[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Lq-regularization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 325 KiB  
Article
Lp(Lq)-Maximal Regularity for Damped Equations in a Cylindrical Domain
by Edgardo Alvarez, Stiven Díaz and Carlos Lizama
Fractal Fract. 2024, 8(9), 516; https://doi.org/10.3390/fractalfract8090516 - 30 Aug 2024
Viewed by 975
Abstract
We show maximal regularity estimates for the damped hyperbolic and strongly damped wave equations with periodic initial conditions in a cylindrical domain. We prove that this property strongly depends on a critical combination on the parameters of the equation. Noteworthy, our results are [...] Read more.
We show maximal regularity estimates for the damped hyperbolic and strongly damped wave equations with periodic initial conditions in a cylindrical domain. We prove that this property strongly depends on a critical combination on the parameters of the equation. Noteworthy, our results are still valid for fractional powers of the negative Laplacian operator. We base our methods on the theory of operator-valued Fourier multipliers on vector-valued Lebesgue spaces of periodic functions. Full article
24 pages, 404 KiB  
Article
The Equivalence Conditions of Optimal Feedback Control-Strategy Operators for Zero-Sum Linear Quadratic Stochastic Differential Game with Random Coefficients
by Chao Tang and Jinxing Liu
Symmetry 2023, 15(9), 1726; https://doi.org/10.3390/sym15091726 - 8 Sep 2023
Cited by 3 | Viewed by 1191
Abstract
From the previous work, when solving the LQ optimal control problem with random coefficients (SLQ, for short), it is remarkably shown that the solution of the backward stochastic Riccati equations is not regular enough to guarantee the robustness of the feedback control. As [...] Read more.
From the previous work, when solving the LQ optimal control problem with random coefficients (SLQ, for short), it is remarkably shown that the solution of the backward stochastic Riccati equations is not regular enough to guarantee the robustness of the feedback control. As a generalization of SLQ, interesting questions are, “how about the situation in the differential game?”, “will the same phenomenon appear in SLQ?”. This paper will provide the answers. In this paper, we consider a closed-loop two-person zero-sum LQ stochastic differential game with random coefficients (SDG, for short) and generalize the results of Lü–Wang–Zhang into the stochastic differential game case. Under some regularity assumptions, we establish the equivalence between the existence of the robust optimal feedback control strategy operators and the solvability of the corresponding backward stochastic Riccati equations, which leads to the existence of the closed-loop saddle points. On the other hand, the problem is not closed-loop solvable if the solution of the corresponding backward stochastic Riccati equations does not have the needed regularity. Full article
Show Figures

Figure 1

Figure 1
<p>One controlled sample path of the state process under the optimal control-strategy <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The trajectory of optimal control-strategy <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
20 pages, 385 KiB  
Article
High-Dimensional Covariance Estimation via Constrained Lq-Type Regularization
by Xin Wang, Lingchen Kong, Liqun Wang and Zhaoqilin Yang
Mathematics 2023, 11(4), 1022; https://doi.org/10.3390/math11041022 - 17 Feb 2023
Cited by 1 | Viewed by 1612
Abstract
High-dimensional covariance matrix estimation is one of the fundamental and important problems in multivariate analysis and has a wide range of applications in many fields. In practice, it is common that a covariance matrix is composed of a low-rank matrix and a sparse [...] Read more.
High-dimensional covariance matrix estimation is one of the fundamental and important problems in multivariate analysis and has a wide range of applications in many fields. In practice, it is common that a covariance matrix is composed of a low-rank matrix and a sparse matrix. In this paper we estimate the covariance matrix by solving a constrained Lq-type regularized optimization problem. We establish the first-order optimality conditions for this problem by using proximal mapping and the subspace method. The proposed stationary point degenerates to the first-order stationary points of the unconstrained Lq regularized sparse or low-rank optimization problems. A smoothing alternating updating method is proposed to find an estimator for the covariance matrix. We establish the convergence of the proposed calculation method. The numerical simulation results show the effectiveness of the proposed approach for high-dimensional covariance estimation. Full article
(This article belongs to the Section Computational and Applied Mathematics)
17 pages, 6898 KiB  
Article
Correction of Range-Variant Motion Error and Residual RCM in Sparse Regularization SAR Imaging
by Jingyi Zhang and Jiacheng Ni
Sensors 2022, 22(20), 7927; https://doi.org/10.3390/s22207927 - 18 Oct 2022
Viewed by 1331
Abstract
Lq (0 < q ≤ 1) regularization has been confirmed effective when applied to sparse SAR imaging. However, the inaccuracies caused by motion errors in the observation model will lead to various degradations and defocus in the reconstructed image. For high-resolution and [...] Read more.
Lq (0 < q ≤ 1) regularization has been confirmed effective when applied to sparse SAR imaging. However, the inaccuracies caused by motion errors in the observation model will lead to various degradations and defocus in the reconstructed image. For high-resolution and light-small SAR systems, the range-variant motion errors will decrease the accuracy of range cell migration correction (RCMC), and residual range cell migration (RCM) will exceed multiple range resolution cells and degrade the image quality substantially. Aiming at this problem, in this paper, a novel azimuth-range decoupled sparse SAR imaging method with coarse-to-fine range-variant motion errors and residual RCM correction method is proposed. First, a one-step motion compensation (MOCO) operator is proposed using the inertial navigation systems (INS)/global positioning systems (GPS) information, which can significantly reduce the residual RCM and improve the reconstruction accuracy. Second, a fine high-order phase-error correction method is performed to correct the range and cross-range-varying phase errors using a joint imaging and phase-error estimation scheme, which will further improve the image focusing quality. Experimental results indicate the effectiveness of the proposed method. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Figure 1
<p>SAR imaging geometry with motion error.</p>
Full article ">Figure 2
<p>Flowchart of the proposed one-step MOCO operator.</p>
Full article ">Figure 3
<p>The overall flow chart of the entire sparse SAR imaging and motion error correction method.</p>
Full article ">Figure 4
<p>(<b>a</b>) Measured motion errors in different directions; (<b>b</b>) imaging results of points 1 and 2 using CSA without MOCO.</p>
Full article ">Figure 5
<p>Comparison of range profiles of points 1 and 2. (<b>a</b>) Range profile of points 1 and 2 before RCMC; (<b>b</b>) RCMC results without using one-step MOCO method; (<b>c</b>) RCMC results after one-step MOCO method.</p>
Full article ">Figure 6
<p>Point targets imaging results, (<b>a</b>) CSA with PGA applied; (<b>b</b>) CSA with proposed one-step MOCO method; (<b>c</b>) imaging method in [<a href="#B20-sensors-22-07927" class="html-bibr">20</a>]; (<b>d</b>): proposed imaging method.</p>
Full article ">Figure 7
<p>Quantitative evaluation of reconstruction results under various input SNRs. (<b>a</b>) MSE results; (<b>b</b>) TBR results.</p>
Full article ">Figure 8
<p>Imaging results of scene A using different methods. (<b>a</b>) PGA; (<b>b</b>) method in [<a href="#B20-sensors-22-07927" class="html-bibr">20</a>]; (<b>c</b>) proposed method.</p>
Full article ">Figure 9
<p>Imaging results of scene B using different methods. (<b>a</b>) PGA; (<b>b</b>) method in [<a href="#B20-sensors-22-07927" class="html-bibr">20</a>]; (<b>c</b>) proposed method.</p>
Full article ">
22 pages, 10080 KiB  
Article
Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization
by Yangyang Wang, Zhiming He, Xu Zhan, Yuanhua Fu and Liming Zhou
Remote Sens. 2022, 14(2), 288; https://doi.org/10.3390/rs14020288 - 9 Jan 2022
Cited by 11 | Viewed by 2334
Abstract
Three-dimensional (3D) synthetic aperture radar (SAR) imaging provides complete 3D spatial information, which has been used in environmental monitoring in recent years. Compared with matched filtering (MF) algorithms, the regularization technique can improve image quality. However, due to the substantial computational cost, the [...] Read more.
Three-dimensional (3D) synthetic aperture radar (SAR) imaging provides complete 3D spatial information, which has been used in environmental monitoring in recent years. Compared with matched filtering (MF) algorithms, the regularization technique can improve image quality. However, due to the substantial computational cost, the existing observation-matrix-based sparse imaging algorithm is difficult to apply to large-scene and 3D reconstructions. Therefore, in this paper, novel 3D sparse reconstruction algorithms with generalized Lq-regularization are proposed. First, we combine majorization–minimization (MM) and L1 regularization (MM-L1) to improve SAR image quality. Next, we combine MM and L1/2 regularization (MM-L1/2) to achieve high-quality 3D images. Then, we present the algorithm which combines MM and L0 regularization (MM-L0) to obtain 3D images. Finally, we present a generalized MM-Lq algorithm (GMM-Lq) for sparse SAR imaging problems with arbitrary q0q1 values. The proposed algorithm can improve the performance of 3D SAR images, compared with existing regularization techniques, and effectively reduce the amount of calculation needed. Additionally, the reconstructed complex image retains the phase information, which makes the reconstructed SAR image still suitable for interferometry applications. Simulation and experimental results verify the effectiveness of the algorithms. Full article
(This article belongs to the Special Issue Radar and Sonar Imaging and Processing Ⅲ)
Show Figures

Figure 1

Figure 1
<p>The geometric relationship of target observation.</p>
Full article ">Figure 2
<p>The imaging results of the combat vehicle corresponding to the 100% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 3
<p>The imaging results of the combat vehicle corresponding to the 75% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 4
<p>The imaging results of the aircraft corresponding to the 100% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 5
<p>The imaging results of the aircraft corresponding to the 75% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 6
<p>The experimental scenario. (<b>a</b>) The two spheres. (<b>b</b>) The snip.</p>
Full article ">Figure 7
<p>The imaging results of the real ground-based array SAR data corresponding to the 100% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 8
<p>The imaging results of the real ground-based array SAR data corresponding to the 75% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 9
<p>The imaging results of real complex target SAR data corresponding to the 100% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 10
<p>The imaging results of real complex target SAR data corresponding to the 75% sampling rate. (<b>a</b>) The MF result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 11
<p>The imaging results of the aircraft corresponding to fully sampled data. (<b>a</b>) The The IST result. (<b>b</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result with PI. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result without PI. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result with PI. (<b>e</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result without PI. (<b>f</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result with PI. (<b>g</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result without PI. (<b>h</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result with PI. (<b>i</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result without PI.</p>
Full article ">Figure 12
<p>Phase slices. (<b>a</b>) The reference phase. (<b>b</b>) The IST result. (<b>c</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> result. (<b>d</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> result. (<b>e</b>) The MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> result. (<b>f</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result.</p>
Full article ">Figure 13
<p>Phase differences. (<b>a</b>) The difference between IST and the reference phase. (<b>b</b>) The difference between MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> and the reference phase. (<b>c</b>) The difference between MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> and the reference phase. (<b>d</b>) The difference between MM-<math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> and the reference phase. (<b>e</b>) The difference between GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> and the reference phase.</p>
Full article ">Figure 14
<p>The imaging results of the GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math>. (<b>a</b>) The MF result corresponding to the 50% sampling rate. (<b>b</b>) The MF result corresponding to the 25% sampling rate. (<b>c</b>) The MF result corresponding to the 10% sampling rate. (<b>d</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result corresponding to the 50% sampling rate. (<b>e</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result corresponding to the 25% sampling rate. (<b>f</b>) The GMM-<math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0.8</mn> </mrow> </msub> </semantics></math> result corresponding to the 10% sampling rate.</p>
Full article ">
23 pages, 14071 KiB  
Article
Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Using Optimized Generative Network in Wavelet Transform Domain
by Xubin Feng, Wuxia Zhang, Xiuqin Su and Zhengpu Xu
Remote Sens. 2021, 13(9), 1858; https://doi.org/10.3390/rs13091858 - 10 May 2021
Cited by 55 | Viewed by 5246
Abstract
High spatial quality (HQ) optical remote sensing images are very useful for target detection, target recognition and image classification. Due to the influence of imaging equipment accuracy and atmospheric environment, HQ images are difficult to acquire, while low spatial quality (LQ) remote sensing [...] Read more.
High spatial quality (HQ) optical remote sensing images are very useful for target detection, target recognition and image classification. Due to the influence of imaging equipment accuracy and atmospheric environment, HQ images are difficult to acquire, while low spatial quality (LQ) remote sensing images are very easy to acquire. Hence, denoising and super-resolution (SR) reconstruction technology are the most important solutions to improve the quality of remote sensing images very effectively, which can lower the cost as much as possible. Most existing methods usually only employ denoising or SR technology to obtain HQ images. However, due to the complex structure and the large noise of remote sensing images, the quality of the remote sensing image obtained only by denoising method or SR method cannot meet the actual needs. To address these problems, a method of reconstructing HQ remote sensing images based on Generative Adversarial Network (GAN) named “Restoration Generative Adversarial Network with ResNet and DenseNet” (RRDGAN) is proposed, which can acquire better quality images by incorporating denoising and SR into a unified framework. The generative network is implemented by fusing Residual Neural Network (ResNet) and Dense Convolutional Network (DenseNet) in order to consider denoising and SR problems at the same time. Then, total variation (TV) regularization is used to furthermore enhance the edge details, and the idea of Relativistic GAN is explored to make the whole network converge better. Our RRDGAN is implemented in wavelet transform (WT) domain, since different frequency parts could be handled separately in the wavelet domain. The experimental results on three different remote sensing datasets shows the feasibility of our proposed method in acquiring remote sensing images. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Figure 1
<p>The comparison of implementing our method in WT domain or in spatial domain.</p>
Full article ">Figure 2
<p>The flowchart of Haar wavelet transform.</p>
Full article ">Figure 3
<p>The main steps of the generative part in RRDGAN.</p>
Full article ">Figure 4
<p>The architecture of RRDGAN.</p>
Full article ">Figure 5
<p>Low resolution with White Gaussian noise input.</p>
Full article ">Figure 6
<p>Low resolution with salt and pepper noise input.</p>
Full article ">Figure 7
<p>Comparison results among different methods of “Airplane”, scale factor is 4.</p>
Full article ">Figure 8
<p>Comparison results among different methods of “CircularFarmland”, scale factor is 4.</p>
Full article ">Figure 9
<p>Comparison results among different methods of “BaseballDiamond”, scale factor is 4.</p>
Full article ">Figure 10
<p>Comparison results among different methods of “Stadium”, scale factor is 4.</p>
Full article ">Figure 11
<p>Comparison results among different methods of “Railway”, scale factor is 4.</p>
Full article ">Figure 12
<p>The influence of DBN numbers on performance of PSNR.</p>
Full article ">Figure 13
<p>The influence of DBN numbers on performance of training time.</p>
Full article ">Figure 14
<p>The influence of batch normalization.</p>
Full article ">Figure 15
<p>Wavelet transform schematic diagram of image with salt and pepper noise.</p>
Full article ">Figure 16
<p>Comparison results of Applying RRDGAN (only denoising) in both WT domain and spatial domain.</p>
Full article ">Figure 17
<p>Comparison results of implementing BM3D (or NLM) and RRDGAN and implementing RRDGAN only.</p>
Full article ">Figure 18
<p>Comparison results of whether using relativistic loss or not.</p>
Full article ">Figure 19
<p>Comparison results of whether using TV loss or not.</p>
Full article ">Figure 20
<p>Comparing the super-resolution part of our method with Fractional Charlier moments using Set14.</p>
Full article ">Figure 21
<p>Comparing the super-resolution part of our method with Hahn moments using AVLetters.</p>
Full article ">
16 pages, 961 KiB  
Article
Regularization Methods Based on the Lq-Likelihood for Linear Models with Heavy-Tailed Errors
by Yoshihiro Hirose
Entropy 2020, 22(9), 1036; https://doi.org/10.3390/e22091036 - 16 Sep 2020
Cited by 1 | Viewed by 2544
Abstract
We propose regularization methods for linear models based on the Lq-likelihood, which is a generalization of the log-likelihood using a power function. Regularization methods are popular for the estimation in the normal linear model. However, heavy-tailed errors are also important in [...] Read more.
We propose regularization methods for linear models based on the Lq-likelihood, which is a generalization of the log-likelihood using a power function. Regularization methods are popular for the estimation in the normal linear model. However, heavy-tailed errors are also important in statistics and machine learning. We assume q-normal distributions as the errors in linear models. A q-normal distribution is heavy-tailed, which is defined using a power function, not the exponential function. We find that the proposed methods for linear models with q-normal errors coincide with the ordinary regularization methods that are applied to the normal linear model. The proposed methods can be computed using existing packages because they are penalized least squares methods. We examine the proposed methods using numerical experiments, showing that the methods perform well, even when the error is heavy-tailed. The numerical experiments also illustrate that our methods work well in model selection and generalization, especially when the error is slightly heavy-tailed. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

Figure 1
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>13</mn> <mo>/</mo> <mn>11</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>13</mn> <mo>/</mo> <mn>11</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>3</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>3</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.01</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.01</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Model selection for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>13</mn> <mo>/</mo> <mn>11</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>13</mn> <mo>/</mo> <mn>11</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>3</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>3</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>Generalization error for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>3</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">
2 pages, 172 KiB  
Correction
Correction: Li, Q.; Liang, S.Y. Incipient Fault Diagnosis of Rolling Bearings Based on Impulse-Step Impact Dictionary and Re-Weighted Minimizing Nonconvex Penalty Lq Regular Technique. Entropy 2017, 19, 421
by Qing Li and Steven Y. Liang
Entropy 2020, 22(4), 483; https://doi.org/10.3390/e22040483 - 23 Apr 2020
Viewed by 2115
Abstract
The authors were not aware of some errors and imprecise descriptions made in the proofreading phase, therefore, we wish to make the following corrections to this paper [...] Full article
12 pages, 3347 KiB  
Article
Comparison of Raw Data-Based and Complex Image-Based Sparse SAR Imaging Methods
by Zhilin Xu, Bingchen Zhang, Hui Bi, Chenyang Wu and Zhonghao Wei
Sensors 2019, 19(2), 320; https://doi.org/10.3390/s19020320 - 15 Jan 2019
Cited by 2 | Viewed by 3177
Abstract
Sparse signal processing has already been introduced to synthetic aperture radar (SAR), which shows potential in improving imaging performance based on raw data or a complex image. In this paper, the relationship between a raw data-based sparse SAR imaging method (RD-SIM) and a [...] Read more.
Sparse signal processing has already been introduced to synthetic aperture radar (SAR), which shows potential in improving imaging performance based on raw data or a complex image. In this paper, the relationship between a raw data-based sparse SAR imaging method (RD-SIM) and a complex image-based sparse SAR imaging method (CI-SIM) is compared and analyzed in detail, which is important to select appropriate algorithms in different cases. It is found that they are equivalent when the raw data is fully sampled. Both of them can effectively suppress noise and sidelobes, and hence improve the image performance compared with a matched filtering (MF) method. In addition, the target-to-background ratio (TBR) or azimuth ambiguity-to-signal ratio (AASR) performance indicators of RD-SIM are superior to those of CI-SIM in down-sampling data-based imaging, nonuniform displace phase center sampling, and sparse SAR imaging model-based azimuth ambiguity suppression. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Figure 1
<p>Single-transmit–multiple-receive multiple-channel synthetic aperture radar mode. Black circles correspond to transmitter (Tx) and receiver (Rx) positions.</p>
Full article ">Figure 2
<p>Images recovered from fully sampled Radarsat-1 data via different methods. (Red square indicates one ship. (<b>a</b>) Matched filtering. (<b>b</b>) Raw data-based sparse imaging method. (<b>c</b>) Complex image-based sparse imaging method.</p>
Full article ">Figure 3
<p>Images recovered from fully sampled X-band Gotcha Volumetric SAR data via different methods. (<b>a</b>) Matched filtering. (<b>b</b>) Raw data-based sparse imaging method. (<b>c</b>) Complex image-based sparse imaging method.</p>
Full article ">Figure 4
<p>The difference between the recovered complex images of RD-SIM and CI-SIM.</p>
Full article ">Figure 5
<p>Images reconstructed from 80% down-sampled echo data by different methods. (Red squares indicate three ships.) (<b>a</b>) Matched filtering. (<b>b</b>) Raw data-based sparse imaging method. (<b>c</b>) Complex image-based sparse imaging method.</p>
Full article ">Figure 6
<p>Image reconstructed via different algorithms with single-transmit three-receive SAR data. (<b>a</b>) Matched filtering. (<b>b</b>) Raw data-based sparse imaging method. (<b>c</b>) Complex image-based sparse imaging method.</p>
Full article ">Figure 7
<p>Azimuth ambiguity suppression via different algorithms. (<b>a</b>) Matched filtering. (<b>b</b>) Raw data-based sparse imaging method. (<b>c</b>) Complex image-based sparse imaging method.</p>
Full article ">
20 pages, 17751 KiB  
Article
Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines
by Qing Li, Wei Hu, Erfei Peng and Steven Y. Liang
Entropy 2018, 20(4), 263; https://doi.org/10.3390/e20040263 - 10 Apr 2018
Cited by 8 | Viewed by 4031
Abstract
High-speed remote transmission and large-capacity data storage are difficult issues in signals acquisition of rotating machines condition monitoring. To address these concerns, a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet transform-morphological component analysis (TQWT-MCA) and sparse Bayesian iteration algorithm [...] Read more.
High-speed remote transmission and large-capacity data storage are difficult issues in signals acquisition of rotating machines condition monitoring. To address these concerns, a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet transform-morphological component analysis (TQWT-MCA) and sparse Bayesian iteration algorithm combined with step-impulse dictionary is proposed under the frame of compressed sensing (CS). To begin with, to prevent the periodical impulses loss and effectively separate periodical impulses from the external noise and additive interference components, the TQWT-MCA method is introduced to divide the raw vibration signal into low-resonance component (LRC, i.e., periodical impulses) and high-resonance component (HRC), thus, the periodical impulses are preserved effectively. Then, according to the amplitude range of generated LRC, the step-impulse dictionary atom is designed to match the physical structure of periodical impulses. Furthermore, the periodical impulses and HRC are reconstructed by the sparse Bayesian iteration combined with step-impulse dictionary, respectively, finally, the final reconstructed raw signals are obtained by adding the LRC and HRC, meanwhile, the fidelity of the final reconstructed signals is tested by the envelop spectrum and error analysis, respectively. In this work, the proposed algorithm is applied to simulated signal and engineering multichannel signals of a gearbox with multiple faults. Experimental results demonstrate that the proposed approach significantly improves the reconstructive accuracy compared with the state-of-the-art methods such as non-convex Lq (q = 0.5) regularization, spatiotemporal sparse Bayesian learning (SSBL) and L1-norm, etc. Additionally, the processing time, i.e., speed of storage and transmission has increased dramatically, more importantly, the fault characteristics of the gearbox with multiple faults are detected and saved, i.e., the bearing outer race fault frequency at 170.7 Hz and its harmonics at 341.3 Hz, ball fault frequency at 7.344 Hz and its harmonics at 15.0 Hz, and the gear fault frequency at 23.36 Hz and its harmonics at 47.42 Hz are identified in the envelope spectrum. Full article
(This article belongs to the Special Issue Wavelets, Fractals and Information Theory III)
Show Figures

Figure 1

Figure 1
<p>Wavelet waveform and frequency responses with fixed <span class="html-italic">j</span> scale and different <span class="html-italic">Q</span>-factors (e.g., <span class="html-italic">j</span> = 2, <span class="html-italic">Q</span> = 1, 2, 3, 4, 5, 6). (<b>a</b>) Wavelet tome domain waveform; and (<b>b</b>) frequency responses.</p>
Full article ">Figure 2
<p>Wavelet waveform and frequency responses with fixed <span class="html-italic">Q</span>-factor and different <span class="html-italic">j</span> scales (e.g., <span class="html-italic">Q</span> = 2.5, <span class="html-italic">j</span> = 1, 2, 3, 4, 5, 6). (<b>a</b>) Wavelet time domain waveform; and (<b>b</b>) frequency responses.</p>
Full article ">Figure 3
<p>The flow chart of the proposed method for vibration signal reconstruction of rotating machines.</p>
Full article ">Figure 4
<p>The simulated signal. (<b>a</b>) The simulated periodic impulses; (<b>b</b>) the simulated high-frequency signal; and (<b>c</b>) the simulated synthetic signal.</p>
Full article ">Figure 5
<p>The decomposition results of synthetic simulation signal with TQWT-MCA method. (<b>a</b>) HRC and its wavelet time-frequency diagram; and (<b>b</b>) LRC and its wavelet time-frequency diagram.</p>
Full article ">Figure 6
<p>The time-domain waveform of (<b>a</b>) impulse-like impact atom; (<b>b</b>) step-like impact atom; and (<b>c</b>) impulse-step impact atom.</p>
Full article ">Figure 7
<p>The reconstructed signals based on sparse Bayesian iteration framework. (<b>a</b>) High-frequency signal and its wavelet time-frequency diagram (from top to bottom); (<b>b</b>) low-frequency signal and its wavelet time-frequency diagram (from top to bottom).</p>
Full article ">Figure 8
<p>The raw simulated synthetic signal and the reconstructed synthetic signal. (<b>a</b>) the raw simulated synthetic signal, 3D-STFT time-frequency diagram and envelope spectrum (from top to bottom); (<b>b</b>) the reconstructed signal, 3D-STFT time-frequency diagram and envelope spectrum (from top to bottom).</p>
Full article ">Figure 9
<p>Experimental setup of gearbox with multi-fault. (<b>a</b>) Before dismantling; and (<b>b</b>) after dismantling.</p>
Full article ">Figure 10
<p>The raw vibration signal with eight channels.</p>
Full article ">Figure 11
<p>The decomposition results of raw signal of channel #1with TQWT-MCA method. (<b>a</b>) High-frequency signal; and (<b>b</b>) low-frequency signal.</p>
Full article ">Figure 12
<p>The time-domain waveform of (<b>a</b>) impulse-like impact atom; (<b>b</b>) step-like impact atom; and (<b>c</b>) impulse-step impact atom.</p>
Full article ">Figure 13
<p>The reconstructed signals based on sparse Bayesian iteration framework. (<b>a</b>) reconstructed HRC; (<b>b</b>) reconstructed LRC.</p>
Full article ">Figure 14
<p>The raw signal of channel #1, reconstructed signal and their envelope spectrums. (<b>a</b>) The raw simulated synthetic signal and its envelope spectrum (from top to bottom); (<b>b</b>) the reconstructed signal and its envelope spectrum (from top to bottom).</p>
Full article ">Figure 14 Cont.
<p>The raw signal of channel #1, reconstructed signal and their envelope spectrums. (<b>a</b>) The raw simulated synthetic signal and its envelope spectrum (from top to bottom); (<b>b</b>) the reconstructed signal and its envelope spectrum (from top to bottom).</p>
Full article ">Figure 15
<p>The reconstructed signals and their envelope spectrums with benchmark methods. (<b>a</b>) Orthogonal matching pursuit (OMP); (<b>b</b>) Lq-norm (q = 0.5) method; (<b>c</b>) L1-norm; and (<b>d</b>) the spatiotemporal sparse Bayesian learning (SSBL) method.</p>
Full article ">Figure 15 Cont.
<p>The reconstructed signals and their envelope spectrums with benchmark methods. (<b>a</b>) Orthogonal matching pursuit (OMP); (<b>b</b>) Lq-norm (q = 0.5) method; (<b>c</b>) L1-norm; and (<b>d</b>) the spatiotemporal sparse Bayesian learning (SSBL) method.</p>
Full article ">Figure 16
<p>Error contrast waveform of proposed method and four benchmark methods.</p>
Full article ">Figure 17
<p>The raw signal of channel #8, reconstructed signal and their envelope spectrums. (<b>a</b>) The raw vibration signal and its envelope spectrum (from top to bottom); and (<b>b</b>) the reconstructed signal and its envelope spectrum (from top to bottom).</p>
Full article ">
3013 KiB  
Article
Incipient Fault Diagnosis of Rolling Bearings Based on Impulse-Step Impact Dictionary and Re-Weighted Minimizing Nonconvex Penalty Lq Regular Technique
by Qing Li and Steven Y. Liang
Entropy 2017, 19(8), 421; https://doi.org/10.3390/e19080421 - 18 Aug 2017
Cited by 22 | Viewed by 5863 | Correction
Abstract
The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and [...] Read more.
The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and always corrupted by heavy background noise. In this paper, a new transient impulse extraction methodology is proposed based on impulse-step dictionary and re-weighted minimizing nonconvex penalty Lq regular (R-WMNPLq, q = 0.5) for the incipient fault diagnosis of rolling bearings. Prior to the sparse representation, the original vibration signal is preprocessed by the variational mode decomposition (VMD) technique. Due to the physical mechanism of periodic double impacts, including step-like and impulse-like impacts, an impulse-step impact dictionary atom could be designed to match the natural waveform structure of vibration signals. On the other hand, the traditional sparse reconstruction approaches such as orthogonal matching pursuit (OMP), L1-norm regularization treat all vibration signal values equally and thus ignore the fact that the vibration peak value may have more useful information about periodical transient impulses and should be preserved at a larger weight value. Therefore, penalty and smoothing parameters are introduced on the reconstructed model to guarantee the reasonable distribution consistence of peak vibration values. Lastly, the proposed technique is applied to accelerated lifetime testing of rolling bearings, where it achieves a more noticeable and higher diagnostic accuracy compared with OMP, L1-norm regularization and traditional spectral Kurtogram (SK) method. Full article
Show Figures

Figure 1

Figure 1
<p>The time-domain waveform of the fault signal for a single pitting failure. (<b>a</b>) The physical model; (<b>b</b>) Time-domain waveform of the fault signal.</p>
Full article ">Figure 2
<p>The time-domain waveform of (<b>a</b>) impulse-like impact atom; (<b>b</b>) step-impulse impact atom; (<b>c</b>) impulse-step impact atom; (<b>d</b>) impulse-step impact signal without noise and; (<b>e</b>) impulse-step impact signal with a SNR of 20 dB.</p>
Full article ">Figure 3
<p>Comparison results of recoverability with different <span class="html-italic">q</span>. (<b>a</b>) Random signal with 32 non-zero pulses; (<b>b</b>) Comparison results of RSR with different <span class="html-italic">q</span>.</p>
Full article ">Figure 4
<p>Experimental setup of roller bearing accelerated life test [<a href="#B39-entropy-19-00421" class="html-bibr">39</a>,<a href="#B40-entropy-19-00421" class="html-bibr">40</a>]. (<b>a</b>) Experimental platform; (<b>b</b>) Schematic diagram of experimental platform.</p>
Full article ">Figure 5
<p>The vibration raw signal and the Kurtosis curve of the whole life-cycle of bearing 1. (<b>a</b>) The vibration raw signal of the whole life-cycle of bearing 1; (<b>b</b>) The Kurtosis curve of the wholse life-cycle of bearing 1.</p>
Full article ">Figure 6
<p>Original vibration signal and its time-frequency analysis. (<b>a</b>) Original vibration signal; (<b>b</b>) Time-frequency distribution of original vibration signal; (<b>c</b>) Amplitude spectrum of the original vibration signal; (<b>d</b>) Hilbert envelope spectrum of original vibration signal.</p>
Full article ">Figure 7
<p>The comparison of amplitude spectrum of the IMF modes. (<b>a</b>) The amplitude spectrum of IMF modes with <span class="html-italic">K</span> = 20 and <span class="html-italic">α</span> = 2000; (<b>b</b>) The amplitude spectrum of IMF modes with <span class="html-italic">K</span> = 21 and <span class="html-italic">α</span> = 2000.</p>
Full article ">Figure 8
<p>The 20-IMF components of original signal decomposed by VMD method. (<b>a</b>) IMF1-IMF10; (<b>b</b>) IMF11-IMF20.</p>
Full article ">Figure 9
<p>The identified results using the proposed method. (<b>a</b>) The reconstructed signal; (<b>b</b>) Time-frequency distribution of the reconstructed signal; (<b>c</b>) Hilbert envelope spectrum of the reconstructed signal.</p>
Full article ">Figure 10
<p>The identified results using the proposed method. (<b>a</b>) The reconstructed signal using the OMP method; (<b>b</b>) Time-frequency distribution of the reconstructed signal using the OMP method; (<b>c</b>) Hilbert envelope spectrum of the reconstructed signal using the OMP method; (<b>d</b>) The reconstructed signal using the L1-Norm regularization method; (<b>e</b>) Time-frequency distribution of the reconstructed signal using the L1-Norm regularization method; (<b>f</b>) Hilbert envelope spectrum of the reconstructed signal using the L1-Norm regularization method.</p>
Full article ">Figure 11
<p>Diagnosis result using the spectral kurtogram method. (<b>a</b>) Kurtogram of 19th IMF model component; (<b>b</b>) The Hilbert envelope spectrum of the band-pass filtered signal.</p>
Full article ">
3755 KiB  
Article
Comparison of Regularization Methods in Fluorescence Molecular Tomography
by Dianwen Zhu, Yue Zhao, Reheman Baikejiang, Zhen Yuan and Changqing Li
Photonics 2014, 1(2), 95-109; https://doi.org/10.3390/photonics1020095 - 29 Apr 2014
Cited by 34 | Viewed by 6142
Abstract
In vivo fluorescence molecular tomography (FMT) has been a popular functional imaging modality in research labs in the past two decades. One of the major difficulties of FMT lies in the ill-posed and ill-conditioned nature of the inverse problem in reconstructing the distribution [...] Read more.
In vivo fluorescence molecular tomography (FMT) has been a popular functional imaging modality in research labs in the past two decades. One of the major difficulties of FMT lies in the ill-posed and ill-conditioned nature of the inverse problem in reconstructing the distribution of fluorophores inside objects. The popular regularization methods based on L2, L1 and total variation (TV ) norms have been applied in FMT reconstructions. The non-convex Lq(0 < q < 1) semi-norm and Log function have also been studied recently. In this paper, we adopt a uniform optimization transfer framework for these regularization methods in FMT and compare their individual, as well as the combined effects on both small, localized targets, such as tumors in the early stage, and large targets, such as liver. Numerical simulation studies and phantom experiments have been carried out, and we found that Lq with q near 1/2 performs the best in reconstructing small targets, while joint L2 and Log performs the best for large targets. Full article
(This article belongs to the Special Issue Biomedical Optics and Optical Imaging)
Show Figures

Figure 1

Figure 1
<p>Simulated numerical mouse with two small tubes as targets: coronal sections of the mouse showing (<b>a</b>) the simulated truth, and the reconstruction results using regularizations based on (<b>b</b>) <math display="inline"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> </mrow> </math> 5.0E-5, (<b>c</b>) total variation (<math display="inline"> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </math>) with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-11, (<b>d</b>) <math display="inline"> <msup> <mi>L</mi> <mn>1</mn> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> </mrow> </math> 5.9E-4, (<b>e</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>7</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>7</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 6.0E-4, (<b>f</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-4, (<b>g</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 6.4E-5, (<b>h</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 3.0E-5, (<b>i</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 3.2E-6 and (<b>j</b>) <math display="inline"> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.3E-5, respectively.</p>
Full article ">Figure 2
<p>Simulated numerical mouse with its liver as target: coronal sections of the mouse showing reconstruction results using regularizations based on (<b>a</b>) <math display="inline"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>b</b>) <math display="inline"> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-6, (<b>c</b>) <math display="inline"> <msup> <mi>L</mi> <mn>1</mn> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>d</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>7</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>7</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>e</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>f</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>g</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 5.0E-4, (<b>h</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>i</b>) <math display="inline"> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>j</b>) <math display="inline"> <mrow> <mi>T</mi> <mi>V</mi> <mo>+</mo> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 5.0E-7 and <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, (<b>k</b>) <math display="inline"> <mrow> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> </mrow> </math> 1.0E-3 and <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E-3, and (<b>l</b>) the simulated truth, respectively.</p>
Full article ">Figure 3
<p>Cubic phantom with two small rods as target: coronal sections of the phantom showing (<b>a</b>) PET result as truth, and reconstruction results using regularizations based on: (<b>b</b>) <math display="inline"> <msup> <mi>L</mi> <mn>2</mn> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> </mrow> </math> 1.0E-6, (<b>c</b>) <math display="inline"> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>T</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 3.0E-9, (<b>d</b>) <math display="inline"> <msup> <mi>L</mi> <mn>1</mn> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> </mrow> </math> 9.0E+3, (<b>e</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>7</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>7</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E+5, (<b>f</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 4.0E+6, (<b>g</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 5.0E+7, (<b>h</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 6.0E+8, (<b>i</b>) <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>8</mn> </mrow> </msup> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>8</mn> </mrow> </msub> <mo>=</mo> </mrow> </math> 1.0E+10, and (<b>j</b>) <math display="inline"> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> with <math display="inline"> <mrow> <msub> <mi>λ</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> </mrow> </math> 9.0E+11, respectively.</p>
Full article ">Figure 4
<p>Selection of regularization parameters for <math display="inline"> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> on a large target, by visual and by metrics, respectively: (<b>a</b>) reconstructed fluorescence molecular tomography (FMT) images with <math display="inline"> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> regularization using different regularization parameters; (<b>b</b>) normalized metrics for the images in (a).</p>
Full article ">Figure 5
<p>Normalized error as the iteration number increases: (<b>left</b>) for a large target using <math display="inline"> <mrow> <mi>L</mi> <mi>o</mi> <mi>g</mi> </mrow> </math> regularization; and (<b>right</b>) for a small target using <math display="inline"> <msup> <mi>L</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </math>, respectively. The red line indicates the 0.1% level.</p>
Full article ">
Back to TopTop