Journal Description
Axioms
Axioms
is an international, peer-reviewed, open access journal of mathematics, mathematical logic and mathematical physics, published monthly online by MDPI. The European Society for Fuzzy Logic and Technology (EUSFLAT), International Fuzzy Systems Association (IFSA) and Union of Slovak Mathematicians and Physicists (JSMF) are affiliated with Axioms and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High visibility: indexed within SCIE (Web of Science), dblp, and other databases.
- Journal Rank: JCR - Q1 (Mathematics, Applied)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.8 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journal: Logics.
Impact Factor:
1.9 (2023);
5-Year Impact Factor:
1.7 (2023)
Latest Articles
Sphere Theorems for σk-Einstein Manifolds
Axioms 2025, 14(1), 68; https://doi.org/10.3390/axioms14010068 (registering DOI) - 17 Jan 2025
Abstract
A problem that geometers have always been concerned with is when a closed manifold is isometric to a round sphere. A classical result shows that a closed locally conformally flat Einstein manifold is always isometric to a quotient of a round sphere. In
[...] Read more.
A problem that geometers have always been concerned with is when a closed manifold is isometric to a round sphere. A classical result shows that a closed locally conformally flat Einstein manifold is always isometric to a quotient of a round sphere. In this note, we provide the definitions of -curvatures and -Einstein manifolds, and we show that a closed -Einstein manifold under certain pinching conditions of a Weyl curvature and Einstein curvature is isometric to a quotient of a round sphere.
Full article
(This article belongs to the Special Issue Differential Geometry and Its Application, 3rd Edition)
Open AccessFeature PaperArticle
On Analytical Continuation of the Horn’s Hypergeometric Functions H3 and Their Ratios
by
Roman Dmytryshyn, Tamara Antonova and Sofiia Hladun
Axioms 2025, 14(1), 67; https://doi.org/10.3390/axioms14010067 - 16 Jan 2025
Abstract
This paper considers the Horn’s hypergeometric function , which is closely related to other hypergeometric functions and has various mathematical or physical applications. The problem of analytical extension of this function is solved using a special family of functions—branched continued fractions.
[...] Read more.
This paper considers the Horn’s hypergeometric function , which is closely related to other hypergeometric functions and has various mathematical or physical applications. The problem of analytical extension of this function is solved using a special family of functions—branched continued fractions. A new domain of analytical extension of the Horn’s hypergeometric functions and their ratios under certain conditions to real parameters are established. This paper also contains an example of the presentation and continuation of some special function and an analysis of numerical results.
Full article
(This article belongs to the Section Mathematical Analysis)
►▼
Show Figures
Figure 1
Figure 1
<p>The plots of values of the <span class="html-italic">n</span>th approximants of (<a href="#FD30-axioms-14-00067" class="html-disp-formula">30</a>) for (<a href="#FD28-axioms-14-00067" class="html-disp-formula">28</a>).</p> Full article ">Figure 2
<p>The plots where the approximant <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>9</mn> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of (<a href="#FD30-axioms-14-00067" class="html-disp-formula">30</a>) guarantees certain truncation error bounds for (<a href="#FD28-axioms-14-00067" class="html-disp-formula">28</a>).</p> Full article ">Figure 3
<p>The plots where the approximant <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>10</mn> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of (<a href="#FD30-axioms-14-00067" class="html-disp-formula">30</a>) guarantees certain truncation error bounds for (<a href="#FD28-axioms-14-00067" class="html-disp-formula">28</a>).</p> Full article ">
<p>The plots of values of the <span class="html-italic">n</span>th approximants of (<a href="#FD30-axioms-14-00067" class="html-disp-formula">30</a>) for (<a href="#FD28-axioms-14-00067" class="html-disp-formula">28</a>).</p> Full article ">Figure 2
<p>The plots where the approximant <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>9</mn> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of (<a href="#FD30-axioms-14-00067" class="html-disp-formula">30</a>) guarantees certain truncation error bounds for (<a href="#FD28-axioms-14-00067" class="html-disp-formula">28</a>).</p> Full article ">Figure 3
<p>The plots where the approximant <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>10</mn> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of (<a href="#FD30-axioms-14-00067" class="html-disp-formula">30</a>) guarantees certain truncation error bounds for (<a href="#FD28-axioms-14-00067" class="html-disp-formula">28</a>).</p> Full article ">
Open AccessArticle
Vector Meson Spectrum from Top-Down Holographic QCD
by
Mohammed Mia, Keshav Dasgupta, Charles Gale, Michael Richard and Olivier Trottier
Axioms 2025, 14(1), 66; https://doi.org/10.3390/axioms14010066 - 16 Jan 2025
Abstract
We elaborate on the brane configuration that gives rise to a QCD-like gauge theory that confines at low energies and becomes scale invariant at the highest energies. In the limit where the rank of the gauge group is large, a gravitational description emerges.
[...] Read more.
We elaborate on the brane configuration that gives rise to a QCD-like gauge theory that confines at low energies and becomes scale invariant at the highest energies. In the limit where the rank of the gauge group is large, a gravitational description emerges. For the confined phase, we obtain a vector meson spectrum and demonstrate how a certain choice of parameters can lead to quantitative agreement with empirical data.
Full article
(This article belongs to the Special Issue Mathematical Aspects of Quantum Field Theory and Quantization)
►▼
Show Figures
Figure 1
Figure 1
<p>Brane configuration and the dual gravity in the extremal limit for a UV regular theory. The anti-branes should be thought of as spread above the equator of the resolved sphere although the branes are all localised at the south pole of the sphere. The manifolds appearing on both sides of the duality are in general non-Kähler manifolds although in the limit of vanishing resolution and squashing they become Kähler Calabi–Yau spaces.</p> Full article ">
<p>Brane configuration and the dual gravity in the extremal limit for a UV regular theory. The anti-branes should be thought of as spread above the equator of the resolved sphere although the branes are all localised at the south pole of the sphere. The manifolds appearing on both sides of the duality are in general non-Kähler manifolds although in the limit of vanishing resolution and squashing they become Kähler Calabi–Yau spaces.</p> Full article ">
Open AccessFeature PaperArticle
Orthogonal Polynomials on Radial Rays in the Complex Plane: Construction, Properties and Applications
by
Gradimir V. Milovanović
Axioms 2025, 14(1), 65; https://doi.org/10.3390/axioms14010065 - 16 Jan 2025
Abstract
Orthogonal polynomials on radial rays in the complex plane were introduced and studied intensively in several papers almost three decades ago. This paper presents an account of such kinds of orthogonality in the complex plane, as well as a number of new results
[...] Read more.
Orthogonal polynomials on radial rays in the complex plane were introduced and studied intensively in several papers almost three decades ago. This paper presents an account of such kinds of orthogonality in the complex plane, as well as a number of new results and examples. In addition to several types of standard orthogonality, the concept of orthogonality on arbitrary radial rays is introduced, some or all of which may be infinite. A general method for numerical constructing, the so-called discretized Stieltjes–Gautschi procedure, is described and several interesting examples are presented. The main properties, zero distribution and some applications are also given. Special attention is paid to completely symmetric cases. Recurrence relations for such kinds of orthogonal polynomials and their zero distribution, as well as a connection with the standard polynomials orthogonal on the real line, are derived, including the corresponding linear differential equation of the second order. Finally, some applications in physics and electrostatics are mentioned.
Full article
(This article belongs to the Special Issue Orthogonal Polynomials, Special Functions and Applications: 2nd Edition)
►▼
Show Figures
Figure 1
Figure 1
<p>The rays in the complex plane (case with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>).</p> Full article ">Figure 2
<p>Three rays <math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>3</mn> </msub> </semantics></math> in the complex plane, given by the complex points <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mi>s</mi> </msub> <mo>=</mo> <msup> <mrow> <mi mathvariant="normal">e</mi> </mrow> <mrow> <mn>2</mn> <mi mathvariant="normal">i</mi> <mo>(</mo> <mi>s</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics></math>.</p> Full article ">Figure 3
<p>Zeros of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>8</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>), with the Legendre weight <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, lie in the convex hull of the rays (<b>left</b>) and on the concentric circles (<b>right</b>).</p> Full article ">Figure 4
<p>Zeros of the orthogonal polynomials <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math> in Example 3.</p> Full article ">Figure 5
<p>Zeros of the orthogonal polynomials <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>7</mn> </mrow> </semantics></math> in Example 3.</p> Full article ">Figure 6
<p>Zeros of the orthogonal polynomials <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (brown), <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (red) and <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (green) in Example 4.</p> Full article ">Figure 7
<p>Zeros of polynomials of degree <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> (<b>right</b>) for Chebyshev weight of the first kind on <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> rays.</p> Full article ">Figure 8
<p>Zeros of polynomials of degree <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>18</mn> </mrow> </semantics></math> (<b>right</b>) for Chebyshev weight of the second kind on <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> rays.</p> Full article ">Figure 9
<p>Zeros of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>10</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>) in Example 6.</p> Full article ">Figure 10
<p>Zeros of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>20</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>40</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>) in Example 6.</p> Full article ">
<p>The rays in the complex plane (case with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>).</p> Full article ">Figure 2
<p>Three rays <math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mo>ℓ</mo> <mn>3</mn> </msub> </semantics></math> in the complex plane, given by the complex points <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mi>s</mi> </msub> <mo>=</mo> <msup> <mrow> <mi mathvariant="normal">e</mi> </mrow> <mrow> <mn>2</mn> <mi mathvariant="normal">i</mi> <mo>(</mo> <mi>s</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics></math>.</p> Full article ">Figure 3
<p>Zeros of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>8</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>), with the Legendre weight <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, lie in the convex hull of the rays (<b>left</b>) and on the concentric circles (<b>right</b>).</p> Full article ">Figure 4
<p>Zeros of the orthogonal polynomials <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math> in Example 3.</p> Full article ">Figure 5
<p>Zeros of the orthogonal polynomials <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>7</mn> </mrow> </semantics></math> in Example 3.</p> Full article ">Figure 6
<p>Zeros of the orthogonal polynomials <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (brown), <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (red) and <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (green) in Example 4.</p> Full article ">Figure 7
<p>Zeros of polynomials of degree <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> (<b>right</b>) for Chebyshev weight of the first kind on <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> rays.</p> Full article ">Figure 8
<p>Zeros of polynomials of degree <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>18</mn> </mrow> </semantics></math> (<b>right</b>) for Chebyshev weight of the second kind on <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> rays.</p> Full article ">Figure 9
<p>Zeros of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>10</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>) in Example 6.</p> Full article ">Figure 10
<p>Zeros of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>20</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mn>40</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>) in Example 6.</p> Full article ">
Open AccessArticle
Twofold Auxiliary Information Under Two-Phase Sampling: An Improved Family of Double-Transformed Variance Estimators
by
Umer Daraz, Della Agustiana, Jinbiao Wu and Walid Emam
Axioms 2025, 14(1), 64; https://doi.org/10.3390/axioms14010064 - 16 Jan 2025
Abstract
Outlier values and rankings are important for emphasizing data distribution variability, which improves the accuracy and effectiveness of variance estimations. To enhance the estimation of finite population variance in a two-phase sampling framework, this study presents an improved class of double exponential-type estimators
[...] Read more.
Outlier values and rankings are important for emphasizing data distribution variability, which improves the accuracy and effectiveness of variance estimations. To enhance the estimation of finite population variance in a two-phase sampling framework, this study presents an improved class of double exponential-type estimators by utilizing the outlier values and ranks of an auxiliary variable. A theoretical analysis is conducted to derive the biases and mean squared errors (MSEs) of these estimators using first-order approximations. A comprehensive simulation study is then performed to analyze the performance of the proposed estimators. The results clearly show that the new estimators provide more precise estimates, achieving a higher percentage relative efficiency (PRE) across all simulated scenarios. Furthermore, three data sets are analyzed to further confirm the efficiency of the proposed estimators as compared to other existing estimators. These results emphasize the potential of the proposed class of estimators to optimize variance estimation techniques, making it a more cost-effective and accurate choice for researchers using two-phase sampling in a variety of domains.
Full article
Open AccessArticle
Effects of Predation-Induced Emigration on a Landscape Ecological Model
by
James T. Cronin, Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji and Xiaohuan Xue
Axioms 2025, 14(1), 63; https://doi.org/10.3390/axioms14010063 - 16 Jan 2025
Abstract
►▼
Show Figures
Predators impact prey populations directly through consumption and indirectly via trait-mediated effects like predator-induced emigration (PIE), where prey alter movement due to predation risk. While PIE can significantly influence prey dynamics, its combined effect with direct predation in fragmented habitats is underexplored. Habitat
[...] Read more.
Predators impact prey populations directly through consumption and indirectly via trait-mediated effects like predator-induced emigration (PIE), where prey alter movement due to predation risk. While PIE can significantly influence prey dynamics, its combined effect with direct predation in fragmented habitats is underexplored. Habitat fragmentation reduces viable habitats and isolates populations, necessitating an understanding of these interactions for conservation. In this paper, we present a reaction–diffusion model to investigate prey persistence under both direct predation and PIE in fragmented landscapes. The model considers prey growing logistically within a bounded habitat patch surrounded by a hostile matrix. Prey move via unbiased random walks internally but exhibit biased movement at habitat boundaries influenced by predation risk. Predators are assumed constant, operating on a different timescale. We examine three predation functional responses—constant yield, Holling Type I, and Holling Type III—and three emigration patterns: density-independent, positive density-dependent, and negative density-dependent emigration. Using the method of sub- and supersolutions, we establish conditions for the existence and multiplicity of positive steady-state solutions. Numerical simulations in one-dimensional habitats further elucidate the structure of these solutions. Our findings demonstrate that the interplay between direct predation and PIE crucially affects prey persistence in fragmented habitats. Depending on the functional response and emigration pattern, PIE can either mitigate or amplify the impact of direct predation. This underscores the importance of incorporating both direct and indirect predation effects in ecological models to better predict species dynamics and inform conservation strategies in fragmented landscapes.
Full article
Figure 1
Figure 1
<p>An expected bifurcation diagram for Case <span class="html-italic">A</span> constant-yield predation.</p> Full article ">Figure 2
<p>Bifurcation diagram exhibiting a patch level Allee effect.</p> Full article ">Figure 3
<p>An expected bifurcation diagram for Case <span class="html-italic">B</span> constant-effort predation with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> </mrow> </semantics></math> (DIE) or <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (+DDE).</p> Full article ">Figure 4
<p>Variation of bifurcation diagrams when <math display="inline"><semantics> <mi>μ</mi> </semantics></math> varies for Case <span class="html-italic">B</span> constant-effort predation, where <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <msub> <mi>μ</mi> <mn>2</mn> </msub> <mo><</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo><</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 5
<p>Expected bifurcation diagrams for Case <span class="html-italic">B</span> constant-effort predation when <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> </mrow> </semantics></math> (−DDE) with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math> in (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math> in (<b>b</b>).</p> Full article ">Figure 6
<p>Expected bifurcation diagram for Case <span class="html-italic">B</span> constant-effort predation for any DDE and when <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 7
<p>Occurrence of an S-shaped bifurcation diagram for Case C prey switching predation for any DDE form.</p> Full article ">Figure 8
<p>Shapes of <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> in the constant-yield predation case: <math display="inline"><semantics> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> Full article ">Figure 9
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (DIE). Note that the dashed line is for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>17</mn> </mrow> </semantics></math>, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 10
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (+DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 11
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 12
<p>Shapes of <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> in the case of constant-effort predation (<math display="inline"><semantics> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> Full article ">Figure 13
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (DIE). Note that the dashed line is for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 14
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (+DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 15
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 16
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>10</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>). Note that the dashed lines represent <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.28</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, respectively, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 17
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (DIE). Note that the dashed lines represent <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>16.39</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>22</mn> </mrow> </semantics></math>, respectively, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 18
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (+DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 19
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 20
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>30</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 21
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>40</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>). Note that the dashed lines represent <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2.11</mn> </mrow> </semantics></math> & <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>13.35</mn> </mrow> </semantics></math>, respectively, and red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 22
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>80</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>26</mn> </mrow> </semantics></math>. Note that the dashed line represents <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>31.10</mn> </mrow> </semantics></math>, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 23
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>80</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>26</mn> </mrow> </semantics></math>. Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.003</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>, purple <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p> Full article ">Figure 24
<p>The shape of the symmetric positive solutions of (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>).</p> Full article ">Figure 25
<p>The shape of <span class="html-italic">f</span> along with the values of <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math>.</p> Full article ">
<p>An expected bifurcation diagram for Case <span class="html-italic">A</span> constant-yield predation.</p> Full article ">Figure 2
<p>Bifurcation diagram exhibiting a patch level Allee effect.</p> Full article ">Figure 3
<p>An expected bifurcation diagram for Case <span class="html-italic">B</span> constant-effort predation with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> </mrow> </semantics></math> (DIE) or <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (+DDE).</p> Full article ">Figure 4
<p>Variation of bifurcation diagrams when <math display="inline"><semantics> <mi>μ</mi> </semantics></math> varies for Case <span class="html-italic">B</span> constant-effort predation, where <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <msub> <mi>μ</mi> <mn>2</mn> </msub> <mo><</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo><</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 5
<p>Expected bifurcation diagrams for Case <span class="html-italic">B</span> constant-effort predation when <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> </mrow> </semantics></math> (−DDE) with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math> in (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math> in (<b>b</b>).</p> Full article ">Figure 6
<p>Expected bifurcation diagram for Case <span class="html-italic">B</span> constant-effort predation for any DDE and when <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 7
<p>Occurrence of an S-shaped bifurcation diagram for Case C prey switching predation for any DDE form.</p> Full article ">Figure 8
<p>Shapes of <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> in the constant-yield predation case: <math display="inline"><semantics> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> Full article ">Figure 9
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (DIE). Note that the dashed line is for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>17</mn> </mrow> </semantics></math>, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 10
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (+DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 11
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 12
<p>Shapes of <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> in the case of constant-effort predation (<math display="inline"><semantics> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> Full article ">Figure 13
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (DIE). Note that the dashed line is for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 14
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (+DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 15
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 16
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>10</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>). Note that the dashed lines represent <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.28</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, respectively, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 17
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (DIE). Note that the dashed lines represent <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>16.39</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>22</mn> </mrow> </semantics></math>, respectively, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 18
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (+DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 19
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 20
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>30</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>). Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 21
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>40</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>). Note that the dashed lines represent <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2.11</mn> </mrow> </semantics></math> & <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>13.35</mn> </mrow> </semantics></math>, respectively, and red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 22
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>80</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>26</mn> </mrow> </semantics></math>. Note that the dashed line represents <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>31.10</mn> </mrow> </semantics></math>, red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and black <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>.</p> Full article ">Figure 23
<p>Bifurcation diagram of positive solutions for (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mn>80</mn> <mi>u</mi> </mrow> </mfrac> </mstyle> <mo>+</mo> <mi>μ</mi> <mi>c</mi> </mrow> </semantics></math> (−DDE with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>26</mn> </mrow> </semantics></math>. Note that red represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, blue <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.003</mn> </mrow> </semantics></math>, green <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math>, purple <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and orange <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p> Full article ">Figure 24
<p>The shape of the symmetric positive solutions of (<a href="#FD7-axioms-14-00063" class="html-disp-formula">7</a>).</p> Full article ">Figure 25
<p>The shape of <span class="html-italic">f</span> along with the values of <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>r</mi> <mn>2</mn> </msub> </semantics></math>.</p> Full article ">
Open AccessArticle
An Improvement of the Lower Bound on the Maximum Number of Halving Lines for Sets in the Plane with an Odd Number of Points
by
Javier Rodrigo, Mariló López, Danilo Magistrali and Estrella Alonso
Axioms 2025, 14(1), 62; https://doi.org/10.3390/axioms14010062 - 16 Jan 2025
Abstract
In this paper, we give examples that improve the lower bound on the maximum number of halving lines for sets in the plane with 35, 59, 95, and 97 points and, as a consequence, we improve the current best upper bound of the
[...] Read more.
In this paper, we give examples that improve the lower bound on the maximum number of halving lines for sets in the plane with 35, 59, 95, and 97 points and, as a consequence, we improve the current best upper bound of the rectilinear crossing number for sets in the plane with 35, 59, 95, and 97 points, provided that a conjecture included in the literature is true. As another consequence, we also improve the lower bound on the maximum number of halving pseudolines for sets in the plane with 35 points. These examples, and the recursive bounds for the maximum number of halving lines for sets with an odd number of points achieved, give a new insight in the study of the rectilinear crossing number problem, one of the most challenging tasks in Discrete Geometry. With respect to this problem, it is conjectured that, for all n multiples of 3, there are 3-symmetric sets of n points for which the rectilinear crossing number is attained.
Full article
(This article belongs to the Special Issue Trends in Differential Geometry and Algebraic Topology)
►▼
Show Figures
Figure 1
Open AccessFeature PaperArticle
Homogeneous Structures and Homogeneous Geodesics of the Hyperbolic Oscillator Group
by
Giovanni Calvaruso, Amirhesam Zaeim, Mehdi Jafari and Moslem Baghgoli
Axioms 2025, 14(1), 61; https://doi.org/10.3390/axioms14010061 - 15 Jan 2025
Abstract
In this paper, we study some homogeneity properties of a semi-direct extension of the Heisenberg group, known in literature as the hyperbolic oscillator (or Boidol) group, equipped with the left-invariant metrics corresponding to the ones of the oscillator group. We identify the naturally
[...] Read more.
In this paper, we study some homogeneity properties of a semi-direct extension of the Heisenberg group, known in literature as the hyperbolic oscillator (or Boidol) group, equipped with the left-invariant metrics corresponding to the ones of the oscillator group. We identify the naturally reductive case by the existence of the corresponding special homogeneous structures. For the cases where these special homogeneous structures do not exist, we exhibit a complete description of the homogeneous geodesics.
Full article
(This article belongs to the Section Geometry and Topology)
Open AccessArticle
Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation
by
Mauricio Contreras González, Roberto Ortiz Herrera and José González Suárez
Axioms 2025, 14(1), 60; https://doi.org/10.3390/axioms14010060 - 15 Jan 2025
Abstract
This paper explores the implications of modifying the canonical Heisenberg commutation relations over two simple systems, such as the free particle and the tunnel effect generated by a step-like potential. The modified commutation relations include position-dependent and momentum-dependent terms analyzed separately. For the
[...] Read more.
This paper explores the implications of modifying the canonical Heisenberg commutation relations over two simple systems, such as the free particle and the tunnel effect generated by a step-like potential. The modified commutation relations include position-dependent and momentum-dependent terms analyzed separately. For the position deformation case, the corresponding free wave functions are sinusoidal functions with a variable wave vector . In the momentum deformation case, the wave function has the usual sinusoidal behavior, but the energy spectrum becomes non-symmetric in terms of momentum. Tunneling probabilities depend on the deformation strength for both cases. Also, surprisingly, the quantum mechanical model generated by these modified commutation relations is related to the Black–Scholes model in finance. In fact, by taking a particular form of a linear position deformation, one can derive a Black–Scholes equation for the wave function when an external electromagnetic potential is acting on the particle. In this way, the Scholes model can be interpreted as a quantum-deformed model. Furthermore, by identifying the position coordinate x in quantum mechanics with the underlying asset S, which in finance satisfies stochastic dynamics, this analogy implies that the Black–Scholes equation becomes a quantum mechanical system defined over a random spatial geometry. If the spatial coordinate oscillates randomly about its mean value, the quantum particle’s mass would correspond to the inverse of the variance of this stochastic coordinate. Further, because this random geometry is nothing more than gravity at the microscopic level, the Black–Scholes equation becomes a possible simple model for understanding quantum gravity.
Full article
(This article belongs to the Section Mathematical Physics)
►▼
Show Figures
Figure 1
Figure 1
<p>Free wave function for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mo>−</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mi>α</mi> </mfrac> </mstyle> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 2
<p>A step potential for the Schrödinger equation.</p> Full article ">Figure 3
<p>The red curve shows the wave function <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> associated to the step-function potential with <math display="inline"><semantics> <mrow> <mi>E</mi> <mo><</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mo>−</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mi>α</mi> </mfrac> </mstyle> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> </mrow> </semantics></math>.</p> Full article ">Figure 4
<p>Left side: wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msup> <mo>Ψ</mo> <mo>+</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>></mo> <mn>0</mn> <mspace width="4pt"/> </mrow> </semantics></math> for the deformed case (red curve) and the non-deformed case <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>0</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (blue curve). Right side: effective wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mo>+</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> of the deformed case (red curve) and the non-deformed case <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>0</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (blue curve) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>. The parameter values are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 5
<p>Left side: the free wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>20</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> </mrow> </semantics></math>. The right side is the same wave function in the range <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>200</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>200</mn> </mrow> </semantics></math>. Note that <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> is well defined in all real axes because the singular regular point <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> lies on the imaginary axis. The parameter values are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> Full article ">Figure 6
<p>The free wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Note how the wave shortens its wavelength as it approaches the <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> point. The parameter values are <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>5</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mspace width="4pt"/> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mspace width="4pt"/> </mrow> </semantics></math>. For <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>x</mi> <mo><</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mspace width="4pt"/> </mrow> </semantics></math>, the wave function becomes complex.</p> Full article ">Figure 7
<p>The free wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>4</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mo>−</mo> <mn>20</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Again, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>4</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> is well defined in all real axes because the singular regular point <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> lies on the imaginary axis. The parameter values are <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>5</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mspace width="4pt"/> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mspace width="4pt"/> </mrow> </semantics></math>.</p> Full article ">Figure 8
<p>Left side: deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mo>Ψ</mo> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Right side: effective deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the same range. Note that <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> becomes constant for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, whereas <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> goes to zero. The parameter values are <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>5</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mspace width="4pt"/> </mrow> </semantics></math>.</p> Full article ">Figure 9
<p>Left side: the deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mo>Ψ</mo> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Right side: effective deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the same range. The parameter values are those of <a href="#axioms-14-00060-f008" class="html-fig">Figure 8</a>. Again, <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> becomes constant for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, whereas <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> goes to zero.</p> Full article ">Figure 10
<p>Left figure: energy spectrum <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> for the non-deformed case. Note that it is symmetric in terms of the momentum. Right figure: energy spectrum <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> for the deformed case. Here, the spectrum is not symmetric. The parameter values are <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 11
<p>Comparison between the deformed (red curve) and non-deformed (blue curve) decay factors for <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mspace width="4pt"/> </mrow> </semantics></math> in the linear momentum deformation case. Left plot: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>ℏ</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; middle plot: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>ℏ</mo> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>; right plot: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>ℏ</mo> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> Full article ">Figure 12
<p>Deformed free particle energy spectrum as a function of the momentum <span class="html-italic">p</span> for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (left side figure) and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> (right side figure). The mass value is <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> Full article ">Figure 13
<p>Comparison between the deformed (red curve) and non-deformed (blue curve) decay factors for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Left figure: <math display="inline"><semantics> <mrow> <msqrt> <mi>β</mi> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; right figure: <math display="inline"><semantics> <mrow> <msqrt> <mi>β</mi> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>.</p> Full article ">Figure 14
<p>Comparison between the deformed (red curve) and non-deformed (blue curve) decay factors for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Left figure: <math display="inline"><semantics> <mrow> <msqrt> <mrow> <mo>|</mo> <mi>β</mi> <mo>|</mo> </mrow> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; right figure: <math display="inline"><semantics> <mrow> <msqrt> <mrow> <mo>|</mo> <mi>β</mi> <mo>|</mo> </mrow> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>.</p> Full article ">
<p>Free wave function for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mo>−</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mi>α</mi> </mfrac> </mstyle> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 2
<p>A step potential for the Schrödinger equation.</p> Full article ">Figure 3
<p>The red curve shows the wave function <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> associated to the step-function potential with <math display="inline"><semantics> <mrow> <mi>E</mi> <mo><</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mo>−</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mi>α</mi> </mfrac> </mstyle> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> </mrow> </semantics></math>.</p> Full article ">Figure 4
<p>Left side: wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msup> <mo>Ψ</mo> <mo>+</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>></mo> <mn>0</mn> <mspace width="4pt"/> </mrow> </semantics></math> for the deformed case (red curve) and the non-deformed case <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>0</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (blue curve). Right side: effective wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mo>+</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> of the deformed case (red curve) and the non-deformed case <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>0</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (blue curve) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>. The parameter values are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 5
<p>Left side: the free wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>20</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> </mrow> </semantics></math>. The right side is the same wave function in the range <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>200</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>200</mn> </mrow> </semantics></math>. Note that <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> is well defined in all real axes because the singular regular point <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> lies on the imaginary axis. The parameter values are <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> Full article ">Figure 6
<p>The free wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Note how the wave shortens its wavelength as it approaches the <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> point. The parameter values are <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>5</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mspace width="4pt"/> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mspace width="4pt"/> </mrow> </semantics></math>. For <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>x</mi> <mo><</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mspace width="4pt"/> </mrow> </semantics></math>, the wave function becomes complex.</p> Full article ">Figure 7
<p>The free wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>4</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mo>−</mo> <mn>20</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>20</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Again, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mo>Ψ</mo> <mn>4</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> is well defined in all real axes because the singular regular point <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> lies on the imaginary axis. The parameter values are <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>5</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mspace width="4pt"/> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mspace width="4pt"/> </mrow> </semantics></math>.</p> Full article ">Figure 8
<p>Left side: deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mo>Ψ</mo> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Right side: effective deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the same range. Note that <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> becomes constant for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, whereas <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>2</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> goes to zero. The parameter values are <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>5</mn> <mspace width="4pt"/> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mspace width="4pt"/> </mrow> </semantics></math>.</p> Full article ">Figure 9
<p>Left side: the deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mo>Ψ</mo> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the range <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>10</mn> <mspace width="4pt"/> </mrow> </semantics></math>. Right side: effective deformed wave function <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> (red curve) and the non-deformed one (blue curve) in the same range. The parameter values are those of <a href="#axioms-14-00060-f008" class="html-fig">Figure 8</a>. Again, <math display="inline"><semantics> <mrow> <msubsup> <mo>Ψ</mo> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> becomes constant for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, whereas <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msubsup> <mover accent="true"> <mo>Ψ</mo> <mo>˜</mo> </mover> <mn>3</mn> <mo>+</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mspace width="4pt"/> </mrow> </semantics></math> goes to zero.</p> Full article ">Figure 10
<p>Left figure: energy spectrum <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> for the non-deformed case. Note that it is symmetric in terms of the momentum. Right figure: energy spectrum <math display="inline"><semantics> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> for the deformed case. Here, the spectrum is not symmetric. The parameter values are <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> Full article ">Figure 11
<p>Comparison between the deformed (red curve) and non-deformed (blue curve) decay factors for <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mspace width="4pt"/> </mrow> </semantics></math> in the linear momentum deformation case. Left plot: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>ℏ</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; middle plot: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>ℏ</mo> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>; right plot: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>ℏ</mo> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> Full article ">Figure 12
<p>Deformed free particle energy spectrum as a function of the momentum <span class="html-italic">p</span> for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (left side figure) and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> (right side figure). The mass value is <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> Full article ">Figure 13
<p>Comparison between the deformed (red curve) and non-deformed (blue curve) decay factors for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Left figure: <math display="inline"><semantics> <mrow> <msqrt> <mi>β</mi> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; right figure: <math display="inline"><semantics> <mrow> <msqrt> <mi>β</mi> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>.</p> Full article ">Figure 14
<p>Comparison between the deformed (red curve) and non-deformed (blue curve) decay factors for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Left figure: <math display="inline"><semantics> <mrow> <msqrt> <mrow> <mo>|</mo> <mi>β</mi> <mo>|</mo> </mrow> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; right figure: <math display="inline"><semantics> <mrow> <msqrt> <mrow> <mo>|</mo> <mi>β</mi> <mo>|</mo> </mrow> </msqrt> <mo>ℏ</mo> <mo>=</mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>.</p> Full article ">
Open AccessArticle
Approximation and the Multidimensional Moment Problem
by
Octav Olteanu
Axioms 2025, 14(1), 59; https://doi.org/10.3390/axioms14010059 - 14 Jan 2025
Abstract
The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose
[...] Read more.
The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire , or on , are considered. Such results are discussed in and in -type spaces, for a large class of measures, for compact subsets of the interval . Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.
Full article
(This article belongs to the Special Issue Numerical Methods and Approximation Theory)
Open AccessArticle
Interior Peak Solutions for a Semilinear Dirichlet Problem
by
Hissah Alharbi, Hibah Alkhuzayyim, Mohamed Ben Ayed and Khalil El Mehdi
Axioms 2025, 14(1), 58; https://doi.org/10.3390/axioms14010058 - 13 Jan 2025
Abstract
In this paper, we consider the semilinear Dirichlet problem , in , on ∂, where is a bounded regular domain in , , is a small positive parameter, and V is a non-constant positive -function on . We construct interior peak solutions with isolated bubbles. This leads to a multiplicity result for . The proof of our results relies on precise expansions of the gradient of the Euler–Lagrange functional associated with , along with a suitable projection of the bubbles. This projection and its associated estimates are new and play a crucial role in tackling such types of problems.
Full article
Open AccessArticle
Quantum–Fractal–Fractional Operator in a Complex Domain
by
Adel A. Attiya, Rabha W. Ibrahim, Ali H. Hakami, Nak Eun Cho and Mansour F. Yassen
Axioms 2025, 14(1), 57; https://doi.org/10.3390/axioms14010057 - 13 Jan 2025
Abstract
In this effort, we extend the fractal–fractional operators into the complex plane together with the quantum calculus derivative to obtain a quantum–fractal–fractional operators (QFFOs). Using this newly created operator, we create an entirely novel subclass of analytical functions in the unit disk. Motivated
[...] Read more.
In this effort, we extend the fractal–fractional operators into the complex plane together with the quantum calculus derivative to obtain a quantum–fractal–fractional operators (QFFOs). Using this newly created operator, we create an entirely novel subclass of analytical functions in the unit disk. Motivated by the concept of differential subordination, we explore the most important geometric properties of this novel operator. This leads to a study on a set of differential inequalities in the open unit disk. We focus on the conditions to obtain a bounded turning function of QFFOs. Some examples are considered, involving special functions like Bessel and generalized hypergeometric functions.
Full article
(This article belongs to the Special Issue Recent Advances in Functional Analysis and Operator Theory)
Open AccessArticle
On the Work of Cartan and Münzner on Isoparametric Hypersurfaces
by
Thomas E. Cecil and Patrick J. Ryan
Axioms 2025, 14(1), 56; https://doi.org/10.3390/axioms14010056 - 13 Jan 2025
Abstract
A hypersurface in a real space form , , or is isoparametric if it has constant principal curvatures. This paper is a survey of the fundamental work of Cartan
[...] Read more.
A hypersurface in a real space form , , or is isoparametric if it has constant principal curvatures. This paper is a survey of the fundamental work of Cartan and Münzner on the theory of isoparametric hypersurfaces in real space forms, in particular, spheres. This work is contained in four papers of Cartan published during the period 1938–1940 and two papers of Münzner that were published in preprint form in the early 1970s and as journal articles in 1980–1981. These papers of Cartan and Münzner have been the foundation of the extensive field of isoparametric hypersurfaces, and they have all been recently translated into English by T. Cecil. The paper concludes with a brief survey of the recently completed classification of isoparametric hypersurfaces in spheres.
Full article
(This article belongs to the Special Issue Advances in Differential Geometry and Singularity Theory, 2nd Edition)
Open AccessArticle
On the Asymptotic Expansions of the (p,k)-Analogues of the Gamma Function and Associated Functions
by
Tomislav Burić
Axioms 2025, 14(1), 55; https://doi.org/10.3390/axioms14010055 - 13 Jan 2025
Abstract
General asymptotic expansion of the -gamma function is obtained and various approaches to this expansion are studied. The numerical precision of the derived asymptotic formulas is shown and compared. Results are applied to the analogues of digamma and
[...] Read more.
General asymptotic expansion of the -gamma function is obtained and various approaches to this expansion are studied. The numerical precision of the derived asymptotic formulas is shown and compared. Results are applied to the analogues of digamma and polygamma functions, and asymptotic expansion of the quotient of two -gamma functions is also derived and analyzed. Various examples and application to the k-Pochhammer symbol are presented.
Full article
(This article belongs to the Special Issue Special Functions and Related Topics)
Open AccessArticle
Goodness-of-Fit Test for the Bivariate Negative Binomial Distribution
by
Francisco Novoa-Muñoz and Juan Pablo Aguirre-González
Axioms 2025, 14(1), 54; https://doi.org/10.3390/axioms14010054 - 12 Jan 2025
Abstract
When modeling real-world data, we face the challenge of determining which probability distribution best represents the data. To address this intricate problem, we rely on goodness-of-fit tests. However, when the data come from a bivariate negative binomial distribution, the literature reveals no existing
[...] Read more.
When modeling real-world data, we face the challenge of determining which probability distribution best represents the data. To address this intricate problem, we rely on goodness-of-fit tests. However, when the data come from a bivariate negative binomial distribution, the literature reveals no existing goodness-of-fit test for this distribution. For this reason, in this article, we propose and study a computationally convenient goodness-of-fit test for the bivariate negative binomial distribution. This test is based on a bootstrap approximation and a parallelization strategy. To this end, we use a reparameterization technique based on the probability generating function and a Cramér-von Mises-type statistic. From the simulation studies, we conclude that the results converge to the established nominal levels as the sample size increases, and in all cases considered, the parametric bootstrap method provides an accurate approximation of the null distribution of the statistic we propose. Additionally, we verify the power of the proposed test, as well as its application to five real datasets. To accelerate the massive computational work, we employ the parallelization strategy that, according to Novoa-Muñoz (2024), was the most efficient among the techniques he analyzed.
Full article
(This article belongs to the Special Issue Advances in Statistical Simulation and Computing)
►▼
Show Figures
Figure A1
Figure A1
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.009425</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A2
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.007500</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A3
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.003200</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A4
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.008492</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A5
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.007543</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A6
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.006492</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A7
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.102950</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A8
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.105000</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A9
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.108800</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A10
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.104990</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A11
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.105984</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A12
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.106939</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A13
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.196475</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A14
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.202500</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A15
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.208475</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A16
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.199475</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A17
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.205476</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A18
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.208408</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.009425</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A2
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.007500</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A3
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.003200</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A4
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.008492</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A5
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.007543</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A6
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.006492</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A7
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.102950</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A8
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.105000</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A9
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.108800</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A10
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.104990</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A11
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.105984</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A12
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.106939</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A13
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.196475</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A14
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.202500</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A15
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.208475</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A16
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.29</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.199475</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A17
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.31</mn> <mo>,</mo> <mn>0.205476</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure A18
<p>Simulation results for the probability of type I error for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>(</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.32</mn> <mo>,</mo> <mn>0.208408</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">
Open AccessArticle
Dynamics of a Fractional-Order Eco-Epidemiological Model with Two Disease Strains in a Predator Population Incorporating Harvesting
by
Moustafa El-Shahed and Mahmoud Moustafa
Axioms 2025, 14(1), 53; https://doi.org/10.3390/axioms14010053 - 11 Jan 2025
Abstract
In this paper, a fractional-order eco-epidemiological model with two disease strains in the predator population incorporating harvesting is formulated and analyzed. The model assumes that the population is divided into a prey population, a susceptible predator population, a predator population infected by the
[...] Read more.
In this paper, a fractional-order eco-epidemiological model with two disease strains in the predator population incorporating harvesting is formulated and analyzed. The model assumes that the population is divided into a prey population, a susceptible predator population, a predator population infected by the first disease, and a predator population infected by the second disease. A mathematical analysis and numerical simulations are performed to explain the dynamics and properties of the proposed fractional-order eco-epidemiological model. The positivity, boundedness, existence, and uniqueness of the solutions are examined. The basic reproduction number and some sufficient conditions for the existence of four equilibrium points are obtained. In addition, some sufficient conditions are proposed to ensure the local and global asymptotic stability of the equilibrium points. Theoretical results are illustrated through numerical simulations, which also highlight the effect of the fractional order.
Full article
(This article belongs to the Special Issue Advances in Dynamical Systems and Control)
►▼
Show Figures
Figure 1
Figure 1
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 2
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>2</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 3
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>3</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 4
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>4</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 5
<p>The 3D plot of the basic reproduction number <math display="inline"><semantics> <msub> <mo>ℜ</mo> <mn>0</mn> </msub> </semantics></math> when the predation rate of susceptible predator (<span class="html-italic">a</span>) and prey harvesting (<span class="html-italic">H</span>) varies.</p> Full article ">
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>1</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 2
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>2</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 3
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>3</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 4
<p>The local asymptotic stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>4</mn> </msub> </semantics></math> for various values of the fractional order <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 5
<p>The 3D plot of the basic reproduction number <math display="inline"><semantics> <msub> <mo>ℜ</mo> <mn>0</mn> </msub> </semantics></math> when the predation rate of susceptible predator (<span class="html-italic">a</span>) and prey harvesting (<span class="html-italic">H</span>) varies.</p> Full article ">
Open AccessSystematic Review
A Systematic Overview of Fuzzy-Random Option Pricing in Discrete Time and Fuzzy-Random Binomial Extension Sensitive Interest Rate Pricing
by
Jorge de Andrés-Sánchez
Axioms 2025, 14(1), 52; https://doi.org/10.3390/axioms14010052 - 10 Jan 2025
Abstract
Since the early 2000s, fuzzy mathematics has fostered a stream of research on the financial valuation of assets incorporating optionality. This paper makes two contributions to this field. First, it conducts a bibliographical analysis of contributions from fuzzy set theory to option pricing,
[...] Read more.
Since the early 2000s, fuzzy mathematics has fostered a stream of research on the financial valuation of assets incorporating optionality. This paper makes two contributions to this field. First, it conducts a bibliographical analysis of contributions from fuzzy set theory to option pricing, focusing on fuzzy-random option pricing (FROP) and its applications in binomial and trinomial lattice approaches. Second, it extends the FROP to yield curve modeling within a binomial framework. The bibliographical analysis followed the PRISMA guidelines and was conducted via the SCOPUS and WoS databases. We present a structured review of papers on FROP in discrete time (FROPDT), identifying the principal papers and outlets. The findings reveal that this focus has been applied to price options on stocks, stock indices, and real options. However, the exploration of its application to the term structure of interest-sensitive interest rate assets is very rare. To address this gap, we develop a fuzzy-random extension of the Ho–Lee term structure model, applying it to the European interbank market and price caplet options.
Full article
(This article belongs to the Special Issue New Perspectives in Fuzzy Sets and Their Applications, 2nd Edition)
►▼
Show Figures
Figure 1
Figure 1
<p>PRISMA guidelines followed to choose papers on fuzzy-random option pricing and fuzzy-binomial option pricing papers to review. Source: based on [<a href="#B31-axioms-14-00052" class="html-bibr">31</a>].</p> Full article ">Figure 2
<p>Temporal evolution of contributions to FROPDT from 2000.</p> Full article ">Figure 3
<p>Number of contributions to fuzzy-random pricing in discrete time by country since 2000.</p> Full article ">Figure 4
<p>Recombinant binomial lattices of short-term interest rates and Arrow–Debreu assets. Note: <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> represents the interest rate in the <span class="html-italic">j</span>th state of the <span class="html-italic">i</span>th period, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>d</mi> </mrow> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> represents the price of an Arrow–Debreu asset that matures in the <span class="html-italic">i</span>th period and is in the <span class="html-italic">j</span>th state.</p> Full article ">Figure 5
<p>Fuzzy volatility of one-month interest rates in the European interbank market on 17 March 2023.</p> Full article ">Figure 6
<p>Fuzzy-binomial tree of the interbank European market on 17 March 2023 and one-month rates during the next year. Note: values are presented as percentages.</p> Full article ">Figure 7
<p>Shapes of the membership functions for the prices of caplets on monthly interest rates over a notional amount of 100,000 monetary units, <span class="html-italic">K</span> = 2.65%, and several maturities.</p> Full article ">Figure 8
<p>Representation of <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>, and the maximum errors of the triangular approximate. Note: The solid line represents the fitted volatility <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> </semantics></math>, and the dashed line represents the triangular approximate <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>.</p> Full article ">Figure 9
<p>Representation of <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> <mo>,</mo> <mo> </mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> </semantics></math>, their triangular approximations <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> <mo>,</mo> </mrow> </semantics></math> and maximum errors of the triangular approximate. Note: The solid line represents <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> <mo> </mo> </mrow> </semantics></math>and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> </semantics></math>, and the dashed line represents the triangular approximates <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>.</p> Full article ">Figure 10
<p>Representation of the fuzzy prices of the caplets with maturities at 1 month and 9 months, their triangular approximations and the maximum errors. Note: The solid line represents the fuzzy price in <a href="#axioms-14-00052-f007" class="html-fig">Figure 7</a>, and the dashed line represents the triangular approximation.</p> Full article ">
<p>PRISMA guidelines followed to choose papers on fuzzy-random option pricing and fuzzy-binomial option pricing papers to review. Source: based on [<a href="#B31-axioms-14-00052" class="html-bibr">31</a>].</p> Full article ">Figure 2
<p>Temporal evolution of contributions to FROPDT from 2000.</p> Full article ">Figure 3
<p>Number of contributions to fuzzy-random pricing in discrete time by country since 2000.</p> Full article ">Figure 4
<p>Recombinant binomial lattices of short-term interest rates and Arrow–Debreu assets. Note: <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> represents the interest rate in the <span class="html-italic">j</span>th state of the <span class="html-italic">i</span>th period, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>d</mi> </mrow> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> represents the price of an Arrow–Debreu asset that matures in the <span class="html-italic">i</span>th period and is in the <span class="html-italic">j</span>th state.</p> Full article ">Figure 5
<p>Fuzzy volatility of one-month interest rates in the European interbank market on 17 March 2023.</p> Full article ">Figure 6
<p>Fuzzy-binomial tree of the interbank European market on 17 March 2023 and one-month rates during the next year. Note: values are presented as percentages.</p> Full article ">Figure 7
<p>Shapes of the membership functions for the prices of caplets on monthly interest rates over a notional amount of 100,000 monetary units, <span class="html-italic">K</span> = 2.65%, and several maturities.</p> Full article ">Figure 8
<p>Representation of <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>, and the maximum errors of the triangular approximate. Note: The solid line represents the fitted volatility <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> </semantics></math>, and the dashed line represents the triangular approximate <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>.</p> Full article ">Figure 9
<p>Representation of <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> <mo>,</mo> <mo> </mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> </semantics></math>, their triangular approximations <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> <mo>,</mo> </mrow> </semantics></math> and maximum errors of the triangular approximate. Note: The solid line represents <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> <mo> </mo> </mrow> </semantics></math>and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> </semantics></math>, and the dashed line represents the triangular approximates <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,0</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mover accent="true"> <mrow> <msub> <mrow> <mi>r</mi> </mrow> <mrow> <mn>11,11</mn> </mrow> </msub> </mrow> <mo>~</mo> </mover> </mrow> <mrow> <mi>T</mi> </mrow> </msup> </mrow> </semantics></math>.</p> Full article ">Figure 10
<p>Representation of the fuzzy prices of the caplets with maturities at 1 month and 9 months, their triangular approximations and the maximum errors. Note: The solid line represents the fuzzy price in <a href="#axioms-14-00052-f007" class="html-fig">Figure 7</a>, and the dashed line represents the triangular approximation.</p> Full article ">
Open AccessArticle
The Axiomatic Characterization of the Grey Shapley Value
by
Mehmet Gençtürk, Mahmut Sami Öztürk and Osman Palancı
Axioms 2025, 14(1), 51; https://doi.org/10.3390/axioms14010051 - 10 Jan 2025
Abstract
►▼
Show Figures
One of the most significant solution concepts in cooperative grey game theory is the grey Shapley value. This value is a fascinating one among the models and methods of operations research, and has been the subject of extensive study by other researchers. The
[...] Read more.
One of the most significant solution concepts in cooperative grey game theory is the grey Shapley value. This value is a fascinating one among the models and methods of operations research, and has been the subject of extensive study by other researchers. The objective of this study is to characterize and redefine this value in cooperative games where coalition values are grey numbers. In this study, the grey Shapley value is characterized by the following axioms: -gain loss, -null player, and -differential marginality. Finally, this study concludes with an investigation of some applications involving production costs. This study is based on an investigation of the costs incurred when milk producers collaborate.
Full article
Figure 1
Open AccessArticle
Applications of Lucas Balancing Polynomial to Subclasses of Bi-Starlike Functions
by
Gangadharan Murugusundaramoorthy, Luminita-Ioana Cotîrlă, Daniel Breaz and Sheza M. El-Deeb
Axioms 2025, 14(1), 50; https://doi.org/10.3390/axioms14010050 - 10 Jan 2025
Abstract
The Lucas balancing polynomial is linked to a family of bi-starlike functions denoted as , which we present and examine in this work. These functions are defined with respect to symmetric
[...] Read more.
The Lucas balancing polynomial is linked to a family of bi-starlike functions denoted as , which we present and examine in this work. These functions are defined with respect to symmetric conjugate points. Coefficient estimates are obtained for functions in this family. The classical Fekete–Szegö inequality of functions in this family is also obtained.
Full article
(This article belongs to the Special Issue New Developments in Geometric Function Theory, 3rd Edition)
Open AccessArticle
On Equilibrium Problem for T-Shape Elastic Structure
by
Alexander Khludnev
Axioms 2025, 14(1), 49; https://doi.org/10.3390/axioms14010049 - 10 Jan 2025
Abstract
►▼
Show Figures
This paper is concerned with an equilibrium problem for an elastic structure consisting of a plate and an elastic beam connected to each other at a given point. We consider two cases: In the first one, the elastic beam is connected to a
[...] Read more.
This paper is concerned with an equilibrium problem for an elastic structure consisting of a plate and an elastic beam connected to each other at a given point. We consider two cases: In the first one, the elastic beam is connected to a rigid part of the elastic plate; in the second case, contact occurs between two elastic bodies. The elastic plate may contain a thin rigid delaminated inclusion. Neumann-type boundary conditions are considered at the external boundary of the plate. The existence of a solution to the considered problems is proven. A sufficient and necessary condition imposed onto the external forces for the solvability of the problems is found. Passages to the limit with respect to the rigidity parameter of the elastic beam are justified. For all problems, we analyze variational statements as well as differential ones.
Full article
Figure 1
Figure 1
<p>Volume rigid inclusion in the plate.</p> Full article ">Figure 2
<p>Contact between the plate and beam at point <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 3
<p>Thin inclusion in the plate.</p> Full article ">
<p>Volume rigid inclusion in the plate.</p> Full article ">Figure 2
<p>Contact between the plate and beam at point <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>.</p> Full article ">Figure 3
<p>Thin inclusion in the plate.</p> Full article ">
Journal Menu
► ▼ Journal Menu-
- Axioms Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
AppliedMath, Axioms, Fractal Fract, MCA, Mathematics, Symmetry
Fractional Calculus, Symmetry Phenomenon and Probability Theory for PDEs, and ODEs
Topic Editors: Renhai Wang, Junesang ChoiDeadline: 30 April 2025
Topic in
Axioms, Computation, Fractal Fract, Mathematics, Symmetry
Fractional Calculus: Theory and Applications, 2nd Edition
Topic Editors: António Lopes, Liping Chen, Sergio Adriani David, Alireza AlfiDeadline: 31 May 2025
Topic in
Algorithms, Axioms, Fractal Fract, Mathematics, Symmetry
Fractal and Design of Multipoint Iterative Methods for Nonlinear Problems
Topic Editors: Xiaofeng Wang, Fazlollah SoleymaniDeadline: 30 June 2025
Topic in
AppliedMath, Axioms, Fractal Fract, Mathematics, Symmetry
Modeling, Stability, and Control of Dynamic Systems and Their Applications
Topic Editors: Quanxin Zhu, Alexander ZaslavskiDeadline: 31 July 2025
Conferences
Special Issues
Special Issue in
Axioms
Advances in Dynamical Systems and Control
Guest Editors: Nohe R. Cazarez-Castro, Selene L. Cardenas-Maciel, Jorge A. Lopez-RenteriaDeadline: 20 January 2025
Special Issue in
Axioms
Theory of Functions and Applications, 2nd Edition
Guest Editor: Inna KalchukDeadline: 20 January 2025
Special Issue in
Axioms
Advances in Fuzzy Preference Relations and Decision-Making Methods with Applications
Guest Editors: Zhenyu Zhang, Vladimir Simic, Jing LiDeadline: 27 January 2025
Special Issue in
Axioms
Advancements in Applied Mathematics and Computational Physics
Guest Editors: Branislav Randjelovic, Branislav VlahovicDeadline: 28 January 2025