z</mml:mi></mml:msubsup><mml:mo>=</mml:mo><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> direction. The propagated states <inline-formula><mml:math id="mm2313"><mml:semantics><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:mi>α</mml:mi><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>〉</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> correspond to the <italic>p</italic>-th row in the configuration. (<bold>b</bold>) A depiction of the allowed vertices for ferromagnetic diagonal operators. (<bold>c</bold>) A depiction of the allowed vertices for ferromagnetic off-diagonal operators. (<bold>d</bold>) A depiction of the allowed vertices for antiferromagnetic diagonal operators. (<bold>e</bold>) A depiction of the allowed vertices for antiferromagnetic off-diagonal operators. Note that (anti)ferromagnetic vertices can only connect sites that are connected by (anti)ferromagnetic bonds in the Hamiltonian.</p>
Full article ">Figure 18
<p>Illustration showing the construction of the doubly linked vertex list and the off-diagonal deterministic loop update for unfrustrated Heisenberg models. As an example, a Heisenberg chain with periodic boundary conditions and nearest-neighbour antiferromagnetic and next-nearest-neighbour ferromagnetic interactions is considered. (<bold>a</bold>) Illustration of a configuration including the numbers of the operator legs belonging to the respective operators. The coloured lines with ellipses at each end depict the operator legs that are linked. Each colour represents one loop in the off-diagonal update. (<bold>b</bold>) Depiction of a doubly linked list for the configuration shown in (<bold>a</bold>). The left column represents the entry numbers in the list and the right column the corresponding legs to which the entry is connected. The colour represents the loops in (<bold>a</bold>) to which the connection belongs.</p>
Full article ">Figure 19
<p>Illustration of the beta-doubling method for the one-dimensional LRTFIM in the short-range regime with decay exponent <inline-formula><mml:math id="mm2314"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>=</mml:mo><mml:mn>2.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> at a transverse field of <inline-formula><mml:math id="mm2315"><mml:semantics><mml:mrow><mml:mi>h</mml:mi><mml:mo>=</mml:mo><mml:mn>1.25</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The simulation starts at <inline-formula><mml:math id="mm2316"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (leftmost points) for every system size. The inverse temperature is then doubled in every beta-doubling step until the maximum <inline-formula><mml:math id="mm2317"><mml:semantics><mml:mrow><mml:msub><mml:mi>β</mml:mi><mml:mi>max</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2048</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> is reached. All of the shown magnetisation curves seem to be converging to zero temperature. Larger systems with <inline-formula><mml:math id="mm2318"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>1024</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> were discarded as they do not appear to be fully converged yet.</p>
Full article ">Figure 20
<p>Sketch of the three distinct universality regimes of the QPT in the ferromagnetic LRTFIM. For one- and two-dimensional systems, all three regimes exist, and the boundaries can be obtained using the expressions in the figure. For <inline-formula><mml:math id="mm2319"><mml:semantics><mml:mrow><mml:mi>d</mml:mi><mml:mo>≥</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, there is only the long-range mean-field and the nearest-neighbour mean-field regime with a boundary at <inline-formula><mml:math id="mm2320"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 21
<p>Critical field values and exponents from numerical studies of the ferromagnetic LRTFIM on the linear chain. The panels display <inline-formula><mml:math id="mm2321"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>J</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> (top), <inline-formula><mml:math id="mm2322"><mml:semantics><mml:mi>α</mml:mi></mml:semantics></mml:math></inline-formula> (second row left), <inline-formula><mml:math id="mm2323"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> (second row right), <inline-formula><mml:math id="mm2324"><mml:semantics><mml:mi>γ</mml:mi></mml:semantics></mml:math></inline-formula> (third row left), <inline-formula><mml:math id="mm2325"><mml:semantics><mml:mi>δ</mml:mi></mml:semantics></mml:math></inline-formula> (third row right), <inline-formula><mml:math id="mm2326"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula> (fourth row left), <inline-formula><mml:math id="mm2327"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> (fourth row right), and <italic>z</italic> (bottom). The labels refer to the references in the following way: “SSE QMC (2021) [<xref ref-type="bibr" rid="B32-entropy-26-00401">32</xref>,<xref ref-type="bibr" rid="B249-entropy-26-00401">249</xref>]”, “SSE QMC (2022) [<xref ref-type="bibr" rid="B34-entropy-26-00401">34</xref>,<xref ref-type="bibr" rid="B247-entropy-26-00401">247</xref>]”, “pCUT+MC (2022) [<xref ref-type="bibr" rid="B34-entropy-26-00401">34</xref>,<xref ref-type="bibr" rid="B247-entropy-26-00401">247</xref>]”, “pCUT+MC <inline-formula><mml:math id="mm2328"><mml:semantics><mml:mi>α</mml:mi></mml:semantics></mml:math></inline-formula> from SSE (2022) [<xref ref-type="bibr" rid="B34-entropy-26-00401">34</xref>,<xref ref-type="bibr" rid="B247-entropy-26-00401">247</xref>]”, “DMRG (2018) [<xref ref-type="bibr" rid="B28-entropy-26-00401">28</xref>]”, “DMRG (2019) [<xref ref-type="bibr" rid="B248-entropy-26-00401">248</xref>]”, “FRG (2017) [<xref ref-type="bibr" rid="B21-entropy-26-00401">21</xref>]”, “PI QMC (2021) [<xref ref-type="bibr" rid="B33-entropy-26-00401">33</xref>]”, and “QMC+SPO (2023) [<xref ref-type="bibr" rid="B250-entropy-26-00401">250</xref>]”. The values for the critical exponents of the transition in the nearest-neighbour model <inline-formula><mml:math id="mm2329"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2330"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2331"><mml:semantics><mml:mrow><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mn>7</mml:mn><mml:mo>/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2332"><mml:semantics><mml:mrow><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>15</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2333"><mml:semantics><mml:mrow><mml:mi>η</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2334"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2335"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B246-entropy-26-00401">246</xref>,<xref ref-type="bibr" rid="B251-entropy-26-00401">251</xref>,<xref ref-type="bibr" rid="B252-entropy-26-00401">252</xref>] and in the long-range mean-field regime <inline-formula><mml:math id="mm2336"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2337"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2338"><mml:semantics><mml:mrow><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2339"><mml:semantics><mml:mrow><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2340"><mml:semantics><mml:mrow><mml:mi>η</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>σ</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2341"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>σ</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2342"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B20-entropy-26-00401">20</xref>,<xref ref-type="bibr" rid="B21-entropy-26-00401">21</xref>] are given by the dashed lines.</p>
Full article ">Figure 22
<p>Critical field values and exponents from numerical studies of the ferromagnetic LRTFIM on the two-dimensional square lattice. The panels display <inline-formula><mml:math id="mm2343"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>J</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> (top), <inline-formula><mml:math id="mm2344"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> (middle left), <italic>z</italic> (middle right), <inline-formula><mml:math id="mm2345"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> (bottom left), and <inline-formula><mml:math id="mm2346"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> (bottom right). The data points “SSE QMC (2021)” for <inline-formula><mml:math id="mm2347"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2348"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2349"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> are from Refs. [<xref ref-type="bibr" rid="B32-entropy-26-00401">32</xref>,<xref ref-type="bibr" rid="B249-entropy-26-00401">249</xref>]. The data points “pCUT+MC (2019)” for <inline-formula><mml:math id="mm2350"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2351"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> are from Ref. [<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>]. The data points “FRG (2017)” for <inline-formula><mml:math id="mm2352"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> and <italic>z</italic> originate from the functional RG study in Ref. [<xref ref-type="bibr" rid="B21-entropy-26-00401">21</xref>]. The values for the critical exponents of the transition in the nearest-neighbour model <inline-formula><mml:math id="mm2353"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.629971</mml:mn><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2354"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0.326419</mml:mn><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2355"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B253-entropy-26-00401">253</xref>] and in the long-range mean-field regime <inline-formula><mml:math id="mm2356"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>σ</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2357"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2358"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B20-entropy-26-00401">20</xref>,<xref ref-type="bibr" rid="B21-entropy-26-00401">21</xref>] are given by the dashed lines.</p>
Full article ">Figure 23
<p>Exponent <inline-formula><mml:math id="mm2359"><mml:semantics><mml:mo>ϙ</mml:mo></mml:semantics></mml:math></inline-formula> extracted by the data collapse of <inline-formula><mml:math id="mm2360"><mml:semantics><mml:msup><mml:mi>ξ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>L</mml:mi><mml:mi>R</mml:mi><mml:mi>ω</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2361"><mml:semantics><mml:msup><mml:mi>ξ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>L</mml:mi><mml:mi>R</mml:mi><mml:mi>τ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula> for different decay exponents of the LRTFIM on the linear chain [<xref ref-type="bibr" rid="B34-entropy-26-00401">34</xref>]. The black dashed line depicts the prediction by the Q-FSS <inline-formula><mml:math id="mm2362"><mml:semantics><mml:mrow><mml:mo>ϙ</mml:mo><mml:mo>=</mml:mo><mml:mo movablelimits="true" form="prefix">max</mml:mo><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>d</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mi>d</mml:mi><mml:mi>uc</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, while the grey dashed line shows the prediction from standard FSS <inline-formula><mml:math id="mm2363"><mml:semantics><mml:mrow><mml:mo>ϙ</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. In the regime above the upper critical dimension for <inline-formula><mml:math id="mm2364"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>2</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, the predictions start to deviate and the extracted values for <inline-formula><mml:math id="mm2365"><mml:semantics><mml:mo>ϙ</mml:mo></mml:semantics></mml:math></inline-formula> are clearly in line with the Q-FSS scenario. Figure adapted from Ref. [<xref ref-type="bibr" rid="B34-entropy-26-00401">34</xref>].</p>
Full article ">Figure 24
<p>Critical field values and exponents from numerical studies of the antiferromagnetic LRTFIM on the chain. The upper panel displays critical field values <inline-formula><mml:math id="mm2366"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>; the lower left panel displays values for the critical exponents <inline-formula><mml:math id="mm2367"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2368"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and, the lower right panel, values for the critical exponents <inline-formula><mml:math id="mm2369"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula>. The data points “SSE QMC (2021)” and “SSE QMC <inline-formula><mml:math id="mm2370"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>≤</mml:mo><mml:mn>64</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (2021)” for <inline-formula><mml:math id="mm2371"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2372"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2373"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> are from Refs. [<xref ref-type="bibr" rid="B32-entropy-26-00401">32</xref>,<xref ref-type="bibr" rid="B249-entropy-26-00401">249</xref>]. The data points “pCUT+MC (2019)” for <inline-formula><mml:math id="mm2374"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2375"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> are from Ref. [<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>]. The data points “TDVP (2012)” for <inline-formula><mml:math id="mm2376"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2377"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2378"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> originate from Ref. [<xref ref-type="bibr" rid="B23-entropy-26-00401">23</xref>]. The exponents <inline-formula><mml:math id="mm2379"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2380"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> are calculated from the scaling dimensions in Ref. [<xref ref-type="bibr" rid="B23-entropy-26-00401">23</xref>] under the assumption of <inline-formula><mml:math id="mm2381"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, which is reasonable according to [<xref ref-type="bibr" rid="B248-entropy-26-00401">248</xref>]. The data points “DMRG (2016)” for <inline-formula><mml:math id="mm2382"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> are from Ref. [<xref ref-type="bibr" rid="B24-entropy-26-00401">24</xref>]. The data points “DMRG (2017)” for <inline-formula><mml:math id="mm2383"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2384"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> originate from Ref. [<xref ref-type="bibr" rid="B26-entropy-26-00401">26</xref>]. The data points “DMRG (2019)” for <inline-formula><mml:math id="mm2385"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> are from Ref. [<xref ref-type="bibr" rid="B248-entropy-26-00401">248</xref>]. The values for the critical exponents of the transition in the nearest-neighbour model <inline-formula><mml:math id="mm2386"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2387"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2388"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B246-entropy-26-00401">246</xref>,<xref ref-type="bibr" rid="B251-entropy-26-00401">251</xref>,<xref ref-type="bibr" rid="B252-entropy-26-00401">252</xref>,<xref ref-type="bibr" rid="B263-entropy-26-00401">263</xref>] are given by the black dashed lines.</p>
Full article ">Figure 25
<p>Critical field values and exponents from numerical studies of the antiferromagnetic LRTFIM on the square lattice. The upper panel displays critical field values <inline-formula><mml:math id="mm2389"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>; the lower left panel displays values for the critical exponents <inline-formula><mml:math id="mm2390"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2391"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and, the lower right panel, values for the critical exponents <inline-formula><mml:math id="mm2392"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula>. The data points “SSE QMC (2021)” for <inline-formula><mml:math id="mm2393"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2394"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2395"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> are from Refs. [<xref ref-type="bibr" rid="B32-entropy-26-00401">32</xref>,<xref ref-type="bibr" rid="B249-entropy-26-00401">249</xref>]. The data points “pCUT+MC (2019)” for <inline-formula><mml:math id="mm2396"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2397"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> originate from Ref. [<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>]. The values for the critical exponents of the transition in the nearest-neighbour model <inline-formula><mml:math id="mm2398"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.629971</mml:mn><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2399"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0.326419</mml:mn><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2400"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B253-entropy-26-00401">253</xref>] are given by the dashed lines.</p>
Full article ">Figure 26
<p>Illustration of the four local spin configurations called flippable plaquettes. The arrows denote the local spin orientation in the <italic>z</italic>-direction. The grey lines in the back visualise the triangular lattice. Solid (dotted) black lines are depicted on (anti)ferromagnetically aligned bonds. Note that flipping the spin in the centre of each configuration maps the left to the right configuration in each row and vice versa.</p>
Full article ">Figure 27
<p>Phase diagrams for the long-range transverse-field Ising model on the triangular lattice (left panel) and triangular lattice cylinders with infinite extent in the <italic>x</italic>-direction and a circumference of 6 sites in the <italic>y</italic>-direction (YC6) (right panel). Right panel: The critical field values <inline-formula><mml:math id="mm2401"><mml:semantics><mml:mrow><mml:msub><mml:mi>h</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>J</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> for the triangular lattice for the QPT between the high-field polarised phase originate from pCUT+MC calculations [<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>]. The inset of the right panel represents the critical exponents <inline-formula><mml:math id="mm2402"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> determined from the series expansion [<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>]. The black dashed line represents the critical value <inline-formula><mml:math id="mm2403"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.67175</mml:mn><mml:mo>(</mml:mo><mml:mn>10</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> of the 3D-XY universality class [<xref ref-type="bibr" rid="B281-entropy-26-00401">281</xref>,<xref ref-type="bibr" rid="B282-entropy-26-00401">282</xref>]. The critical exponent <inline-formula><mml:math id="mm2404"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> confirms the <inline-formula><mml:math id="mm2405"><mml:semantics><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>D-XY universality class within the limitations of the series expansion. Left panel: The transitions values between the high-field <italic>x</italic>-polarised phase and the <inline-formula><mml:math id="mm2406"><mml:semantics><mml:mrow><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt><mml:mo>×</mml:mo><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt></mml:mrow></mml:semantics></mml:math></inline-formula>-clock-ordered phase are from the gap closing of the high-field series obtained from pCUT+MC [<xref ref-type="bibr" rid="B30-entropy-26-00401">30</xref>]. The transition between the plain stripe low-field phase and the <inline-formula><mml:math id="mm2407"><mml:semantics><mml:mrow><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt><mml:mo>×</mml:mo><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt></mml:mrow></mml:semantics></mml:math></inline-formula>-clock-ordered phase is terminated via a level crossing of both ground-state energies, which were calculated perturbatively [<xref ref-type="bibr" rid="B30-entropy-26-00401">30</xref>]. The phase diagrams for small <inline-formula><mml:math id="mm2408"><mml:semantics><mml:mi>σ</mml:mi></mml:semantics></mml:math></inline-formula> values are not yet conclusively determined [<xref ref-type="bibr" rid="B27-entropy-26-00401">27</xref>,<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>,<xref ref-type="bibr" rid="B30-entropy-26-00401">30</xref>].</p>
Full article ">Figure 28
<p>Sketch of a generic phase diagram of a long-range transverse-field Ising model (LRTFIM) for which a degenerate subspace at <inline-formula><mml:math id="mm2409"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>=</mml:mo><mml:mo>∞</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2410"><mml:semantics><mml:mrow><mml:mi>h</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> breaks down in an order-by-disorder scenario for <inline-formula><mml:math id="mm2411"><mml:semantics><mml:mrow><mml:mi>h</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and into a different crystalline state due to the long-range interactions (LRIs) <inline-formula><mml:math id="mm2412"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>&lt;</mml:mo><mml:mo>∞</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>. An example is the LRTFIM on the triangular lattice, where the order-by-disorder phase is the clock-ordered phase and the crystalline phase is the plain stripe phase [<xref ref-type="bibr" rid="B27-entropy-26-00401">27</xref>,<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>,<xref ref-type="bibr" rid="B30-entropy-26-00401">30</xref>,<xref ref-type="bibr" rid="B110-entropy-26-00401">110</xref>,<xref ref-type="bibr" rid="B277-entropy-26-00401">277</xref>,<xref ref-type="bibr" rid="B279-entropy-26-00401">279</xref>,<xref ref-type="bibr" rid="B280-entropy-26-00401">280</xref>]. The transition between the crystalline phase and the order-by-disorder phase is believed to be a first-order lever-crossing transition [<xref ref-type="bibr" rid="B29-entropy-26-00401">29</xref>,<xref ref-type="bibr" rid="B30-entropy-26-00401">30</xref>,<xref ref-type="bibr" rid="B110-entropy-26-00401">110</xref>,<xref ref-type="bibr" rid="B277-entropy-26-00401">277</xref>].</p>
Full article ">Figure 29
<p>Quantum phase diagram of the ferromagnetic nearest-neighbour XY chain in a transverse field (see Ref. [<xref ref-type="bibr" rid="B284-entropy-26-00401">284</xref>]). <inline-formula><mml:math id="mm2413"><mml:semantics><mml:msub><mml:mi>M</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2414"><mml:semantics><mml:msub><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> denote multicritical points. The phase transition between the symmetric high-field polarised phases and magnetically ordered low-field phases are of (1+1)D-Ising universality for <inline-formula><mml:math id="mm2415"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>≠</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. For <inline-formula><mml:math id="mm2416"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, the transition at the multicritical points <inline-formula><mml:math id="mm2417"><mml:semantics><mml:msub><mml:mi>M</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2418"><mml:semantics><mml:msub><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> has critical exponents <inline-formula><mml:math id="mm2419"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2420"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The transition between <inline-formula><mml:math id="mm2421"><mml:semantics><mml:mrow><mml:mo>〈</mml:mo><mml:msubsup><mml:mi>σ</mml:mi><mml:mi>i</mml:mi><mml:mi>x</mml:mi></mml:msubsup><mml:mo>〉</mml:mo><mml:mo>≠</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2422"><mml:semantics><mml:mrow><mml:mo>〈</mml:mo><mml:msubsup><mml:mi>σ</mml:mi><mml:mi>i</mml:mi><mml:mi>y</mml:mi></mml:msubsup><mml:mo>〉</mml:mo><mml:mo>≠</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> is of the (Ising)<sup>2</sup> type.</p>
Full article ">Figure 30
<p>Critical exponents <italic>z</italic> and <inline-formula><mml:math id="mm2424"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> for the ferromagnetic long-range transverse-field XY model as a function of <inline-formula><mml:math id="mm2425"><mml:semantics><mml:mi>σ</mml:mi></mml:semantics></mml:math></inline-formula>. The data points <inline-formula><mml:math id="mm2426"><mml:semantics><mml:msub><mml:mi>z</mml:mi><mml:mi>ω</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2427"><mml:semantics><mml:msub><mml:mi>ν</mml:mi><mml:mi>ω</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> were determined in Ref. [<xref ref-type="bibr" rid="B31-entropy-26-00401">31</xref>] by studying the dispersion of the elementary excitations at the critical point that can be determined exactly in first-order perturbation theory from the high-field limit. The lines <inline-formula><mml:math id="mm2428"><mml:semantics><mml:msub><mml:mi>z</mml:mi><mml:mi>ft</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2429"><mml:semantics><mml:msub><mml:mi>ν</mml:mi><mml:mi>ft</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> are theoretical predictions from the QFT investigated in Ref. [<xref ref-type="bibr" rid="B31-entropy-26-00401">31</xref>]. The region with the blue-shaded background denotes the regime in which the nearest-neighbour XY universality occurs [<xref ref-type="bibr" rid="B284-entropy-26-00401">284</xref>], while for <inline-formula><mml:math id="mm2430"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, the QPT is in a long-range regime with continuously varying exponents.</p>
Full article ">Figure 31
<p>Critical gap exponent <inline-formula><mml:math id="mm2431"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and critical values of <inline-formula><mml:math id="mm2432"><mml:semantics><mml:mi>λ</mml:mi></mml:semantics></mml:math></inline-formula> (see inset) as a function of <inline-formula><mml:math id="mm2433"><mml:semantics><mml:mi>σ</mml:mi></mml:semantics></mml:math></inline-formula> for the anisotropic ferromagnetic transverse-field XY model. The data points “pCUT+MC” are improved results from Ref. [<xref ref-type="bibr" rid="B31-entropy-26-00401">31</xref>], and the data point “ED” is from Ref. [<xref ref-type="bibr" rid="B307-entropy-26-00401">307</xref>]. The anisotropy parameter <inline-formula><mml:math id="mm2434"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> is tuned from <inline-formula><mml:math id="mm2435"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (Ising) to <inline-formula><mml:math id="mm2436"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (isotropic XY). As discussed in <xref ref-type="sec" rid="sec7dot1-entropy-26-00401">Section 7.1</xref>, the isotropic case is analytically solvable with <inline-formula><mml:math id="mm2437"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2438"><mml:semantics><mml:mrow><mml:msub><mml:mi>λ</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mi>ζ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>σ</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>. The black lines denote the values of <inline-formula><mml:math id="mm2439"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> if the ferromagnetic LRTFIM is in the nearest-neighbour and the long-range mean-field regime.</p>
Full article ">Figure 32
<p>Critical gap exponent <inline-formula><mml:math id="mm2440"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and critical values of <inline-formula><mml:math id="mm2441"><mml:semantics><mml:mi>λ</mml:mi></mml:semantics></mml:math></inline-formula> (see inset) as a function of <inline-formula><mml:math id="mm2442"><mml:semantics><mml:mi>σ</mml:mi></mml:semantics></mml:math></inline-formula> for the anisotropic antiferromagnetic transverse-field XY model [<xref ref-type="bibr" rid="B31-entropy-26-00401">31</xref>]. The anisotropy parameter <inline-formula><mml:math id="mm2443"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> is tuned from <inline-formula><mml:math id="mm2444"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (Ising) to <inline-formula><mml:math id="mm2445"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (isotropic XY). As discussed in <xref ref-type="sec" rid="sec7dot1-entropy-26-00401">Section 7.1</xref>, the isotropic case is analytically solvable with <inline-formula><mml:math id="mm2446"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2447"><mml:semantics><mml:mrow><mml:msub><mml:mi>λ</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mi>η</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>σ</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 33
<p>Critical values and exponents from numerical studies of the Néel-ordering transition in the unfrustrated antiferromagnetic long-range Heisenberg square-lattice bilayer model. The upper panel shows the critical values. The middle left panel displays critical exponent values <inline-formula><mml:math id="mm2448"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, the middle right panel the exponent <inline-formula><mml:math id="mm2449"><mml:semantics><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>z</mml:mi><mml:mo>−</mml:mo><mml:mi>η</mml:mi><mml:mo>)</mml:mo><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, the lower right panel the exponent <inline-formula><mml:math id="mm2450"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula>, and the lower right panel the one-particle spectral weight exponent <inline-formula><mml:math id="mm2451"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula>. The data points “QMC (2024)” for <inline-formula><mml:math id="mm2452"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2453"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> originate from Ref. [<xref ref-type="bibr" rid="B37-entropy-26-00401">37</xref>]. The data points “pCUT+MC (2024)” for <inline-formula><mml:math id="mm2454"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2455"><mml:semantics><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>z</mml:mi><mml:mo>−</mml:mo><mml:mi>η</mml:mi><mml:mo>)</mml:mo><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> originate from Refs. [<xref ref-type="bibr" rid="B206-entropy-26-00401">206</xref>,<xref ref-type="bibr" rid="B339-entropy-26-00401">339</xref>]. The data points “FRG (2017)” for <inline-formula><mml:math id="mm2456"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2457"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> originate from Ref. [<xref ref-type="bibr" rid="B21-entropy-26-00401">21</xref>]. The black dashed lines denote the critical exponents in the regime of short-range <inline-formula><mml:math id="mm2458"><mml:semantics><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> criticality (<inline-formula><mml:math id="mm2459"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.7116</mml:mn><mml:mo>(</mml:mo><mml:mn>10</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2460"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>0.36932</mml:mn><mml:mo>(</mml:mo><mml:mn>16</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2461"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.7116</mml:mn><mml:mo>(</mml:mo><mml:mn>10</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2462"><mml:semantics><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>z</mml:mi><mml:mo>−</mml:mo><mml:mi>η</mml:mi><mml:mo>)</mml:mo><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>0.6847</mml:mn><mml:mo>(</mml:mo><mml:mn>10</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B348-entropy-26-00401">348</xref>,<xref ref-type="bibr" rid="B349-entropy-26-00401">349</xref>]) and long-range mean-field criticality (<inline-formula><mml:math id="mm2463"><mml:semantics><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>σ</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2464"><mml:semantics><mml:mrow><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm2465"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm2466"><mml:semantics><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>z</mml:mi><mml:mo>−</mml:mo><mml:mi>η</mml:mi><mml:mo>)</mml:mo><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> [<xref ref-type="bibr" rid="B20-entropy-26-00401">20</xref>,<xref ref-type="bibr" rid="B21-entropy-26-00401">21</xref>]).</p>
Full article ">Figure 34
<p>Illustration of the quantum spin ladders with long-range interactions. For nearest-neighbour interactions (<inline-formula><mml:math id="mm2467"><mml:semantics><mml:mrow><mml:mi>σ</mml:mi><mml:mo>=</mml:mo><mml:mo>∞</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>), both long-range ladders <inline-formula><mml:math id="mm2468"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula> (left) and <inline-formula><mml:math id="mm2469"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mo>⋈</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula> (right) reduce to the same Heisenberg ladder. The coupling on the rungs <inline-formula><mml:math id="mm2470"><mml:semantics><mml:mrow><mml:mo>∼</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mo>⊥</mml:mo></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> is illustrated with black lines, and the long-range coupling along the legs <inline-formula><mml:math id="mm2471"><mml:semantics><mml:mrow><mml:mo>∼</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>−</mml:mo><mml:mi>j</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> and in between the legs <inline-formula><mml:math id="mm2472"><mml:semantics><mml:mrow><mml:mo>∼</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mo>×</mml:mo></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>−</mml:mo><mml:mi>j</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> is depicted in blue for <inline-formula><mml:math id="mm2473"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula> and in purple for <inline-formula><mml:math id="mm2474"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mo>⋈</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula>. The figure is adapted from Refs. [<xref ref-type="bibr" rid="B35-entropy-26-00401">35</xref>,<xref ref-type="bibr" rid="B353-entropy-26-00401">353</xref>].</p>
Full article ">Figure 35
<p>Critical values and exponents from numerical studies of the Néel-ordering transition in the unfrustrated antiferromagnetic long-range Heisenberg ladders. The panels show the critical values <inline-formula><mml:math id="mm2475"><mml:semantics><mml:msub><mml:mi>λ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> (upper left), <inline-formula><mml:math id="mm2476"><mml:semantics><mml:mrow><mml:mi>z</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> (upper right), <inline-formula><mml:math id="mm2477"><mml:semantics><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>z</mml:mi><mml:mo>−</mml:mo><mml:mi>η</mml:mi><mml:mo>)</mml:mo><mml:mi>ν</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> (lower left), and <inline-formula><mml:math id="mm2478"><mml:semantics><mml:mi>α</mml:mi></mml:semantics></mml:math></inline-formula> (lower right). The data points “pCUT+MC <inline-formula><mml:math id="mm2479"><mml:semantics><mml:msub><mml:mi>H</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula>”, “SW <inline-formula><mml:math id="mm2480"><mml:semantics><mml:msub><mml:mi>H</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula>”, “pCUT+MC <inline-formula><mml:math id="mm2481"><mml:semantics><mml:msub><mml:mi>H</mml:mi><mml:mo>⋈</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula>”, and “SW <inline-formula><mml:math id="mm2482"><mml:semantics><mml:msub><mml:mi>H</mml:mi><mml:mo>⋈</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula>” originate from Refs. [<xref ref-type="bibr" rid="B35-entropy-26-00401">35</xref>,<xref ref-type="bibr" rid="B353-entropy-26-00401">353</xref>] and refer to parallel (<inline-formula><mml:math display="block" id="mm17777777"><mml:semantics><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>) and parallel + diagonal (⋈) interactions. The “SSE QMC (2005)” data point from Ref. [<xref ref-type="bibr" rid="B22-entropy-26-00401">22</xref>] shows a <inline-formula><mml:math id="mm2483"><mml:semantics><mml:mrow><mml:msub><mml:mi>λ</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo>∞</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> value on the long-range Heisenberg chain, which corresponds to the limiting case of decoupled legs. The “QMC (2022)” data [<xref ref-type="bibr" rid="B306-entropy-26-00401">306</xref>] shows a <inline-formula><mml:math id="mm2484"><mml:semantics><mml:mrow><mml:msub><mml:mi>λ</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> value for <inline-formula><mml:math id="mm2485"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mo>⋈</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula>. The data points “FRG 2020” are from Ref. [<xref ref-type="bibr" rid="B244-entropy-26-00401">244</xref>] and show the critical exponents for the one-dimensional <inline-formula><mml:math id="mm2486"><mml:semantics><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> quantum rotor model. The blue-shaded region denotes the <inline-formula><mml:math id="mm2487"><mml:semantics><mml:mi>σ</mml:mi></mml:semantics></mml:math></inline-formula> regime in which long-range mean-field criticality is expected. The black-dashed lines denote long-range mean field critical exponents.</p>
Full article ">Figure 36
<p>Critical values and exponents from numerical studies of the QLRO-Néel transition in the unfrustrated antiferromagnetic long-range Heisenberg chain. The upper panel shows critical values <inline-formula><mml:math id="mm2488"><mml:semantics><mml:msub><mml:mi>λ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula>; the lower left shows the critical exponent <italic>z</italic>; the lower right shows <inline-formula><mml:math id="mm2489"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula>. The data points “SSE QMC 2005” are from Ref. [<xref ref-type="bibr" rid="B22-entropy-26-00401">22</xref>]; “ED 2010” are from Refs. [<xref ref-type="bibr" rid="B213-entropy-26-00401">213</xref>,<xref ref-type="bibr" rid="B297-entropy-26-00401">297</xref>]; the single data point “DMRG 2018” is from Ref. [<xref ref-type="bibr" rid="B333-entropy-26-00401">333</xref>]. The dashed line is for <inline-formula><mml:math id="mm2490"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula> and is the prediction from the first-order RG and scaling arguments provided in Ref. [<xref ref-type="bibr" rid="B22-entropy-26-00401">22</xref>].</p>
Full article ">Figure A1
<p>Illustration of Walker’s method. The horizontal dashed line corresponds to the mean of the probability distribution <inline-formula><mml:math id="mm2232"><mml:semantics><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> with <inline-formula><mml:math id="mm2233"><mml:semantics><mml:mrow><mml:mi>j</mml:mi><mml:mo>∈</mml:mo><mml:mo>{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mo>⋯</mml:mo><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo>}</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>a</bold>) Definition of a tentative probability <inline-formula><mml:math id="mm2234"><mml:semantics><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mi>n</mml:mi><mml:mo>·</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> which compares the probabilities <inline-formula><mml:math id="mm2235"><mml:semantics><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> with the mean <inline-formula><mml:math id="mm2236"><mml:semantics><mml:mrow><mml:mi>q</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>b</bold>) The probabilities <inline-formula><mml:math id="mm2237"><mml:semantics><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> are discarded, a table <inline-formula><mml:math id="mm2238"><mml:semantics><mml:msub><mml:mi>A</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> for the aliases is created and the distribution is splitted into <inline-formula><mml:math id="mm2239"><mml:semantics><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mo>≥</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2240"><mml:semantics><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>c</bold>–<bold>f</bold>) The weights of <inline-formula><mml:math id="mm2241"><mml:semantics><mml:msub><mml:mi>P</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> are gradually redistributed by creating aliases until the distribution is flattened. The weights that are taken away are depicted with red bars and the added weights with green bars. The values of <inline-formula><mml:math id="mm2242"><mml:semantics><mml:msub><mml:mi>P</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm2243"><mml:semantics><mml:msub><mml:mi>A</mml:mi><mml:mi>j</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula> that get modified during a step are written in red. At the right part of the distributions, the weights which are already filled up are gathered. In the middle part of the distribution there are the weights which still need to be filled and the left part contains all weights that are at least full from the beginning and yet need to be redistributed. (<bold>c</bold>) Weight of 6 is added to 5 and <inline-formula><mml:math id="mm2244"><mml:semantics><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> is set. (<bold>d</bold>) Weight of 6 is added to 4 and <inline-formula><mml:math id="mm2245"><mml:semantics><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> is set. (<bold>e</bold>) Weight of 6 is added to 2 and <inline-formula><mml:math id="mm2246"><mml:semantics><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> is set. (<bold>f</bold>) Weight of 3 is added to 6 and <inline-formula><mml:math id="mm2247"><mml:semantics><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>6</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> is set. After this, the middle part is empty and we are done with the redistribution.</p>
Full article ">Figure A2
<p>Critical exponents of the Néel-ordering transition in the unfrustrated antiferromagnetic long-range Heisenberg ladders. The panels display the exponents <inline-formula><mml:math id="mm2248"><mml:semantics><mml:mi>α</mml:mi></mml:semantics></mml:math></inline-formula> (first row left), <inline-formula><mml:math id="mm2249"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> (first row left), <inline-formula><mml:math id="mm2250"><mml:semantics><mml:mi>γ</mml:mi></mml:semantics></mml:math></inline-formula> (second row left), <inline-formula><mml:math id="mm2251"><mml:semantics><mml:mi>δ</mml:mi></mml:semantics></mml:math></inline-formula> (second row right), <inline-formula><mml:math id="mm2252"><mml:semantics><mml:mi>η</mml:mi></mml:semantics></mml:math></inline-formula> (third row left), <inline-formula><mml:math id="mm2253"><mml:semantics><mml:mi>ν</mml:mi></mml:semantics></mml:math></inline-formula> (third row right), and <italic>z</italic> (fourth row left). The data points ’pCUT+MC <inline-formula><mml:math id="mm2254"><mml:semantics><mml:msub><mml:mi>H</mml:mi><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:msub></mml:semantics></mml:math></inline-formula>’ and ’pCUT+MC <inline-formula><mml:math id="mm2255"><mml:semantics><mml:msub><mml:mi>H</mml:mi><mml:mo>⋈</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula>’ are from Refs. [<xref ref-type="bibr" rid="B35-entropy-26-00401">35</xref>,<xref ref-type="bibr" rid="B353-entropy-26-00401">353</xref>] and refer to parallel (<inline-formula><mml:math display="block" id="mm55553335551"><mml:semantics><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>) and parallel + diagonal (⋈) interactions. The other data ’FRG 2020’ is from Ref. [<xref ref-type="bibr" rid="B244-entropy-26-00401">244</xref>] and show the critical exponents for the one-dimensional <inline-formula><mml:math id="mm2256"><mml:semantics><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> quantum rotor model. The blue shaded region denotes the <inline-formula><mml:math id="mm2257"><mml:semantics><mml:mi>σ</mml:mi></mml:semantics></mml:math></inline-formula> regime in which long-range mean-field criticality is expected. The black dashed lines denote long-range mean field critical exponents.</p>
Full article ">
31 pages, 2565 KiB  
Article
Revisiting de Broglie’s Double-Solution Pilot-Wave Theory with a Lorentz-Covariant Lagrangian Framework
by David Darrow and John W. M. Bush
Symmetry 2024, 16(2), 149; https://doi.org/10.3390/sym16020149 - 26 Jan 2024
Cited by 5 | Viewed by 2553
Abstract
The relation between de Broglie’s double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie’s theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with [...] Read more.
The relation between de Broglie’s double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie’s theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with a view to reformulating and studying de Broglie’s double-solution program in the modern language of classical field theory. Notably, the entire family is local and Lorentz-invariant, follows from a variational principle, and exhibits time-invariant, two-way coupling between particle and pilot-wave field. We first introduce a variational framework for generic pilot-wave systems, including a derivation of particle-wave exchange of Noether currents. We then focus on a particular limit of our system, in which the particle is propelled by the local gradient of its pilot wave. In this case, we see that the Compton-scale oscillations proposed by de Broglie emerge naturally in the form of particle vibrations, and that the vibration modes dynamically adjust to match the Compton frequency in the rest frame of the particle. The underlying field dynamically changes its radiation patterns in order to satisfy the de Broglie relation p=k at the particle’s position, even as the particle momentum p changes. The wave form and frequency thus evolve so as to conform to de Broglie’s harmony of phases, even for unsteady particle motion. We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory, and that the associated energy imparts a constant increase to the particle’s inertial mass. Finally, we see that the particle’s wave-induced Compton-scale oscillation gives rise to a classical version of the Heisenberg uncertainty principle. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) A depiction of the free particle in our system, in two dimensions and with the coupling constant <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>53.3</mn> </mrow> </semantics></math>. In this simulation, we accelerate the particle from rest to a velocity <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> <mi>c</mi> </mrow> </semantics></math>. Radiation is emitted from the point of acceleration, corresponding to the form predicted in <a href="#sec3dot4-symmetry-16-00149" class="html-sec">Section 3.4</a>. Axes are given in units of <math display="inline"><semantics> <msub> <mi>λ</mi> <mi>c</mi> </msub> </semantics></math>. (<b>b</b>) The wave form adjoining the particle, as predicted in <a href="#sec3dot2-symmetry-16-00149" class="html-sec">Section 3.2</a>, is visible as a high-amplitude region around the particle, of characteristic radius corresponding to the Compton scale <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>m</mi> </mrow> </semantics></math>. As predicted in <a href="#sec3dot4-symmetry-16-00149" class="html-sec">Section 3.4</a>, the local wave field has a characteristic wavelength <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>d</mi> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mrow> <mo>(</mo> <mi>γ</mi> <mi>m</mi> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, where <span class="html-italic">v</span> is the <span class="html-italic">instantaneous</span> (rather than initial) speed of the particle. (<b>c</b>) The same simulation at a later time. Because the wave travels out from the particle’s point of origin, the local curvature of the wavefront decreases as the particle moves forward. Because the domain is periodic in both directions, the wave field grows complex, and the particle experiences the radiation from its periodic images.</p>
Full article ">Figure 2
<p>A spectrogram of in-line oscillations for our two-dimensional system, with coupling constant <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>53.3</mn> </mrow> </semantics></math>. The shown color values are normalized by <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>↦</mo> <mo form="prefix">arctan</mo> <mo>(</mo> <mn>50</mn> <mo>·</mo> <mo>Δ</mo> <mi>x</mi> <mo>/</mo> <msub> <mi>λ</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> </mrow> </semantics></math> is the oscillation magnitude. Here, we give the particle an initial velocity <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>c</mi> <mo>=</mo> <mn>0.5</mn> <mi>c</mi> </mrow> </semantics></math>, which quickly relaxes to a mean velocity <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>/</mo> <mi>c</mi> <mo>=</mo> <mn>0.455</mn> <mi>c</mi> </mrow> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>&lt;</mo> <mn>50</mn> </mrow> </semantics></math> Compton periods, the particle undergoes an oscillation at the frequency <math display="inline"><semantics> <mrow> <msup> <mi>γ</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>ω</mi> <mi>c</mi> </msub> </mrow> </semantics></math>. Thereafter, waves cover the entire periodic domain, and the particle vibrates at frequencies between <math display="inline"><semantics> <mrow> <msup> <mi>γ</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>ω</mi> <mi>c</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>v</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msub> <mi>ω</mi> <mi>c</mi> </msub> </mrow> </semantics></math>. Note, the diminishing intensity of the yellow line at <math display="inline"><semantics> <mrow> <msup> <mi>γ</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>ω</mi> <mi>c</mi> </msub> </mrow> </semantics></math> reflects the temporal decay of the in-line Zitter.</p>
Full article ">Figure 3
<p>(<b>a</b>) Dominant oscillation frequencies at the beginning of each trajectory, for particles across the range of initial velocities <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math>. We observe that the particle oscillates at the frequency <math display="inline"><semantics> <mrow> <msup> <mi>γ</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>ω</mi> <mi>c</mi> </msub> </mrow> </semantics></math> independent of the coupling constant and velocity. (<b>b</b>) Amplitudes of in-line oscillations in the long-time limit of <a href="#symmetry-16-00149-f002" class="html-fig">Figure 2</a>, i.e., after waves have covered the entire periodic domain. Curves of the form <math display="inline"><semantics> <mrow> <msubsup> <mi>n</mi> <mi>b</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>γ</mi> <mrow> <mo>−</mo> <msub> <mi>e</mi> <mi>b</mi> </msub> </mrow> </msup> <msub> <mi>λ</mi> <mi>c</mi> </msub> </mrow> </semantics></math> are shown for reference, where <math display="inline"><semantics> <msub> <mi>n</mi> <mi>b</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>e</mi> <mi>b</mi> </msub> </semantics></math> are least-squares fits (reported in the Table (<b>c</b>)).</p>
Full article ">Figure 4
<p>A diagrammatic sketch of the radiation pattern following a general acceleration of the particle in our system. Suppose the particle (shown in black) initially moves at a steady velocity <math display="inline"><semantics> <msub> <mi>u</mi> <mn>0</mn> </msub> </semantics></math>, carrying with it the Yukawa wavepacket (<a href="#FD15-symmetry-16-00149" class="html-disp-formula">15</a>), and is then accelerated by an external force <span class="html-italic">F</span> to a new velocity <math display="inline"><semantics> <msub> <mi>u</mi> <mn>1</mn> </msub> </semantics></math>. This acceleration spawns a new, continuous source of waves that drifts along the <span class="html-italic">extrapolated</span> original trajectory of the particle (shown in gray). The wave source spreads out in the ellipsoid (<a href="#FD18-symmetry-16-00149" class="html-disp-formula">18</a>) at a speed <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>expansion</mi> </msub> <mo>∼</mo> <mrow> <mo stretchy="false">|</mo> <msub> <mover accent="true"> <mi>u</mi> <mo stretchy="false">→</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>u</mi> <mo stretchy="false">→</mo> </mover> <mn>0</mn> </msub> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> given by (<a href="#FD20-symmetry-16-00149" class="html-disp-formula">20</a>), all the while drifting at the velocity <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>u</mi> <mo stretchy="false">→</mo> </mover> <mi>source</mi> </msub> <mo>∼</mo> <msub> <mover accent="true"> <mi>u</mi> <mo stretchy="false">→</mo> </mover> <mn>0</mn> </msub> </mrow> </semantics></math> defined by (<a href="#FD19-symmetry-16-00149" class="html-disp-formula">19</a>). We stress that the gray curves are approximate level sets of the wave amplitude, but not generally of the wave phase or wavenumber.</p>
Full article ">Figure 5
<p>(<b>a</b>) Six particle trajectories in our two-dimensional system, all given an initial velocity <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> <mi>c</mi> </mrow> </semantics></math> (or <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>∼</mo> <mn>0.37</mn> <mi>m</mi> <mi>c</mi> </mrow> </semantics></math>). Within a Compton timescale, the particle exchanges a certain amount of momentum with the underlying wave field and settles into a lower, steady-state velocity. (<b>b</b>) Fraction of total momentum retained by the particle after an initial acceleration from rest, with zero initial wave field. The resulting momentum transfer depends on both <math display="inline"><semantics> <msub> <mi>p</mi> <mn>0</mn> </msub> </semantics></math> and <span class="html-italic">b</span>, and can be broken into two states. The first is the “high-radiation regime” below the black curve, where the particle first loses much of its momentum to the outgoing wavefront (<a href="#FD18-symmetry-16-00149" class="html-disp-formula">18</a>). The second is the “low-radiation regime” above the black curve, where momentum is transferred almost exclusively to the local wavepacket (<a href="#FD15-symmetry-16-00149" class="html-disp-formula">15</a>)—i.e., only the momentum <math display="inline"><semantics> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>δ</mi> <mi>m</mi> <mo>)</mo> </mrow> <mi>γ</mi> <mover accent="true"> <mi>u</mi> <mo stretchy="false">→</mo> </mover> </mrow> </semantics></math> is lost by the point particle.</p>
Full article ">Figure 6
<p>Exchange of horizontal (i.e., in-line) momentum between the particle and field after the particle is accelerated to an initial velocity <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>. The coupling constant is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>80.0</mn> </mrow> </semantics></math>, corresponding to the lowermost curve in <a href="#symmetry-16-00149-f005" class="html-fig">Figure 5</a>a. Note that the “wave” component of momentum incorporates both the local wavepacket of <a href="#sec3dot2-symmetry-16-00149" class="html-sec">Section 3.2</a>, which gives rise to the virtual mass <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>m</mi> </mrow> </semantics></math>, and the radiating component detailed in <a href="#sec3dot4-symmetry-16-00149" class="html-sec">Section 3.4</a>. The momentum exchange is most pronounced for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>≲</mo> <mn>8</mn> </mrow> </semantics></math> Compton oscillations, after which the system approaches a quasi-steady, periodic state. The former regime reflects the establishment of the robust wavepacket (<a href="#FD15-symmetry-16-00149" class="html-disp-formula">15</a>), and the latter the <span class="html-italic">Zitterbewegung</span> detailed in <a href="#sec3dot3-symmetry-16-00149" class="html-sec">Section 3.3</a>.</p>
Full article ">Figure 7
<p>(<b>a</b>) A trajectory of the same form as <a href="#symmetry-16-00149-f001" class="html-fig">Figure 1</a>, but with <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>66.7</mn> </mrow> </semantics></math> and initial velocity <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>u</mi> <mo stretchy="false">→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.15</mn> <mi>c</mi> <mo>,</mo> <mn>0.25</mn> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. By breaking the up-down symmetry of previous simulations, we can see particle vibrations in both in-line and transverse directions. Both axes are given in units of <math display="inline"><semantics> <msub> <mi>λ</mi> <mi>c</mi> </msub> </semantics></math>. (<b>b</b>) Particle vibrations about the mean trajectory in the <span class="html-italic">x</span> and <span class="html-italic">y</span> directions, scaled by <math display="inline"><semantics> <msub> <mi>λ</mi> <mi>c</mi> </msub> </semantics></math>. To resolve this motion, we performed a high-pass filter on the full trajectory. These vibrations form a moving particle cloud, which satisfies the Heisenberg uncertainty relation (<a href="#FD24-symmetry-16-00149" class="html-disp-formula">24</a>). Created with the MATLAB package [<a href="#B50-symmetry-16-00149" class="html-bibr">50</a>].</p>
Full article ">
11 pages, 991 KiB  
Article
(Nano)Granules-Involving Aggregation at a Passage to the Nanoscale as Viewed in Terms of a Diffusive Heisenberg Relation
by Adam Gadomski
Entropy 2024, 26(1), 76; https://doi.org/10.3390/e26010076 - 17 Jan 2024
Cited by 1 | Viewed by 1820
Abstract
We are looking at an aggregation of matter into granules. Diffusion plays a pivotal role here. When going down to the nanometer scale (the so-called nanoscale quantum-size effect limit), quantum mechanics, and the Heisenberg uncertainty relation, may take over the role of classical [...] Read more.
We are looking at an aggregation of matter into granules. Diffusion plays a pivotal role here. When going down to the nanometer scale (the so-called nanoscale quantum-size effect limit), quantum mechanics, and the Heisenberg uncertainty relation, may take over the role of classical diffusion, as viewed typically in the mesoscopic/stochastic limit. A d-dimensional entropy-production aggregation of the granules-involving matter in the granule-size space is considered in terms of a (sub)diffusive realization. It turns out that when taking a full d-dimensional pathway of the aggregation toward the nanoscale, one is capable of disclosing a Heisenberg-type (diffusional) relation, setting up an upper uncertainty bound for the (sub)diffusive, very slow granules-including environment that, within the granule-size analogy invoked, matches the quantum limit of h/2πμ (μ—average mass of a granule; h—the Planck’s constant) for the diffusion coefficient of the aggregation, first proposed by Fürth in 1933 and qualitatively foreseen by Schrödinger some years before, with both in the context of a diffusing particle. The classical quantum passage uncovered here, also termed insightfully as the quantum-size effect (as borrowed from the quantum dots’ parlance), works properly for the three-dimensional (d = 3) case, making use of a substantial physical fact that the (nano)granules interact readily via their surfaces with the also-granular surroundings in which they are immersed. This natural observation is embodied in the basic averaging construction of the diffusion coefficient of the entropy-productive (nano)aggregation of interest. Full article
(This article belongs to the Special Issue Matter-Aggregating Systems at a Classical vs. Quantum Interface)
Show Figures

Figure 1

Figure 1
<p>A picture of a bubbles-containing (crude) macroscopic analog system (top view), wherein the bubbles emerge in a glass full of water after some seconds when the dissolution of a soluble tablet called Arelcal 300 mg with the addition of quercine (an anti-inflammation pigment; produced by Zdrovit, Poland). The structureless granules, named bubbles here, containing a gaseous internal phase grow in a capillary mode such that the bigger (macro)granules grow in close-packing conditions at the expense of the smaller ones. (The so-called triple junctions can be identified in the picture, similarly to those observed in the grain growth [<a href="#B2-entropy-26-00076" class="html-bibr">2</a>,<a href="#B6-entropy-26-00076" class="html-bibr">6</a>,<a href="#B7-entropy-26-00076" class="html-bibr">7</a>].) The annihilation of the smaller “grains” results in having, according to the Kelvin–Laplace (capillarity) law, immensely high internal gas-phase pressures, the values of which override the surface-tension (sustainability) conditions, ultimately resulting in their blowups along with a diffusional spread of the gaseous phase to neighboring bubble(s). The system is supposed to evolve essentially in a constant-volume regime. (The vessel–wall boundary effects are postponed in further consideration).</p>
Full article ">Figure 2
<p>Macroscopic and taken from everyday life: illustrative (scalable) examples of sticky viz viscoelastic (with the so-called triple junctions involved) vs. non-sticky (truly granular [<a href="#B17-entropy-26-00076" class="html-bibr">17</a>]) grains/granules containing close-packed configurations from top (eggs on a plate) to bottom (pieces of wood in a gravitation-assisted pile) view, respectively.</p>
Full article ">
13 pages, 2598 KiB  
Article
First-Principle Validation of Fourier’s Law: One-Dimensional Classical Inertial Heisenberg Model
by Henrique Santos Lima, Constantino Tsallis and Fernando Dantas Nobre
Entropy 2024, 26(1), 25; https://doi.org/10.3390/e26010025 - 25 Dec 2023
Cited by 2 | Viewed by 1743
Abstract
The thermal conductance of a one-dimensional classical inertial Heisenberg model of linear size L is computed, considering the first and last particles in thermal contact with heat baths at higher and lower temperatures, Th and Tl ( [...] Read more.
The thermal conductance of a one-dimensional classical inertial Heisenberg model of linear size L is computed, considering the first and last particles in thermal contact with heat baths at higher and lower temperatures, Th and Tl (Th>Tl), respectively. These particles at the extremities of the chain are subjected to standard Langevin dynamics, whereas all remaining rotators (i=2,,L1) interact by means of nearest-neighbor ferromagnetic couplings and evolve in time following their own equations of motion, being investigated numerically through molecular-dynamics numerical simulations. Fourier’s law for the heat flux is verified numerically, with the thermal conductivity becoming independent of the lattice size in the limit L, scaling with the temperature, as κ(T)T2.25, where T=(Th+Tl)/2. Moreover, the thermal conductance, σ(L,T)κ(T)/L, is well-fitted by a function, which is typical of nonextensive statistical mechanics, according to σ(L,T)=Aexpq(Bxη), where A and B are constants, x=L0.475T, q=2.28±0.04, and η=2.88±0.04. Full article
Show Figures

Figure 1

Figure 1
<p>Illustration of the system defined in Equation (<a href="#FD9-entropy-26-00025" class="html-disp-formula">9</a>), where the rotators at extremities of the chain are subjected to heat baths at different temperatures. The hot (<math display="inline"> <semantics> <msub> <mi>R</mi> <mi>h</mi> </msub> </semantics> </math>) and cold (<math display="inline"> <semantics> <msub> <mi>R</mi> <mi>l</mi> </msub> </semantics> </math>) reservoirs are at temperatures <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>h</mi> </msub> <mo>=</mo> <mi>T</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>ε</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>l</mi> </msub> <mo>=</mo> <mi>T</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>ε</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>, respectively, leading to an average heat flux <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">J</mi> <mo>=</mo> <mi>J</mi> <mi mathvariant="bold">x</mi> </mrow> </semantics> </math> throughout the bulk (see text). The rotators at sites <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> </mrow> </semantics> </math> interact with their respective nearest neighbors.</p>
Full article ">Figure 2
<p>(Color online) Numerical data for the thermal conductivity [panel (<b>a</b>)] and thermal conductance [panel (<b>b</b>)] are represented versus temperature (log–log plots) for different sizes (<math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mn>70</mn> <mo>,</mo> <mn>100</mn> <mo>,</mo> <mn>140</mn> </mrow> </semantics> </math>) of the one-dimensional classical inertial Heisenberg model. One notices a crossover between the low- and high-temperature regimes for <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>≃</mo> <mn>0.3</mn></mrow> </semantics> </math>. As expected, higher temperatures amplify the effects of the multiplicative noise, which is proportional to the square root of the corresponding temperatures (<math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>h</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>l</mi> </msub> </mrow> </semantics> </math>), currently leading to larger fluctuations in numerical data, as shown in panel (<b>a</b>). All quantities shown are dimensionless.</p>
Full article ">Figure 3
<p>The plots for the thermal conductance of <a href="#entropy-26-00025-f002" class="html-fig">Figure 2</a>b are shown in a log–log representation, for a conveniently chosen abscissa (<math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>=</mo> <msup> <mi>L</mi> <mrow> <mn>0.475</mn></mrow> </msup> <mi>T</mi> </mrow> </semantics> </math>), leading to a collapse of data for all values of <span class="html-italic">L</span> considered. The fitting (full line) is given by the function of Equation (<a href="#FD23-entropy-26-00025" class="html-disp-formula">23</a>).</p>
Full article ">
24 pages, 9799 KiB  
Article
A Wheeler–DeWitt Non-Commutative Quantum Approach to the Branch-Cut Gravity
by Benno Bodmann, Dimiter Hadjimichef, Peter Otto Hess, José de Freitas Pacheco, Fridolin Weber, Moisés Razeira, Gervásio Annes Degrazia, Marcelo Marzola and César A. Zen Vasconcellos
Universe 2023, 9(10), 428; https://doi.org/10.3390/universe9100428 - 26 Sep 2023
Cited by 7 | Viewed by 1755
Abstract
In this contribution, motivated by the quest to understand cosmic acceleration, based on the theory of Hořava–Lifshitz and on the branch-cut gravitation, we investigate the effects of non-commutativity of a mini-superspace of variables obeying the Poisson algebra on the structure of the branch-cut [...] Read more.
In this contribution, motivated by the quest to understand cosmic acceleration, based on the theory of Hořava–Lifshitz and on the branch-cut gravitation, we investigate the effects of non-commutativity of a mini-superspace of variables obeying the Poisson algebra on the structure of the branch-cut scale factor and on the acceleration of the Universe. We follow the guiding lines of a previous approach, which we complement to allow a symmetrical treatment of the Poisson algebraic variables and eliminate ambiguities in the ordering of quantum operators. On this line of investigation, we propose a phase-space transformation that generates a super-Hamiltonian, expressed in terms of new variables, which describes the behavior of a Wheeler–DeWitt wave function of the Universe within a non-commutative algebraic quantum gravity formulation. The formal structure of the super-Hamiltonian allows us to identify one of the new variables with a modified branch-cut quantum scale factor, which incorporates, as a result of the imposed variable transformations, in an underlying way, elements of the non-commutative algebra. Due to its structural character, this algebraic structure allows the identification of the other variable as the dual quantum counterpart of the modified branch-cut scale factor, with both quantities scanning reciprocal spaces. Using the iterative Range–Kutta–Fehlberg numerical analysis for solving differential equations, without resorting to computational approximations, we obtained numerical solutions, with the boundary conditions of the wave function of the Universe based on the Bekenstein criterion, which provides an upper limit for entropy. Our results indicate the acceleration of the early Universe in the context of the non-commutative branch-cut gravity formulation. These results have implications when confronted with information theory; so to accommodate gravitational effects close to the Planck scale, a formulation à la Heisenberg’s Generalized Uncertainty Principle in Quantum Mechanics involving the energy and entropy of the primordial Universe is proposed. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

Figure 1
<p>Graphical illustration of the potential <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> (Equation (<a href="#FD37-universe-09-00428" class="html-disp-formula">37</a>)) corresponding to the non-commutative approach. The values for the running coupling constants are: <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math> (blue line), and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math> (yellow line).</p>
Full article ">Figure 2
<p>Same as <a href="#universe-09-00428-f001" class="html-fig">Figure 1</a> but for values of the running coupling constants given by <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math> (blue line), and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math> (yellow line).</p>
Full article ">Figure 3
<p>Graphical illustration of the potential <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> for the commutative (yellow line) and non-commutative (blue line) approaches. The values of the running coupling constants are: <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.2855</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math> (yellow line), and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math> (blue line).</p>
Full article ">Figure 4
<p>Typical solutions of the wave function <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> corresponding to the commutative algebra, with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mi>χ</mi> <mo>=</mo> <mi>γ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Solutions of the wave functions <math display="inline"><semantics> <mrow> <msup> <mo>Ψ</mo> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> (<b>right</b>), corresponding to the non-commutative algebra, with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>. The values of the running coupling constants are: <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Solutions of the wave functions <math display="inline"><semantics> <mrow> <msup> <mo>Ψ</mo> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </semantics></math> (<b>right</b>), corresponding to the non-commutative algebra, with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The values of the running coupling constants are: <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>g</mi> <mo stretchy="false">˜</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6185</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mo>Λ</mo> </msub> <mo>=</mo> <mn>0.333</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.03</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The figure outlines three different perspectives for the transition region between the contraction and expansion phases of branched gravitation: on the left is the classical view in which Bekenstein criterion would shape the dimensions of the “transition portal”; in the middle is the quantum view in which the Bekenstein criterion shapes the region contemplating a quantum leap; on the right is a conception in which both previous conceptions consistently intersect, in which Bekenstein criterion shapes both regions. Figure produced with Tikz by one of the authors (CAZV).</p>
Full article ">
19 pages, 7631 KiB  
Communication
Classical Limit, Quantum Border and Energy
by Andres Mauricio Kowalski, Angelo Plastino and Gaspar Gonzalez
Physics 2023, 5(3), 832-850; https://doi.org/10.3390/physics5030053 - 26 Jul 2023
Viewed by 1726
Abstract
We analyze the (dynamical) classic limit of a special semiclassical system. We describe the interaction of a quantum system with a classical one. This limit has been well studied before as a function of a constant of motion linked to the Heisenberg principle. [...] Read more.
We analyze the (dynamical) classic limit of a special semiclassical system. We describe the interaction of a quantum system with a classical one. This limit has been well studied before as a function of a constant of motion linked to the Heisenberg principle. In this paper, we investigate the existence of the mentioned limit, but with reference to the total energy of the system. Additionally, we find an attractive result regarding the border of the transition. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

Figure 1
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mn>0</mn></mrow></semantics></math>, keeping the energy fixed at <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>2</mn></mrow></semantics></math>; see text for details. Three zones can be observed which can be categorized as follows: (1) a quasi-quantum region when <math display="inline"><semantics><mrow><msub><mi>E</mi><mi>r</mi></msub><mo>∼</mo><mn>1</mn></mrow></semantics></math> (<b>a</b>); (2) a semiquantal transitional region (<b>b</b>,<b>c</b>) up to <math display="inline"><semantics><mrow><msub><mi>E</mi><mi>r</mi></msub><mo>=</mo><msup><mrow><msub><mi>E</mi><mi>r</mi></msub></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup></mrow></semantics></math> (<b>d</b>), from where convergence to the classical system solutions starts; or (3) a fully classical zone (<b>e</b>–<b>g</b>). Notice the convergence to the Poincaré section of (<b>h</b>), corresponding to the classic case, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 2
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mn>0</mn></mrow></semantics></math>, keeping the energy fixed at <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>5</mn></mrow></semantics></math>. The same features are seen as in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>. Note the convergence to the (<b>h</b>), corresponding to the classic system, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 3
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mn>0</mn></mrow></semantics></math>, keeping the energy fixed at <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>20</mn></mrow></semantics></math>. The same features are seen as in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a> and <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>. Note the convergence to the (<b>h</b>), corresponding to the classic system, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 4
<p>Poincaré sections for small values of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> and <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math>, keeping the energy fixed at <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>20</mn></mrow></semantics></math> and for different values of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>. Note that the hyperbola, <math display="inline"><semantics><mrow><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow><mo>=</mo><mi>I</mi></mrow></semantics></math>, degenerates into the coordinate axes <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo><mo>=</mo><mn>0</mn></mrow></semantics></math> and <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo><mo>=</mo><mn>0</mn></mrow></semantics></math> (<b>e</b>) representing the classic case, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 4 Cont.
<p>Poincaré sections for small values of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> and <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math>, keeping the energy fixed at <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>20</mn></mrow></semantics></math> and for different values of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>. Note that the hyperbola, <math display="inline"><semantics><mrow><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow><mo>=</mo><mi>I</mi></mrow></semantics></math>, degenerates into the coordinate axes <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo><mo>=</mo><mn>0</mn></mrow></semantics></math> and <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo><mo>=</mo><mn>0</mn></mrow></semantics></math> (<b>e</b>) representing the classic case, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 5
<p>Time evolution of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>1</mn></mrow></semantics></math> and different values of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mn>0</mn></mrow></semantics></math>. The same features are seen as in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>, <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a> and <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a>. The curves shown are associated with the following regions: (1) the quasi-quantum region (<b>a</b>); (2) the semiquantal transitional region (<b>b</b>,<b>c</b>) up to <math display="inline"><semantics><mrow><msub><mi>E</mi><mi>r</mi></msub><mo>=</mo><msup><mrow><msub><mi>E</mi><mi>r</mi></msub></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup></mrow></semantics></math> (<b>d</b>), at which convergence to the classical system solution starts; or (3) the fully classical zone (<b>e</b>–<b>g</b>). Note the convergence to the (<b>h</b>), corresponding to the classic case, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 5 Cont.
<p>Time evolution of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for <math display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mn>1</mn></mrow></semantics></math> and different values of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mn>0</mn></mrow></semantics></math>. The same features are seen as in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>, <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a> and <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a>. The curves shown are associated with the following regions: (1) the quasi-quantum region (<b>a</b>); (2) the semiquantal transitional region (<b>b</b>,<b>c</b>) up to <math display="inline"><semantics><mrow><msub><mi>E</mi><mi>r</mi></msub><mo>=</mo><msup><mrow><msub><mi>E</mi><mi>r</mi></msub></mrow><mrow><mi>c</mi><mi>l</mi></mrow></msup></mrow></semantics></math> (<b>d</b>), at which convergence to the classical system solution starts; or (3) the fully classical zone (<b>e</b>–<b>g</b>). Note the convergence to the (<b>h</b>), corresponding to the classic case, <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></semantics></math> (see Equation (<a href="#FD9-physics-05-00053" class="html-disp-formula">9</a>)).</p>
Full article ">Figure 6
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy, <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math> is fixed and the value of the energy, <span class="html-italic">E</span>, is increased. Different from <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a> and <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a>, as expected, no convergence is observed for any value of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math> (since the energy must tend to infinity), but the appearance of classical effects (chaos) is seen. One can also see the three zones for the same <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math> values.</p>
Full article ">Figure 6 Cont.
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy, <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math> is fixed and the value of the energy, <span class="html-italic">E</span>, is increased. Different from <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a> and <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a>, as expected, no convergence is observed for any value of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math> (since the energy must tend to infinity), but the appearance of classical effects (chaos) is seen. One can also see the three zones for the same <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math> values.</p>
Full article ">Figure 7
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0.34999</mn></mrow></semantics></math> is fixed and the value of the energy, <span class="html-italic">E</span>, is increased. Different from what is seen in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>, <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a>, <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a> and <a href="#physics-05-00053-f005" class="html-fig">Figure 5</a>; No convergence is observed for just one particular value of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, but the emergence of classical effects (chaos) is detected. One can also see the three zones for the same <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math> values as in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>, <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a>, <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a> and <a href="#physics-05-00053-f005" class="html-fig">Figure 5</a>.</p>
Full article ">Figure 7 Cont.
<p>Poincaré sections of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> versus <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> for different values of the relative energy <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where the value of the invariant <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0.34999</mn></mrow></semantics></math> is fixed and the value of the energy, <span class="html-italic">E</span>, is increased. Different from what is seen in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>, <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a>, <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a> and <a href="#physics-05-00053-f005" class="html-fig">Figure 5</a>; No convergence is observed for just one particular value of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, but the emergence of classical effects (chaos) is detected. One can also see the three zones for the same <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math> values as in <a href="#physics-05-00053-f001" class="html-fig">Figure 1</a>, <a href="#physics-05-00053-f002" class="html-fig">Figure 2</a>, <a href="#physics-05-00053-f003" class="html-fig">Figure 3</a>, <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a> and <a href="#physics-05-00053-f005" class="html-fig">Figure 5</a>.</p>
Full article ">Figure 8
<p>Poincaré sections for small values of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math> and <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math>, keeping the energy fixed at <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0.34999</mn></mrow></semantics></math> and for different values of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>. Different from what is seen in <a href="#physics-05-00053-f004" class="html-fig">Figure 4</a>, the hyperbola, <math display="inline"><semantics><mrow><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow><mrow><mo>〈</mo><msup><mover accent="true"><mi>p</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow><mo>=</mo><mi>I</mi><mo>=</mo><mn>0.34999</mn></mrow></semantics></math>, can be observed in all cases. There is no convergence to the classical system for one determined value of <span class="html-italic">E</span>, but one ascertains thepresence of classical chaotic dynamics. It is also observed that the number of representative points systematically decreases when <span class="html-italic">E</span> increases. In this sense it to speak of a “convergent behavior”.</p>
Full article ">Figure 9
<p>Time evolution of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math>, where the motion invariant <span class="html-italic">I</span> is fixed at <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></semantics></math> and the energy, <span class="html-italic">E</span>, is varied. The value of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, at which convergence to classicity starts, is about <math display="inline"><semantics><mrow><msub><mi>E</mi><mi>r</mi></msub><mo>=</mo><mn>24.245</mn></mrow></semantics></math>. There is no convergence to the classical system for one determined value of <span class="html-italic">E</span>, but there is the presence of classical chaotic and complex dynamics.</p>
Full article ">Figure 10
<p>Time evolution of <math display="inline"><semantics><mrow><mo>〈</mo><msup><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mn>2</mn></msup><mo>〉</mo></mrow></semantics></math>, where the motion invariant, <span class="html-italic">I</span>, is fixed at <math display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mn>0.34999</mn></mrow></semantics></math> and the energy, <span class="html-italic">E</span>, is increased. The value of <math display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math>, where convergence to classicity starts at about <math display="inline"><semantics><mrow><msub><mi>E</mi><mi>r</mi></msub><mo>=</mo><mn>29.395</mn></mrow></semantics></math>. There is no convergence to the classical system for one determined value of E, but there is the presence of classical chaotic and complex dynamics.</p>
Full article ">
21 pages, 373 KiB  
Article
On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces
by Carlos Castro Perelman
Universe 2023, 9(3), 144; https://doi.org/10.3390/universe9030144 - 9 Mar 2023
Cited by 1 | Viewed by 1255
Abstract
After a brief introduction of Born’s reciprocal relativity theory is presented, we review the construction of the deformed quaplectic group that is given by the semi-direct product of U(1,3) with the [...] Read more.
After a brief introduction of Born’s reciprocal relativity theory is presented, we review the construction of the deformed quaplectic group that is given by the semi-direct product of U(1,3) with the deformed (noncommutative) Weyl–Heisenberg group corresponding to noncommutative fiber coordinates and momenta [Xa,Xb]0; [Pa,Pb]0. This construction leads to more general algebras given by a two-parameter family of deformations of the quaplectic algebra, and to further algebraic extensions involving antisymmetric tensor coordinates and momenta of higher ranks [Xa1a2an,Xb1b2bn]0; [Pa1a2an,Pb1b2bn]0. We continue by examining algebraic extensions of the Yang algebra in extended noncommutative phase spaces and compare them with the above extensions of the deformed quaplectic algebra. A solution is found for the exact analytical mapping of the noncommuting xμ,pμ operator variables (associated to an 8D curved phase space) to the canonical YA,ΠA operator variables of a flat 12D phase space. We explore the geometrical implications of this mapping which provides, in the classical limit, the embedding functions YA(x,p),ΠA(x,p) of an 8D curved phase space into a flat 12D phase space background. The latter embedding functions determine the functional forms of the base spacetime metric gμν(x,p), the fiber metric of the vertical space hab(x,p), and the nonlinear connection Naμ(x,p) associated with the 8D cotangent space of the 4D spacetime. Consequently, we find a direct link between noncommutative curved phase spaces in lower dimensions and commutative flat phase spaces in higher dimensions. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
13 pages, 577 KiB  
Article
Study of Interacting Heisenberg Antiferromagnet Spin-1/2 and 1 Chains
by Debasmita Maiti, Dayasindhu Dey and Manoranjan Kumar
Condens. Matter 2023, 8(1), 17; https://doi.org/10.3390/condmat8010017 - 29 Jan 2023
Cited by 1 | Viewed by 2493
Abstract
Haldane conjectures the fundamental difference in the energy spectrum of the Heisenberg antiferromagnetic (HAF) of the spin S chain is that the half-integer and the integer S chain have gapless and gapped energy spectrums, respectively. The ground state (gs) of the HAF spin-1/2 [...] Read more.
Haldane conjectures the fundamental difference in the energy spectrum of the Heisenberg antiferromagnetic (HAF) of the spin S chain is that the half-integer and the integer S chain have gapless and gapped energy spectrums, respectively. The ground state (gs) of the HAF spin-1/2 and spin-1 chains have a quasi-long-range and short-range correlation, respectively. We study the effect of the exchange interaction between an HAF spin-1/2 and an HAF spin-1 chain forming a normal ladder system and its gs properties. The inter-chain exchange interaction J can be either ferromagnetic (FM) or antiferromagnetic (AFM). Using the density matrix renormalization group method, we show that in the weak AFM/FM coupling limit of J, the system behaves like two decoupled chains. However, in the large AFM J limit, the whole system can be visualized as weakly coupled spin-1/2 and spin-1 pairs which behave like an effective spin-1/2 HAF chain. In the large FM J limit, coupled spin-1/2 and spin-1 pairs can form pseudo spin-3/2 and the whole system behaves like an effective spin-3/2 HAF chain. We also derive the effective model Hamiltonian in both strong FM and AFM rung exchange coupling limits. Full article
(This article belongs to the Special Issue New Advances in Condensed Matter Physics)
Show Figures

Figure 1

Figure 1
<p>Mixed spin ladder with spin-1/2 and spin-1 legs. The exchange interaction strength on both spin-1/2 and 1 legs is <span class="html-italic">J</span>. The inter-leg exchange interaction is <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math>. <span class="html-italic">i</span> represents the site index on each leg and <span class="html-italic">r</span> is the distance between a spin and the reference spin considered at the middle of the same leg.</p>
Full article ">Figure 2
<p>The energy gap (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Γ</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Γ</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for different <math display="inline"><semantics> <mi>α</mi> </semantics></math> for AFM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math>. For small value <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>(</mo> <mo>&lt;</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </semantics></math>, the exponential part is dominant, while for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>&gt;</mo> <mn>0.1</mn> </mrow> </semantics></math>, the gaps follow only power-law decay. The solid thick line represents the spin-1/2 HAF with effective <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>17</mn> <mo>/</mo> <mn>9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The energy gap (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Γ</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Γ</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for different <math display="inline"><semantics> <mi>α</mi> </semantics></math> for FM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math>. The solid thick lines represent the corresponding energy gaps for an HAF <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> chain with effective <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>) The magnitudes of spin densities on the spin-1 leg are shown in the upper panel; (<b>b</b>) for the spin-1/2 leg, spin densities are shown in lower panel for AFM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <msup> <mi>S</mi> <mi>z</mi> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> sector.</p>
Full article ">Figure 5
<p>(<b>a</b>) The magnitudes of spin densities on the spin-1 leg are shown in the upper panel; (<b>b</b>) for the spin-1/2 leg, spin densities are shown in lower panel for FM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <msup> <mi>S</mi> <mi>z</mi> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> sector.</p>
Full article ">Figure 5 Cont.
<p>(<b>a</b>) The magnitudes of spin densities on the spin-1 leg are shown in the upper panel; (<b>b</b>) for the spin-1/2 leg, spin densities are shown in lower panel for FM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <msup> <mi>S</mi> <mi>z</mi> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> sector.</p>
Full article ">Figure 6
<p>(<b>a</b>) The spin–spin correlations on the spin-1 leg are shown in log-normal scale in the upper panel; (<b>b</b>) for the spin-1/2 leg, spin–spin correlations are shown in the log-log scale in the lower panel for AFM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>(<b>a</b>) The spin–spin correlations on the spin-1 leg are shown in log-normal scale in the upper panel; (<b>b</b>) for the spin-1/2 leg, spin–spin correlations are shown in the log-log scale in the lower panel for FM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7 Cont.
<p>(<b>a</b>) The spin–spin correlations on the spin-1 leg are shown in log-normal scale in the upper panel; (<b>b</b>) for the spin-1/2 leg, spin–spin correlations are shown in the log-log scale in the lower panel for FM <math display="inline"><semantics> <msub> <mi>J</mi> <mo>⊥</mo> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics></math>.</p>
Full article ">
13 pages, 331 KiB  
Article
On Majorization Uncertainty Relations in the Presence of a Minimal Length
by Alexey E. Rastegin
Physics 2022, 4(4), 1413-1425; https://doi.org/10.3390/physics4040091 - 14 Dec 2022
Cited by 1 | Viewed by 1577
Abstract
The emergence of a minimal length at the Planck scale is consistent with modern developments in quantum gravity. This is taken into account by transforming the Heisenberg uncertainty principle into the generalized uncertainty principle. Here, the position-momentum commutator is modified accordingly. In this [...] Read more.
The emergence of a minimal length at the Planck scale is consistent with modern developments in quantum gravity. This is taken into account by transforming the Heisenberg uncertainty principle into the generalized uncertainty principle. Here, the position-momentum commutator is modified accordingly. In this paper, majorization uncertainty relations within the generalized uncertainty principle are considered. Dealing with observables with continuous spectra, each of the axes of interest is divided into a set of non-intersecting bins. Such formulation is consistent with real experiments with a necessarily limited precision. On the other hand, the majorization approach is mainly indicative for high-resolution measurements with sufficiently small bins. Indeed, the effects of the uncertainty principle are brightly manifested just in this case. The current study aims to reveal how the generalized uncertainty principle affects the leading terms of the majorization bound for position and momentum measurements. Interrelations with entropic formulations of this principle are briefly discussed. Full article
(This article belongs to the Special Issue New Advances in Quantum Geometry)
6 pages, 241 KiB  
Communication
Bekenstein Bound and Non-Commutative Canonical Variables
by Fabio Scardigli
Universe 2022, 8(12), 645; https://doi.org/10.3390/universe8120645 - 5 Dec 2022
Viewed by 1432
Abstract
A universal upper limit on the entropy contained in a localized quantum system of a given size and total energy is expressed by the so-called Bekenstein bound. In a previous paper [Buoninfante, L. et al. 2022], on the basis of general thermodynamic arguments, [...] Read more.
A universal upper limit on the entropy contained in a localized quantum system of a given size and total energy is expressed by the so-called Bekenstein bound. In a previous paper [Buoninfante, L. et al. 2022], on the basis of general thermodynamic arguments, and in regimes where the equipartition theorem still holds, the Bekenstein bound has been proved practically equivalent to the Heisenberg uncertainty relation. The smooth transition between the Bekenstein bound and the holographic bound suggests a new pair of canonical non-commutative variables, which could be thought to hold in strong gravity regimes. Full article
(This article belongs to the Special Issue The Quantum & The Gravity)
9 pages, 1629 KiB  
Article
Electro-Optical Sampling of Single-Cycle THz Fields with Single-Photon Detectors
by Taylor Shields, Adetunmise C. Dada, Lennart Hirsch, Seungjin Yoon, Jonathan M. R. Weaver, Daniele Faccio, Lucia Caspani, Marco Peccianti and Matteo Clerici
Sensors 2022, 22(23), 9432; https://doi.org/10.3390/s22239432 - 2 Dec 2022
Cited by 3 | Viewed by 3679
Abstract
Electro-optical sampling of Terahertz fields with ultrashort pulsed probes is a well-established approach for directly measuring the electric field of THz radiation. This technique usually relies on balanced detection to record the optical phase shift brought by THz-induced birefringence. The sensitivity of electro-optical [...] Read more.
Electro-optical sampling of Terahertz fields with ultrashort pulsed probes is a well-established approach for directly measuring the electric field of THz radiation. This technique usually relies on balanced detection to record the optical phase shift brought by THz-induced birefringence. The sensitivity of electro-optical sampling is, therefore, limited by the shot noise of the probe pulse, and improvements could be achieved using quantum metrology approaches using, e.g., NOON states for Heisenberg-limited phase estimation. We report on our experiments on THz electro-optical sampling using single-photon detectors and a weak squeezed vacuum field as the optical probe. Our approach achieves field sensitivity limited by the probe state statistical properties using phase-locked single-photon detectors and paves the way for further studies targeting quantum-enhanced THz sensing. Full article
(This article belongs to the Special Issue Terahertz Imaging, Sensing and Communications Technologies)
Show Figures

Figure 1

Figure 1
<p>(<b>A</b>) THz time-domain spectroscopy using electro-optic sampling to characterize the THz field trace and spectrum using a classical balanced detection scheme. (<b>B</b>) Power spectrum corresponding to the measurement in (<b>A</b>). The blue curves are for an un-purged setup (blue curve) while the red curves show the result in a pure nitrogen atmosphere.</p>
Full article ">Figure 2
<p>Calibration setup with EOM and experimental lock-in-like balanced detection using two single-photon detectors. (<b>A</b>) Experimental scheme for calibration of detection using electro-optic modulation. (<b>B</b>) Using ps-time tagging resolution of the photon counting software, a difference measurement was performed between counts of detectors D1 (red) and D2 (blue) using markers M inserted every 1/20 kHz to synchronize timing with the antenna modulation. (<b>C</b>) Measured standard error of the detection method using EOM with single photon counts.</p>
Full article ">Figure 3
<p>Terahertz detection using single photon detectors. (<b>A</b>) Experimental scheme for measuring THz field using squeezed vacuum. The THz field generated from a photoconductive antenna (PCA) is overlapped to the squeezed vacuum pulse into a GaAs electro-optical crystal. The phase shift introduced by the THz pulse on the squeezed vacuum probe is measured by a balanced detection using single photon detectors. (<b>B</b>) Measured phase shift (Δ<span class="html-italic">Φ</span>) induced by THz field (blue squares) overlapped with the phase shift from standard electro-optic sampling (red curve). The integration time for each data point was 105 min. (<b>C</b>) Measured standard error of the measurement (blue crosses) compared to the expected standard error calculated considering the squeezed vacuum probe statistics (red curve) at increasing integration time. The good match indicates that the detection sensitivity is limited by the statistical properties of the probe state, and the THz field is not adding noise.</p>
Full article ">
30 pages, 556 KiB  
Article
Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information
by Michael J. W. Hall
Entropy 2022, 24(11), 1679; https://doi.org/10.3390/e24111679 - 17 Nov 2022
Cited by 2 | Viewed by 2360
Abstract
An uncertainty relation for the Rényi entropies of conjugate quantum observables is used to obtain a strong Heisenberg limit of the form RMSEf(α)/(N+12), bounding the root mean square [...] Read more.
An uncertainty relation for the Rényi entropies of conjugate quantum observables is used to obtain a strong Heisenberg limit of the form RMSEf(α)/(N+12), bounding the root mean square error of any estimate of a random optical phase shift in terms of average photon number, where f(α) is maximised for non-Shannon entropies. Related simple yet strong uncertainty relations linking phase uncertainty to the photon number distribution, such as ΔΦmaxnpn, are also obtained. These results are significantly strengthened via upper and lower bounds on the Rényi mutual information of quantum communication channels, related to asymmetry and convolution, and applied to the estimation (with prior information) of unitary shift parameters such as rotation angle and time, and to obtain strong bounds on measures of coherence. Sharper Rényi entropic uncertainty relations are also obtained, including time-energy uncertainty relations for Hamiltonians with discrete spectra. In the latter case almost-periodic Rényi entropies are introduced for nonperiodic systems. Full article
(This article belongs to the Special Issue Quantum Mechanics and Its Foundations III)
Show Figures

Figure 1

Figure 1
<p>The scaling function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics></math> for the Heisenberg limit in Theorem 2. Particular values of interest are <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <mn>2</mn> <mi>π</mi> <mo>/</mo> <msup> <mi>e</mi> <mn>3</mn> </msup> </mrow> </msqrt> <mo>≈</mo> <mn>0.5593</mn> </mrow> </semantics></math>, and the maximum value <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> <mo>≈</mo> <mi>f</mi> <mrow> <mo>(</mo> <mn>0.7471</mn> <mo>)</mo> </mrow> <mo>≈</mo> <mn>0.5823</mn> </mrow> </semantics></math>.</p>
Full article ">
Back to TopTop