[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,104)

Search Parameters:
Keywords = global coordinate system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2739 KiB  
Article
Analysis of Molecular Aspects of Periodontitis as a Risk Factor for Neurodegenerative Diseases: A Single-Center 10-Year Retrospective Cohort Study
by Amr Sayed Ghanem, Marianna Móré and Attila Csaba Nagy
Int. J. Mol. Sci. 2025, 26(6), 2382; https://doi.org/10.3390/ijms26062382 - 7 Mar 2025
Viewed by 106
Abstract
Neurodegenerative diseases (NDDs) represent a considerable global health burden with no definitive treatments. Emerging evidence suggests that periodontitis may contribute to NDD through shared inflammatory, microbial, and genetic pathways. A retrospective cohort design was applied to analyze hospital records from 2012–2022 and to [...] Read more.
Neurodegenerative diseases (NDDs) represent a considerable global health burden with no definitive treatments. Emerging evidence suggests that periodontitis may contribute to NDD through shared inflammatory, microbial, and genetic pathways. A retrospective cohort design was applied to analyze hospital records from 2012–2022 and to determine whether periodontitis independently increases NDD risk when accounting for major cardiovascular, cerebrovascular, metabolic, and inflammatory confounders. Likelihood ratio-based Cox regression tests and Weibull survival models were applied to assess the association between periodontitis and NDD risk. Model selection was guided by Akaike and Bayesian information criteria, while Harrell’s C-index and receiver operating characteristic curves evaluated predictive performance. Periodontitis demonstrated an independent association with neurodegenerative disease risk (HR 1.43, 95% CI 1.02–1.99). Cerebral infarction conferred the highest hazard (HR 4.81, 95% CI 2.90–7.96), while pneumonia (HR 1.96, 95% CI 1.05–3.64) and gastroesophageal reflux disease (HR 2.82, 95% CI 1.77–4.51) also showed significant increases in risk. Older individuals with periodontitis are at heightened risk of neurodegenerative disease, an effect further intensified by cerebrovascular, cardiometabolic, and gastroesophageal conditions. Pneumonia also emerged as an independent pathophysiological factor that may accelerate disease onset or progression. Attention to oral and systemic factors through coordinated clinical management may mitigate the onset and severity of neurodegeneration. Full article
Show Figures

Figure 1

Figure 1
<p>Cumulative hazard estimates for risk factors using Nelson–Aalen analysis. Note: Panel (<b>A</b>) presents the cumulative hazard estimates comparing males and females. Panel (<b>B</b>) illustrates differences between individuals with and without periodontitis. Panel (<b>C</b>) shows the cumulative hazard for hypertension, while Panel (<b>D</b>) depicts angina pectoris. Panel (<b>E</b>) represents chronic ischemic heart disease. Panels (<b>F</b>,<b>G</b>) display cumulative hazard estimates for atrial fibrillation and heart failure, respectively. Panel (<b>H</b>) presents the cumulative hazard for cerebral infarction.</p>
Full article ">Figure 2
<p>Nelson–Aalen cumulative hazard estimates for additional risk factors. Note: Panel (<b>A</b>) presents the cumulative hazard estimates for individuals with and without arterial stenosis. Panel (<b>B</b>) compares individuals with and without cerebrovascular disease, while Panel (<b>C</b>) illustrates the cumulative hazard associated with atherosclerosis. Panel (<b>D</b>) shows hazard estimates for non-toxic goiter, and Panel (<b>E</b>) for type 2 diabetes mellitus (T2DM). Panel (<b>F</b>) depicts the cumulative hazard for obesity. Panel (<b>G</b>) examines disorders of lipoprotein metabolism (DLM), while Panels (<b>H</b>,<b>I</b>) compare cumulative hazard estimates for pneumonia and gastroesophageal reflux disease (GERD), respectively.</p>
Full article ">Figure 3
<p>Kaplan–Meier survival estimates with Cox model predictions for NDD. Note: Panel (<b>A</b>) presents the Kaplan–Meier observed survival estimates and Cox model-predicted survival probabilities for males and females. Panel (<b>B</b>) illustrates survival estimates for individuals with and without periodontitis. Panels (<b>C</b>–<b>E</b>) show survival estimates for hypertension, angina pectoris, and chronic ischemic heart disease (CIHD), respectively. Panels (<b>F</b>–<b>H</b>) display survival trajectories for individuals with and without atrial fibrillation, heart failure, and cerebral infarction, respectively. Both observed and predicted survival probabilities are included to assess the model’s fit in stratifying NDD risk across these covariates.</p>
Full article ">Figure 4
<p>Kaplan–Meier survival estimates with Cox model predictions for NDD (additional covariates). Note: Panel (<b>A</b>) presents Kaplan–Meier observed survival estimates and Cox model-predicted survival probabilities for individuals with and without arterial stenosis. Panel (<b>B</b>) illustrates survival estimates for cerebrovascular disease, while Panel (<b>C</b>) shows survival stratification for atherosclerosis. Panels (<b>D</b>,<b>E</b>) display survival estimates for non-toxic goiter and type 2 diabetes mellitus (T2DM), respectively. Panel (<b>F</b>) presents survival estimates for obesity. Panel (<b>G</b>) examines survival stratification by disorders of lipoprotein metabolism (DLM), while Panels (<b>H</b>,<b>I</b>) compare survival probabilities for pneumonia and gastroesophageal reflux disease (GERD), respectively. Observed and predicted survival estimates are included to assess the model’s performance in predicting NDD risk across these covariates.</p>
Full article ">Figure 5
<p>Forest plot of hazard ratios for neurodegenerative disease risk based on results of multivariable Weibull regression model. Note: Significant predictors (<span class="html-italic">p</span> &lt; 0.05) are marked with an asterisk (*). The vertical dashed line represents the hazard ratio (HR) reference value of 1, indicating no effect. Horizontal lines extending from each point estimate denote the 95% confidence intervals, reflecting the range within which the true HR is expected to lie with 95% certainty.</p>
Full article ">Figure 6
<p>Area under the receiver operating characteristic curve for the Weibull model.</p>
Full article ">
18 pages, 956 KiB  
Review
Holistic Approaches to Zoonoses: Integrating Public Health, Policy, and One Health in a Dynamic Global Context
by Mohamed Mustaf Ahmed, Olalekan John Okesanya, Zhinya Kawa Othman, Adamu Muhammad Ibrahim, Olaniyi Abideen Adigun, Bonaventure Michael Ukoaka, Muhiadin Ismail Abdi and Don Eliseo Lucero-Prisno
Zoonotic Dis. 2025, 5(1), 5; https://doi.org/10.3390/zoonoticdis5010005 - 6 Mar 2025
Viewed by 169
Abstract
Zoonotic diseases pose a significant global health threat, driven by factors such as globalization, climate change, urbanization, antimicrobial resistance (AMR), and intensified human–animal interactions. The increasing interconnectedness of human, animal, and environmental health underscores the importance of the OH paradigm in addressing zoonotic [...] Read more.
Zoonotic diseases pose a significant global health threat, driven by factors such as globalization, climate change, urbanization, antimicrobial resistance (AMR), and intensified human–animal interactions. The increasing interconnectedness of human, animal, and environmental health underscores the importance of the OH paradigm in addressing zoonotic threats in a globalized world. This review explores the complex epidemiology of zoonotic diseases, the challenges associated with their management, and the necessity for cross-sector collaboration to enhance prevention and control efforts. Key public health strategies, including surveillance systems, infection control measures, and community education programs, play crucial roles in mitigating outbreaks. However, gaps in governance, resource allocation, and interdisciplinary cooperation hinder effective disease management, particularly in low- and middle-income countries (LMICs). To illustrate the effectiveness of the OH approach, this review highlights successful programs, such as the PREDICT project, Rwanda’s National One Health Program, the EcoHealth Alliance, and the Rabies Elimination Program in the Philippines. These initiatives demonstrate how integrating human, animal, and environmental health efforts can enhance early detection, improve outbreak responses, and reduce public health burdens. Strengthening global health governance, enhancing surveillance infrastructure, regulating antimicrobial use, and investing in research and technological innovations are essential steps toward mitigating zoonotic risks. Ultimately, a coordinated, multidisciplinary approach is vital for addressing the dynamic challenges posed by zoonotic diseases and ensuring global health security in an increasingly interconnected world. Full article
Show Figures

Figure 1

Figure 1
<p>Pillars of zoonotic disease governance: One Health, collaboration, multi-sector strategies, capacity building, and challenges.</p>
Full article ">Figure 2
<p>Strategic approaches to zoonotic disease prevention categorized by levels of interdisciplinary collaboration and technological integration.</p>
Full article ">
16 pages, 688 KiB  
Review
Navigating the Road to Immunization Equity: Systematic Review of Challenges in Introducing New Vaccines into Sub-Saharan Africa’s Health Systems
by Soulama Fousseni, Patrice Ngangue, Abibata Barro, Sophie Wendkoaghenda Ramde, Luc Thierry Bihina, Marie Nicole Ngoufack, Souleymane Bayoulou, Gbetogo Maxime Kiki and Ouedraogo Salfo
Vaccines 2025, 13(3), 269; https://doi.org/10.3390/vaccines13030269 - 4 Mar 2025
Viewed by 441
Abstract
Background/Objectives: Over the past 50 years, developing new vaccines has been pivotal in responding to emerging and re-emerging diseases globally. However, despite substantial partner support, introducing new vaccines in sub-Saharan Africa remains challenging. This systematic review documents the barriers to new vaccine introduction [...] Read more.
Background/Objectives: Over the past 50 years, developing new vaccines has been pivotal in responding to emerging and re-emerging diseases globally. However, despite substantial partner support, introducing new vaccines in sub-Saharan Africa remains challenging. This systematic review documents the barriers to new vaccine introduction in sub-Saharan Africa by distinguishing between vaccines integrated into routine immunization programs and those introduced primarily for outbreak response. Methods: A comprehensive electronic search was conducted across five databases for articles published in English or French on the challenges of new vaccine introduction in sub-Saharan Africa. Three reviewers screened articles independently based on the titles and abstracts, with full-text assessments conducted for inclusion. Data were analyzed thematically and synthesized narratively. Results: A total of 796 articles were retrieved from the five databases. Following the screening, 33 articles were finally retained and included in the review. These articles concerned the introduction of eight new vaccines (malaria vaccine, COVID-19 vaccine, HPV vaccine, Ebola vaccine, cholera vaccine, hepatitis B vaccine, rotavirus vaccine, and typhoid vaccine). The analyses revealed coordination and financing challenges for six vaccines in seventeen countries, acceptability challenges for five vaccines in ten countries, logistical challenges for two vaccines in six countries, and quality service delivery challenges for three vaccines in thirteen countries. Conclusions: Addressing the challenges of introducing new vaccines in sub-Saharan Africa requires targeted, evidence-based strategies. Prioritizing political commitment, innovative funding, public education, workforce development, and infrastructure improvements will strengthen immunization systems and enable timely vaccine delivery. Collaborative efforts and a focus on local context can advance equitable health outcomes, safeguard public health, and support global immunization goals. Full article
(This article belongs to the Collection Factors Associated with Vaccine Hesitancy)
Show Figures

Figure 1

Figure 1
<p>PRISMA flow diagram (PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only).</p>
Full article ">
20 pages, 6141 KiB  
Article
Development of Low-Cost Monitoring and Assessment System for Cycle Paths Based on Raspberry Pi Technology
by Salvatore Bruno, Ionut Daniel Trifan, Lorenzo Vita and Giuseppe Loprencipe
Infrastructures 2025, 10(3), 50; https://doi.org/10.3390/infrastructures10030050 - 2 Mar 2025
Viewed by 237
Abstract
Promoting alternative modes of transportation such as cycling represents a valuable strategy to minimize environmental impacts, as confirmed in the main targets set out by the European Commission. In this regard, in cities throughout the world, there has been a significant increase in [...] Read more.
Promoting alternative modes of transportation such as cycling represents a valuable strategy to minimize environmental impacts, as confirmed in the main targets set out by the European Commission. In this regard, in cities throughout the world, there has been a significant increase in the construction of bicycle paths in recent years, requiring effective maintenance strategies to preserve their service levels. The continuous monitoring of road networks is required to ensure the timely scheduling of optimal maintenance activities. This involves regular inspections of the road surface, but there are currently no automated systems for monitoring cycle paths. In this study, an integrated monitoring and assessment system for cycle paths was developed exploiting Raspberry Pi technologies. In more detail, a low-cost Inertial Measurement Unit (IMU), a Global Positioning System (GPS) module, a magnetic Hall Effect sensor, a camera module, and an ultrasonic distance sensor were connected to a Raspberry Pi 4 Model B. The novel system was mounted on a e-bike as a test vehicle to monitor the road conditions of various sections of cycle paths in Rome, characterized by different pavement types and decay levels as detected using the whole-body vibration awz index (ISO 2631 standard). Repeated testing confirmed the system’s reliability by assigning the same vibration comfort class in 74% of the cases and an adjacent one in 26%, with an average difference of 0.25 m/s2, underscoring its stability and reproducibility. Data post-processing was also focused on integrating user comfort perception with image data, and it revealed anomaly detections represented by numerical acceleration spikes. Additionally, data positioning was successfully implemented. Finally, awz measurements with GPS coordinates and images were incorporated into a Geographic Information System (GIS) to develop a database that supports the efficient and comprehensive management of surface conditions. The proposed system can be considered as a valuable tool to assess the pavement conditions of cycle paths in order to implement preventive maintenance strategies within budget constraints. Full article
Show Figures

Figure 1

Figure 1
<p>Flowchart of proposed methodology.</p>
Full article ">Figure 2
<p>The proposed cycle path monitoring system.</p>
Full article ">Figure 3
<p>The placement of the core hardware setup on the bicycle’s top tube.</p>
Full article ">Figure 4
<p>The imaging system. (<b>a</b>) The placement of the camera module on the handlebars; (<b>b</b>) a close-up view of the custom, 3D-printed mount designed to attach the module.</p>
Full article ">Figure 5
<p>The IMU was fixed inside the bicycle’s saddle.</p>
Full article ">Figure 6
<p>The GPS system. (<b>a</b>) The installation of the u-blox NEO-6M GPS module beneath the bicycle saddle; (<b>b</b>) a close-up view of the GPS module mounted on the custom, 3D-printed bracket.</p>
Full article ">Figure 7
<p>(<b>a</b>) The placement of the magnets on the spokes of the bicycle’s rear wheel for the Hall Effect sensor; (<b>b</b>) a close-up view of the Hall Effect sensor module mounted near the rear wheel, aligned to detect the passing magnets for accurate distance measurement.</p>
Full article ">Figure 8
<p>The 8 km of Rome’s cycle path network examined in the field test. The selected branches are identified according to <a href="#infrastructures-10-00050-t005" class="html-table">Table 5</a>.</p>
Full article ">Figure 9
<p>Correction of GPS trajectory discrepancies.</p>
Full article ">Figure 10
<p>Validation of proposed cycle path monitoring. The different colors in the graph area correspond to comfort classes.</p>
Full article ">Figure 11
<p>Schematic representation of camera’s field of view.</p>
Full article ">Figure 12
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi>w</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics></math> spike of 1.59 m/s<sup>2</sup> at 25th second on Branch 4.</p>
Full article ">Figure 13
<p>The drainage grate identified as the cause of the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi>w</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics></math> spike in <a href="#infrastructures-10-00050-f010" class="html-fig">Figure 10</a>.</p>
Full article ">Figure 14
<p>Example of integrated data in QGIS, displaying GPS coordinates, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi>w</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics></math> values, and corresponding video frames for sample unit of investigated cycle path. The red dot indicates which sample unit is under investigation.</p>
Full article ">Figure 15
<p>Visualization of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi>w</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics></math> values along Lungotevere cycle path.</p>
Full article ">
42 pages, 5674 KiB  
Article
Self-Organizing Wireless Sensor Networks Solving the Coverage Problem: Game-Theoretic Learning Automata and Cellular Automata-Based Approaches
by Franciszek Seredynski, Miroslaw Szaban, Jaroslaw Skaruz, Piotr Switalski and Michal Seredynski
Sensors 2025, 25(5), 1467; https://doi.org/10.3390/s25051467 - 27 Feb 2025
Viewed by 186
Abstract
In this paper, we focus on developing self-organizing algorithms aimed at solving, in a distributed way, the coverage problem in Wireless Sensor Networks (WSNs). For this purpose, we apply a game-theoretical framework based on an application of a variant of the Spatial Prisoner’s [...] Read more.
In this paper, we focus on developing self-organizing algorithms aimed at solving, in a distributed way, the coverage problem in Wireless Sensor Networks (WSNs). For this purpose, we apply a game-theoretical framework based on an application of a variant of the Spatial Prisoner’s Dilemma game. The framework is used to build a multi-agent system, where agent-players in the process of iterated games tend to achieve a Nash equilibrium, providing them the possible maximal values of payoffs. A reached equilibrium corresponds to a global solution for the coverage problem represented by the following two objectives: coverage and the corresponding number of sensors that need to be turned on. A multi-agent system using the game-theoretic framework assumes the creation of a graph model of WSNs and the further interpretation of nodes of the WSN graph as agents participating in iterated games. We use the following two types of reinforcement learning machines as agents: Learning Automata (LA) and Cellular Automata (CA). The main novelty of the paper is the development of a specialized reinforcement learning machine based on the application of (ϵ,h)-learning automata. As the second model of an agent, we use the adaptive CA that we recently proposed. While both agent models operate in discrete time, they differ in the way they store and use available information. LA-based agents store in their memories the current information obtained in the last h-time steps and only use this information to make a decision in the next time step. CA-based agents only retain information from the last time step. To make a decision in the next time step, they participate in local evolutionary competitions that determine their subsequent actions. We show that agent-players reaching the Nash equilibria corresponds to the system achieving a global optimization criterion related to the coverage problem, in a fully distributed way, without the agents’ knowledge of the global optimization criterion and without any central coordinator. We perform an extensive experimental study of both models and show that the proposed learning automata-based model significantly outperforms the cellular automata-based model. Full article
(This article belongs to the Special Issue Wireless Sensor Networks for Condition Monitoring)
Show Figures

Figure 1

Figure 1
<p>An example of a monitored area containing 441 PoI: (<b>a</b>) a WSN 5 consisting of 5 sensors with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>18</mn> </mrow> </semantics></math> m, (<b>b</b>) a WSN 8 consisting of 8 sensors with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>18</mn> </mrow> </semantics></math> m.</p>
Full article ">Figure 2
<p>Convertion of a WSN instance of a coverage problem into a WSN interaction graph: (<b>a</b>) a WSN graph corresponding to WSN 5 with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>35</mn> </mrow> </semantics></math> m, (<b>b</b>) a WSN graph corresponding to WSN 8 with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>35</mn> </mrow> </semantics></math> m.</p>
Full article ">Figure 3
<p>Concept of the (<math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>,</mo> <mi>h</mi> </mrow> </semantics></math>)-learning automaton.</p>
Full article ">Figure 4
<p>Proposed (<math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>,</mo> <mi>h</mi> </mrow> </semantics></math>)-learning automaton.</p>
Full article ">Figure 5
<p>Example of (<math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>,</mo> <mi>h</mi> </mrow> </semantics></math>)-learning automaton with <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Architecture of (<math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>,</mo> <mi>h</mi> </mrow> </semantics></math>)-learning automata-based system to solve the coverage problem.</p>
Full article ">Figure 7
<p>Architecture of learning cellular automata-based system to solve the coverage problem.</p>
Full article ">Figure 8
<p>Landscape of the global criterion function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mo>)</mo> </mrow> </semantics></math> and en external criterion ATP for WSN 5.</p>
Full article ">Figure 9
<p>Nash equilibrium for WSN 5.</p>
Full article ">Figure 10
<p>Landscape of the global criterion function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mo>)</mo> </mrow> </semantics></math> and the external criterion ATP for WSN 8.</p>
Full article ">Figure 11
<p>Maximal values of function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mo>)</mo> </mrow> </semantics></math> for different values of sensors turned on for WSN 8.</p>
Full article ">Figure 12
<p>All solutions for <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> for WSN 8.</p>
Full article ">Figure 13
<p>Landscape of the ATP and Nash equilibria for WSN 8.</p>
Full article ">Figure 14
<p>WSN 45: (<b>a</b>) sensors localization, (<b>b</b>) interaction graph (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> m).</p>
Full article ">Figure 15
<p>Searching for optimal values of LA parameters: (<b>a</b>) coverage <span class="html-italic">q</span> as a function of <span class="html-italic">h</span> and <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>, (<b>b</b>) the number of sensors <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>N</mi> </mrow> </msub> </semantics></math> as a function of <span class="html-italic">h</span> and <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>.</p>
Full article ">Figure 16
<p>Single run for WSN 5: (<b>a</b>) coverage <span class="html-italic">q</span>, (<b>b</b>) number of sensors <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>N</mi> </mrow> </msub> </semantics></math>, (<b>c</b>) moments of taking actions by agents caused by the <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> alternative of the LA algorithm, and (<b>d</b>) local rewards of agents.</p>
Full article ">Figure 17
<p>Single run for WSN 5: (<b>a</b>) frequency of rule <span class="html-italic">all C</span>, (<b>b</b>) frequency of rule <span class="html-italic">all D</span>, (<b>c</b>) frequency of rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>d</b>) frequency of rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>e</b>) frequency of rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>f</b>) fractions of rules stored in LA memories.</p>
Full article ">Figure 18
<p>WSN 5: (<b>a</b>) averaged value of coverage <span class="html-italic">q</span>, (<b>b</b>) averaged value of the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on.</p>
Full article ">Figure 19
<p>WSN 45: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>WSN 45: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>WSN 45: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 21 Cont.
<p>WSN 45: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>WSN 45 (a single run): averaged value of (<b>a</b>) coverage <span class="html-italic">q</span>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned, (<b>c</b>) a frequency of rules applied by LA-based agents; (<b>d</b>) a frequency of changing rules, (<b>e</b>) average values of <span class="html-italic">k</span> for the <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> <mspace width="4pt"/> <mi>r</mi> <mi>u</mi> <mi>l</mi> <mi>e</mi> <mi>s</mi> </mrow> </semantics></math>; (<b>f</b>) fractions of rules stored in LA memories.</p>
Full article ">Figure 22 Cont.
<p>WSN 45 (a single run): averaged value of (<b>a</b>) coverage <span class="html-italic">q</span>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned, (<b>c</b>) a frequency of rules applied by LA-based agents; (<b>d</b>) a frequency of changing rules, (<b>e</b>) average values of <span class="html-italic">k</span> for the <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> <mspace width="4pt"/> <mi>r</mi> <mi>u</mi> <mi>l</mi> <mi>e</mi> <mi>s</mi> </mrow> </semantics></math>; (<b>f</b>) fractions of rules stored in LA memories.</p>
Full article ">Figure 23
<p>WSN 45 (CA-based approach: <math display="inline"><semantics> <mrow> <mi>k</mi> <mtext>-</mtext> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mo> </mo> <mn>1</mn> </mrow> </semantics></math>). Rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for a whole set of five rules, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for a whole set of 5 rules.</p>
Full article ">Figure 24
<p>WSN 45 (cellular automata-based approach: <math display="inline"><semantics> <mrow> <mi>k</mi> <mtext>-</mtext> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>) Rules <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for rules for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 25
<p>WSN 45 (cellular automata-based approach: <math display="inline"><semantics> <mrow> <mi>k</mi> <mtext>-</mtext> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mo> </mo> <mn>2</mn> </mrow> </semantics></math>) Rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 26
<p>WSN 45 (cellular automata-based approach: <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> 2) Rules <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for rules for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 26 Cont.
<p>WSN 45 (cellular automata-based approach: <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> 2) Rules <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for rules for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for <math display="inline"><semantics> <mrow> <mi>p</mi> <mspace width="3.33333pt"/> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mi>m</mi> <mi>u</mi> <mi>t</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 27
<p>WSN 45 (cellular automata-based approach: <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> 2): averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 27 Cont.
<p>WSN 45 (cellular automata-based approach: <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> 2): averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 28
<p>WSN 45 (cellular automata-based approach: <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> 2) Rules <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>: (<b>a</b>) averaged value of coverage <span class="html-italic">q</span>, (<b>b</b>) averaged value of the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on.</p>
Full article ">Figure 29
<p>Interaction graphs for <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>: WSN 125 (<b>a</b>); WSN 100 rand (<b>b</b>).</p>
Full article ">Figure 30
<p>WSN 125: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>b</b>) a number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 31
<p>WSN 125: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 32
<p>WSN 125: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 33
<p>WSN 100 rand: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> </mrow> </semantics></math>, (<b>c</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>e</b>) coverage <span class="html-italic">q</span> for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>, (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rule <math display="inline"><semantics> <mrow> <mi>k</mi> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 34
<p>WSN 100 rand: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 35
<p>WSN 100 rand: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>c</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>e</b>) coverage <span class="html-italic">q</span> for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>; (<b>f</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 36
<p>WSN 200 rand and WSN 500 rand with the set of rules <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>C</mi> <mo>,</mo> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mo> </mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mi>C</mi> <mo>,</mo> <mi>k</mi> <mi>D</mi> <mi>C</mi> <mo>}</mo> </mrow> </semantics></math>: averaged value of (<b>a</b>) coverage <span class="html-italic">q</span> for WSN 200 rand, (<b>b</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for WSN 200 rand, averaged value of (<b>c</b>) coverage <span class="html-italic">q</span> for WSN 500 rand, (<b>d</b>) the number <math display="inline"><semantics> <mrow> <mi>n</mi> <mtext>_</mtext> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </mrow> </semantics></math> of sensors turned on for WSN 500 rand.</p>
Full article ">
24 pages, 7358 KiB  
Article
Optimizing PPP-AR with BDS-3 and GPS: Positioning Performance Across Diverse Geographical Regions Under Mostly Quiet Space Weather Conditions
by Burhaneddin Bilgen
Atmosphere 2025, 16(3), 288; https://doi.org/10.3390/atmos16030288 - 27 Feb 2025
Viewed by 165
Abstract
The integration of Global Navigation Satellite Systems (GNSS) has revolutionized geodetic positioning, with techniques like Precise Point Positioning with Ambiguity Resolution (PPP-AR) offering highly accurate results with reduced convergence times. The full deployment of the BeiDou Navigation Satellite System-3 (BDS-3) has spurred interest [...] Read more.
The integration of Global Navigation Satellite Systems (GNSS) has revolutionized geodetic positioning, with techniques like Precise Point Positioning with Ambiguity Resolution (PPP-AR) offering highly accurate results with reduced convergence times. The full deployment of the BeiDou Navigation Satellite System-3 (BDS-3) has spurred interest in assessing its standalone and combined performance with GPS in PPP-AR applications. This study evaluates the performance of BDS-3-based PPP-AR across diverse geographical regions considering space weather conditions (SWCs) for the first time. GNSS data from six International GNSS Service (IGS) stations located in the Asia–Pacific, Europe, Africa, and the Americas were processed for 15 consecutive days. The three scenarios (BDS-3 only, GPS only, and BDS-3 + GPS) were analyzed using the open-source raPPPid v2.3 software developed in 2023. The estimated coordinates were statistically compared to the IGS-derived coordinates to assess accuracy. Results demonstrate that BDS-3 PPP-AR can independently deliver reliable positioning for many applications and that the accuracy of BDS-3-based PPP-AR is relatively low in the Americas. However, combining BDS-3 with GPS significantly enhances horizontal and vertical accuracies, especially in the Americas, achieving improvements of up to 86% and 82%, respectively. These findings highlight the potential of BDS-3 for complementing GPS for precise geodetic applications. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Figure 1
<p>The IGS stations used in the study.</p>
Full article ">Figure 2
<p>General workflow scheme of the data process.</p>
Full article ">Figure 3
<p>Dst, Kp, F10.7 for 1–14 November 2023.</p>
Full article ">Figure 4
<p>Satellite visibility at CUIB station.</p>
Full article ">Figure 5
<p>Satellite visibility at JFNG station.</p>
Full article ">Figure 6
<p>Satellite visibility at MRO1 station.</p>
Full article ">Figure 7
<p>Satellite visibility at OBE4 station.</p>
Full article ">Figure 8
<p>Satellite visibility of SUTH station.</p>
Full article ">Figure 9
<p>Satellite visibility at UCAL station.</p>
Full article ">Figure 10
<p>Convergence time of BDS-3.</p>
Full article ">Figure 11
<p>Convergence time of GPS.</p>
Full article ">Figure 12
<p>Convergence time of BDS-3 + GPS.</p>
Full article ">Figure 13
<p>Descriptive statistics of residuals.</p>
Full article ">Figure 14
<p>Horizontal accuracies of different PPP-AR scenarios.</p>
Full article ">Figure 15
<p>Vertical accuracies of different PPP-AR scenarios.</p>
Full article ">
12 pages, 815 KiB  
Article
Investigation of Electroencephalographic Aspects, Adaptive Features, and Clinical Phenotypes in a Group of Children with Autism—A Pilot Study
by Alexandru Capisizu, Leon Zăgrean, Elena Poenaru, Elena Tudorache, Mihaela Anca Bulf and Adriana Sorina Capisizu
Clin. Pract. 2025, 15(3), 50; https://doi.org/10.3390/clinpract15030050 - 27 Feb 2025
Viewed by 180
Abstract
(1) Background: Autism, as an important global problem that affects many phenotypically different individuals, is associated with electroencephalographic (EEG) abnormalities and adaptability impairment. (2) Materials and Methods: In this retrospective study of a group of 101 autistic children, we aimed to evaluate the [...] Read more.
(1) Background: Autism, as an important global problem that affects many phenotypically different individuals, is associated with electroencephalographic (EEG) abnormalities and adaptability impairment. (2) Materials and Methods: In this retrospective study of a group of 101 autistic children, we aimed to evaluate the presence of EEG abnormalities, adaptive features, and clinical phenotypes via EEG, the Adaptive Behavior Assessment System II (ABAS II) scale, and neurological examination. (3) Results: Our results showed statistically significant associations between the level of adaptability obtained through the ABAS II scale and neurological deficit, specifically in terms of coordination impairment. There were also statistically significant differences between the level of adaptability and clinical phenotypes between autism type groups. (4) Conclusions: This study shows that children with autism are likely to exhibit neurological and adaptive abnormalities. Non-invasive assessment tools, such as EEG recordings, the ABAS II scale, and neurological examination offer valuable support for improved diagnosis and management. Full article
Show Figures

Figure 1

Figure 1
<p>Distribution of patients with neurological examination abnormalities.</p>
Full article ">Figure 2
<p>Distribution of patients according to EEG records. EEG: electroencephalography.</p>
Full article ">
25 pages, 7350 KiB  
Article
Coupled Water–Energy–Carbon Study of the Agricultural Sector in the Great River Basin: Empirical Evidence from the Yellow River Basin, China
by Jingwei Song, Jianhui Cong, Yuqing Liu, Weiqiang Zhang, Ran Liang and Jun Yang
Systems 2025, 13(3), 160; https://doi.org/10.3390/systems13030160 - 26 Feb 2025
Viewed by 181
Abstract
In the context of sustainable development, water resources, energy, and carbon emissions are pivotal factors influencing the rational planning of economic development and the secure establishment of ecological barriers. As a core food production area, how can the Great River Basin balance the [...] Read more.
In the context of sustainable development, water resources, energy, and carbon emissions are pivotal factors influencing the rational planning of economic development and the secure establishment of ecological barriers. As a core food production area, how can the Great River Basin balance the pressure on the “water–energy–carbon” system (WEC) to realize the coordinated development of “nature–society–economy”? Taking the Yellow River Basin in China as the research object, this paper explores the coupling characteristics and virtual transfer trends of WEC in the agricultural sector under the condition of mutual constraints. The results show the following: (1) On the dynamic coupling characteristics, W-E and E-C are strongly coupled with each other. The optimization of water resource allocation and the development of energy-saving water use technology make the W-E consumption show a downward trend, and the large-scale promotion of agricultural mechanization makes the E-C consumption show an upward trend. (2) On the spatial distribution of transfer, there is an obvious path dependence of virtual WEC transfer, showing a trend of transfer from less developed regions to developed regions, and the coupling strength decreases from developed regions to less developed regions. The assumption of producer responsibility serves to exacerbate the problem of inter-regional development imbalances. (3) According to the cross-sectoral analysis, water resources are in the center of sectoral interaction, and controlling the upstream sector of the resource supply will indirectly affect the synergistic relationship of WEC, and controlling the downstream sector of resource consumption will indirectly affect the constraint relationship of WEC. This study provides theoretical and methodological references for the Great River Basin to cope with the resource and environmental pressure brought by global climate change and the effective allocation of inter-regional resources. Full article
Show Figures

Figure 1

Figure 1
<p>Determination of the boundaries of the WEC subsystem in the agricultural sector. (Water subsystem in blue, energy subsystem in yellow, carbon subsystem in green).</p>
Full article ">Figure 2
<p>Presents an analysis of the WEC coupling processes and impact mechanisms in the agricultural sector. The blue module is the water use system, the yellow module is the energy production and use system, the green module is the carbon emission system, and the orange module is the agricultural land use system. Solid arrows indicate direct interactions between modules and dashed arrows indicate indirect interactions between modules.</p>
Full article ">Figure 3
<p>Map of the Yellow River Basin in China.</p>
Full article ">Figure 4
<p>WEC consumption footprints by sector in the Yellow River Basin: (<b>a</b>) water consumption; (<b>b</b>) energy consumption; and (<b>c</b>) carbon emissions. (Different colors of the spheres represent different sectors, different sizes indicate the amount of consumption, and larger spheres indicate more consumption).</p>
Full article ">Figure 5
<p>Intersectoral WEC correlation map in the Yellow River Basin (In the chord diagram, different colors are assigned to represent distinct sectors. Outflows of other colors from a sector signify that the sector acts as a factor supplier. Inflows of other colors into a sector indicate that the sector is a factor demander. Inflows of the same color to the sector itself imply that the sector’s WEC systems are utilized to meet its own final demand).</p>
Full article ">Figure 6
<p>Virtual WEC trade balance for the agricultural sector in the Yellow River Basin. (Orange bars represent virtual energy transfers, green bars denote virtual carbon transfers, red lines signify virtual water transfers, and black lines also represent virtual water transfers.).</p>
Full article ">Figure 7
<p>Spatial distribution of energy–water–carbon transfer of agricultural sectors in nine provinces and regions along the Yellow River in 2017. Green indicates resources transferred out and red indicates resources transferred in. (<b>a</b>) Annual water resources transfer out and in. (<b>b</b>) Annual energy transfer out and in. (<b>c</b>) Annual carbon emission transfer out. (The green color represents the outward volume distribution, while the red color denotes the inward volume distribution. The progression from light to dark in color corresponds to the transfer volume increasing from small to large).</p>
Full article ">Figure 8
<p>Carbon emission control relationship of industry sectors in nine provinces and regions along the Yellow River. (<b>a</b>) Water consumption; (<b>b</b>) energy consumption; and (<b>c</b>) carbon emissions. (The carbon emission control relationships for 2012, 2015, and 2017 are presented in the first, second, and third rows, respectively).</p>
Full article ">
10 pages, 2588 KiB  
Proceeding Paper
Combining Interactive Technology and Visual Cognition—A Case Study on Preventing Dementia in Older Adults
by Chung-Shun Feng and Chao-Ming Wang
Eng. Proc. 2025, 89(1), 16; https://doi.org/10.3390/engproc2025089016 - 25 Feb 2025
Viewed by 115
Abstract
According to the World Health Organization, the global population is aging, with cognitive and memory functions declining from the age of 40–50. Individuals aged 65 and older are particularly prone to dementia. Therefore, we developed an interactive system for visual cognitive training to [...] Read more.
According to the World Health Organization, the global population is aging, with cognitive and memory functions declining from the age of 40–50. Individuals aged 65 and older are particularly prone to dementia. Therefore, we developed an interactive system for visual cognitive training to prevent dementia and delay the onset of memory loss. The system comprises three “three-dimensional objects” with printed 2D barcodes and near-field communication (NFC) tags and operating software processing text, images, and multimedia content. Electroencephalography (EEG) data from a brainwave sensor were used to interpret brain signals. The system operates through interactive games combined with real-time feedback from EEG data to reduce the likelihood of dementia. The system provides feedback based on textual, visual, and multimedia information and offers a new form of entertainment. Thirty participants were invited to participate in a pre-test questionnaire survey. Different tasks were assigned to randomly selected participants with three-dimensional objects. Sensing technologies such as quick-response (QR) codes and near-field communication (NFC) were used to display information on smartphones. Visual content included text-image narratives and media playback. EEG was used for visual recognition and perception responses. The system was evaluated using the system usability scale (SUS). Finally, the data obtained from participants using the system were analyzed. The system improved hand-eye coordination and brain memory using interactive games. After receiving visual information, brain function was stimulated through brain stimulation and focused reading, which prevents dementia. This system could be introduced into the healthcare industry to accumulate long-term cognitive function data for the brain and personal health data to prevent the occurrence of dementia. Full article
Show Figures

Figure 1

Figure 1
<p>Brain structure [<a href="#B10-engproc-89-00016" class="html-bibr">10</a>].</p>
Full article ">Figure 2
<p>Research framework.</p>
Full article ">Figure 3
<p>System design.</p>
Full article ">Figure 4
<p>System architecture.</p>
Full article ">
26 pages, 2506 KiB  
Article
Optimal Economic Dispatch of Hydrogen Storage-Based Integrated Energy System with Electricity and Heat
by Yu Zhu, Siyu Niu, Guang Dai, Yifan Li, Linnan Wang and Rong Jia
Sustainability 2025, 17(5), 1974; https://doi.org/10.3390/su17051974 - 25 Feb 2025
Viewed by 192
Abstract
To enhance the accommodation capacity of renewable energy and promote the coordinated development of multiple energy, this paper proposes a novel economic dispatch method for an integrated electricity–heat–hydrogen energy system on the basis of coupling three energy flows. Firstly, we develop a mathematical [...] Read more.
To enhance the accommodation capacity of renewable energy and promote the coordinated development of multiple energy, this paper proposes a novel economic dispatch method for an integrated electricity–heat–hydrogen energy system on the basis of coupling three energy flows. Firstly, we develop a mathematical model for the hydrogen energy system, including hydrogen production, storage, and hydrogen fuel cells. Additionally, a multi-device combined heat and power system is constructed, incorporating gas boilers, waste heat boilers, gas turbines, methanation reactors, thermal storage tanks, batteries, and gas storage tanks. Secondly, to further strengthen the carbon reduction advantages, the economic dispatch model incorporates the power-to-gas process and carbon trading mechanisms, giving rise to minimizing energy purchase costs, energy curtailment penalties, carbon trading costs, equipment operation, and maintenance costs. The model is linearized to ensure a global optimal solution. Finally, the experimental results validate the effectiveness and superiority of the proposed model. The integration of electricity–hydrogen coupling devices improves the utilization rate of renewable energy generation and reduces the total system operating costs and carbon trading costs. The use of a tiered carbon trading mechanism decreases natural gas consumption and carbon emissions, contributing to energy conservation and emission reduction. Full article
Show Figures

Figure 1

Figure 1
<p>Electricity–heat–hydrogen integrated energy system topology.</p>
Full article ">Figure 2
<p>Working principle of the hydrogen energy system.</p>
Full article ">Figure 3
<p>Landscape and load forecast curve.</p>
Full article ">Figure 4
<p>Analysis of carbon trading base price.</p>
Full article ">Figure 5
<p>Carbon trading interval length analysis.</p>
Full article ">Figure 6
<p>Analysis of carbon trading price growth rate.</p>
Full article ">Figure 7
<p>Predicted output and actual output by scenario.</p>
Full article ">Figure 8
<p>Scenario 4 power diagram.</p>
Full article ">Figure 9
<p>Scenario 5 power diagram.</p>
Full article ">Figure 10
<p>Scenario 6 power diagram.</p>
Full article ">Figure 11
<p>Electrical power balance diagrams.</p>
Full article ">
17 pages, 1478 KiB  
Article
FFMT: Unsupervised RGB-D Point Cloud Registration via Fusion Feature Matching with Transformer
by Jiacun Qiu, Zhenqi Han, Lizhaung Liu and Jialu Zhang
Appl. Sci. 2025, 15(5), 2472; https://doi.org/10.3390/app15052472 - 25 Feb 2025
Viewed by 207
Abstract
Point cloud registration is a fundamental problem in computer vision and 3D computing, aiming to align point cloud data from different sensors or viewpoints into a unified coordinate system. In recent years, the rapid development of RGB-D sensor technology has greatly facilitated the [...] Read more.
Point cloud registration is a fundamental problem in computer vision and 3D computing, aiming to align point cloud data from different sensors or viewpoints into a unified coordinate system. In recent years, the rapid development of RGB-D sensor technology has greatly facilitated the acquisition of RGB-D data. In previous unsupervised point cloud registration methods based on RGB-D data, there has often been an overemphasis on matching local features, while the potential value of global information has been overlooked, thus limiting the improvement in registration performance. To address this issue, this paper proposes a self-attention-based global information attention module, which learns the global context of fused RGB-D features and effectively integrates global information into each individual feature. Furthermore, this paper introduces alternating self-attention and cross-attention layers, enabling the final feature fusion to achieve a broader global receptive field, thereby facilitating more precise matching relationships. We conduct extensive experiments on the ScanNet and 3DMatch datasets, and the results show that, compared to the previous state-of-the-art methods, our approach reduces the average rotation error by 26.9% and 32% on the ScanNet and 3DMatch datasets, respectively. Our method also achieves state-of-the-art performance on other key metrics. Full article
(This article belongs to the Special Issue AI, VR, and Visual Computing in Mechatronics and Robotics)
Show Figures

Figure 1

Figure 1
<p>The pipeline of our Fusion Feature Matching with Transformer (<b>FFMT</b>). It takes a pair of RGB-D images as input and estimates the relative pose between them. The RGB-D images first pass through a feature extraction and fusion module. Both the RGB branch and the point cloud branch adopt U-Net like structures, utilizing CNN and KPConv, respectively, for feature extraction. A multi-scale bidirectional feature fusion mechanism is employed between the two branches. After obtaining the extracted features, the features are flattened into 1D vectors and combined with positional encoding. The augmented features are then processed through a series of alternating self-attention and cross-attention layers. Based on the extracted features, coarse correspondences are determined based on Lowe’s ratio. These correspondences are refined through several RANSAC iterations to obtain precise matches. Finally, the estimated transformation is computed using a least-squares method. The entire model is trained end-to-end with differentiable rendering.</p>
Full article ">Figure 2
<p>The detail of our methods. (<b>a</b>) Detailed illustration of bidirectional feature fusion. (<b>b</b>) Self-attention layer. (<b>c</b>) Cross-attention layer. (<b>d</b>) Transformer encoder layer. (<b>e</b>) Linear attention layer with <math display="inline"><semantics> <mrow> <mi>O</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics></math> complexity.</p>
Full article ">Figure 3
<p>Rotation/Translation accuracy and error with different frames apart. On the left, <b>pr5</b> represents the accuracy of PointMBF when the rotation error is less than 5°, <b>or5</b> represents the accuracy of our methods when the rotation error is less than 5°, <b>prm</b> represents the mean rotational error of PointMBF, and <b>orm</b> represents the mean rotational error of our methods. On the right, <b>pt5</b> represents the accuracy of PointMBF when the translation error is less than 5 cm, <b>ot5</b> represents the accuracy of our methods when the translation error is less than 5 cm, <b>ptm</b> represents the mean translational error of PointMBF, and <b>otm</b> represents the mean translational error of our methods and others that can be deduced by analogy.</p>
Full article ">
19 pages, 709 KiB  
Systematic Review
Poliomyelitis in Nigeria: Impact of Vaccination Services and Polio Intervention and Eradication Efforts
by Obinna V. Eze, Johanna C. Meyer and Stephen M. Campbell
Vaccines 2025, 13(3), 232; https://doi.org/10.3390/vaccines13030232 - 25 Feb 2025
Viewed by 259
Abstract
Background: Polio is an infectious viral disease that can cause paralytic complications and death. Despite global efforts to eradicate wild poliovirus, there are ongoing outbreaks globally and the mutated form of paralytic polio, i.e., circulating vaccine-derived poliovirus, is present in Nigeria. Low [...] Read more.
Background: Polio is an infectious viral disease that can cause paralytic complications and death. Despite global efforts to eradicate wild poliovirus, there are ongoing outbreaks globally and the mutated form of paralytic polio, i.e., circulating vaccine-derived poliovirus, is present in Nigeria. Low vaccination uptake and poor sanitation are responsible for outbreaks in countries where polio had previously been eliminated. This review identifies policies, strategies and interventions for polio eradication and assesses their impact on polio vaccine uptake and eradication efforts in Nigeria. Methods: A systematic literature review was conducted and guided by the Population, Intervention, Comparator and Outcome (PICO) framework and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart, with identified articles appraised using the Critical Appraisal Skills Program appraisal tool. Results: A total of 393 articles were identified, of which 26 articles were included. Key findings indicate polio intervention services, policies and mass campaigns have had a significant impact on eradicating WPV in Nigeria. However, there are gaps in variant polio eradication efforts, with low vaccination uptake, poor surveillance, vaccine hesitancy, lack of community engagement, weaknesses in the healthcare system and other challenges in Nigeria regionally and nationally, posing a risk to public health that threatens the eradication of all forms of polio in Nigeria. Conclusions: Recommendations are suggested for changes to practice and policy to improve polio vaccination uptake in Nigeria and globally in the short-term (1–2 years), mid-term (3–4 years) and long-term (5+ years). Collaborative targeted polio vaccination programs and funding of public health infrastructure are imperative globally alongside national strategic policy intervention frameworks to strengthen the World Health Organization Global Polio Eradication Initiative and improve vaccine uptake and monitoring of vaccine hesitancy. Simultaneous health-literate community engagement is needed to achieve and maintain polio eradication efforts, which must be integrated into national health frameworks and coordinated across the African continent. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

Figure 1
<p>Search strategy for literature to “identify existing policies, strategies, and interventions for polio eradication in Nigeria and their impact on polio vaccine uptake and eradication efforts in Nigeria”. Source: adapted from [<a href="#B64-vaccines-13-00232" class="html-bibr">64</a>].</p>
Full article ">
28 pages, 3491 KiB  
Article
Renewable Energy, Resilience, Digitalization, and Industrial Policies in Seaborne Transport
by Elisa Barbieri and Luigi Capoani
Energies 2025, 18(5), 1089; https://doi.org/10.3390/en18051089 - 24 Feb 2025
Viewed by 405
Abstract
This paper delves into sustainability and energy policies influencing the governance and dynamics of global maritime trade. Resilience and sustainability are also discussed, along with the obstacles encountered and strategies to overcome them. The analysis underscores the importance of developing long-term strategies and [...] Read more.
This paper delves into sustainability and energy policies influencing the governance and dynamics of global maritime trade. Resilience and sustainability are also discussed, along with the obstacles encountered and strategies to overcome them. The analysis underscores the importance of developing long-term strategies and participatory processes, focusing on government involvement in promoting structural changes towards a more sustainable seaborne transport system. Part of our research is also dedicated to outlining the different factors influencing this industry among different continents, highlighting the need for increasingly unified governance frameworks internationally. By incorporating resilience theory and new technologies, with a high potential in terms of GHG emission reduction, governments and firms can better engage stakeholders, ensure business resilience, and address climate change risks. This study concludes that ports have significant power in driving structural change, and modernization across various areas—such as digitalization, energy policies, safety, green fuels, environmental sustainability, and effective coordination—is essential for their continued development. Full article
Show Figures

Figure 1

Figure 1
<p>Global density of marine traffic, 2012–2022, by Xue Wang, Debian Du, and Yan Peng.</p>
Full article ">Figure 2
<p>(<b>a</b>) Diagram of the 15 strategic chokepoints. (<b>b</b>) Ranking of strategic chokepoints by maritime traffic.</p>
Full article ">Figure 3
<p>Histogram of the frequency of the 30 most used words.</p>
Full article ">Figure 4
<p>Histogram of frequency of different topics across different continents.</p>
Full article ">Figure 5
<p>Pie chart of percentages of topics discussed across different continents.</p>
Full article ">
15 pages, 582 KiB  
Article
Digital Toxicology Teleconsultation for Adult Poisoning Cases in Saudi Hospitals: A Nationwide Study
by Abdullah A. Alharbi, Mohammed A. Muaddi, Meshary S. Binhotan, Ahmad Y. Alqassim, Ali K. Alsultan, Mohammed S. Arafat, Abdulrahman Aldhabib, Yasser A. Alaska, Eid B. Alwahbi, Ghali Sayedahmed, Mobarak Alharthi, M. Mahmud Khan, Mohammed K. Alabdulaali and Nawfal A. Aljerian
Healthcare 2025, 13(5), 474; https://doi.org/10.3390/healthcare13050474 - 21 Feb 2025
Viewed by 252
Abstract
Background/Objectives: Poisoning represents a significant global public health challenge, particularly with its complex manifestations in adult populations. Understanding regional epidemiology through digital health systems is crucial for developing evidence-based prevention and management strategies. This nationwide study analyzes hospital-based toxicology teleconsultation data from [...] Read more.
Background/Objectives: Poisoning represents a significant global public health challenge, particularly with its complex manifestations in adult populations. Understanding regional epidemiology through digital health systems is crucial for developing evidence-based prevention and management strategies. This nationwide study analyzes hospital-based toxicology teleconsultation data from the Toxicology Consultation Service-Saudi Medical Appointments and Referrals Center (TCS-SMARC) platform to characterize the epidemiological patterns, clinical features, and outcomes of adult poisoning cases across Saudi regions. Methods: We conducted a retrospective cross-sectional analysis of 6427 adult poisoning cases where hospitals sought teleconsultation from the Saudi Toxicology Consultation Service (TCS) from January to December 2023. Descriptive statistics were used to analyze poisoning rates by demographic characteristics, agents responsible for the poisoning, clinical presentations, and management decisions. Population-adjusted rates were calculated using the national census data. Associations between variables were analyzed using cross-tabulations and chi-square tests. Results: Young adults aged 18–35 years constituted most cases (58.67%), with the highest population-adjusted rates observed among those aged 18–24 (5.15 per 10,000). Medicine-related poisonings were the most common across all regions (50.04%), followed by bites and stings (15.31%). Regional analysis indicated relatively uniform poisoning rates across Business Units (BUs) (2.02–2.74 per 10,000). Most cases (87.44%) were asymptomatic, with 91.71% exhibiting normal Glasgow Coma Scale scores, although substance abuse cases had higher rate of severe manifestations (24.34%). Significant seasonal variations were observed (p < 0.001), with peak incidents occurring in the summer (29.25%). Management decisions primarily involved hospital observation (40.27%) and admission (30.34%), with agent-specific variations in care requirements (p < 0.001). Conclusions: This comprehensive analysis demonstrates the effectiveness of Saudi Arabia’s digital health infrastructure in capturing and managing nationwide poisoning data. The integrated digital platform enables real-time surveillance, standardized triage, enhanced access to specialized toxicology services, and coordinated management across diverse geographical contexts. Our findings inform evidence-based recommendations for targeted prevention strategies, particularly for young adults and medicine-related poisonings, while establishing a scalable model for digital health-enabled poisoning management. Full article
Show Figures

Figure 1

Figure 1
<p>The flow process of the services provided by the Saudi Toxicology Consultation Service (TCS) through the Saudi Medical Appointments and Referrals Center (SMARC) digital platform. Note: Data presented include cases reported to the Toxicology Consultation Service (TCS) through healthcare provider teleconsultation requests and do not represent all poisoning cases in Saudi Arabia. While TCS teleconsultation is available for poisoning cases in Ministry of Health facilities, treating physicians initiate contact based on their assessment of the need for specialized toxicology guidance.</p>
Full article ">
20 pages, 359 KiB  
Perspective
Future Issues in Global Health: Challenges and Conundrums
by Manoj Sharma, Md Sohail Akhter, Sharmistha Roy and Refat Srejon
Int. J. Environ. Res. Public Health 2025, 22(3), 325; https://doi.org/10.3390/ijerph22030325 - 21 Feb 2025
Viewed by 512
Abstract
This perspective lays out the challenges and conundrums facing global health and discusses possible solutions applicable in the future. The world is facing numerous challenges that include those associated with globalization, climate change, emerging diseases, continuation of non-communicable diseases, reemerging communicable diseases, antimicrobial [...] Read more.
This perspective lays out the challenges and conundrums facing global health and discusses possible solutions applicable in the future. The world is facing numerous challenges that include those associated with globalization, climate change, emerging diseases, continuation of non-communicable diseases, reemerging communicable diseases, antimicrobial resistance (AMR), wars, terrorism, and humanitarian crises, among others. The recent challenges exaggerated by the COVID-19 pandemic have exposed vulnerabilities within healthcare systems, particularly in low- and middle-income countries (LMIC). The solutions must be interprofessional and multifarious with collaborative efforts and partnerships. One world order seems to be a far-fetched ideal utopian goal, but it can be a remedy for ensuring health for all. In the meantime, strengthening the World Health Organization’s role in coordinating global health efforts and improving its capacity to respond to future health crises will be critical in ensuring that the vision of a unified, healthier world becomes a reality. Full article
(This article belongs to the Special Issue Perspectives in Global Health)
Back to TopTop