Does Genetic Predisposition Explain the “Immigrant Health Paradox”? Evidence for Non-Hispanic White Older Adults in the U.S.
<p>Unstandardized coefficients from the OLS regression models predicting polygenic indices (PGIs) for selected traits.</p> "> Figure A1
<p>Relative Risk Ratio coefficients for being foreign-born (vs. U.S.-born) from the multinominal logistic regression models predicting selected traits. Model 1 includes age, age squared, sex, region, and year of survey; Model 2: Model 1 + PGI and 10 principal component variables; Model 3: Model 2 + education (in years).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. Nativity Differences in Genetic Predisposition
3.3. Genetic Predisposition and Nativity Differences in Health-Related Outcomes
3.4. Robustness Checks
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Height | BMI | Ever Smoked | Cigarettes per Day | Cognitive Function | Major Depression |
---|---|---|---|---|---|---|
(Ref. US-born) | ||||||
Foreign-born | 0.047 | −0.078 † | −0.039 | −0.109 * | 0.134 ** | 0.026 |
(0.046) | (0.045) | (0.046) | (0.049) | (0.045) | (0.046) | |
10 PCs | yes | yes | yes | yes | yes | yes |
Constant | −0.003 | 0.000 | −0.001 | −0.002 | −0.001 | −0.002 |
(0.009) | (0.008) | (0.009) | (0.009) | (0.009) | (0.009) | |
N | 11,667 | 11,667 | 11,667 | 11,667 | 11,667 | 11,667 |
R-squared | 0.179 | 0.192 | 0.143 | 0.041 | 0.184 | 0.152 |
Variables | Height | BMI | Ever Smoked | Cigarettes per Day | Cognitive Function | Major Depression |
---|---|---|---|---|---|---|
Panel A: One-to-one matching | ||||||
(Ref. US-born) | ||||||
Foreign-born | 0.023 | −0.082 | −0.077 | −0.166 ** | 0.198 *** | −0.011 |
(0.070) | (0.061) | (0.055) | (0.064) | (0.060) | (0.051) | |
Panel B: One-to-six matching | ||||||
(Ref. US-born) | ||||||
Foreign-born | 0.028 | −0.042 | −0.056 | −0.113 * | 0.193 *** | −0.008 |
(0.054) | (0.053) | (0.053) | (0.055) | (0.053) | (0.045) | |
N | 11,667 | 11,667 | 11,667 | 11,667 | 11,667 | 11,667 |
N1 (foreign-born) | 414 | 414 | 414 | 414 | 414 | 414 |
N0 (US-born) | 11,253 | 11,253 | 11,253 | 11,253 | 11,253 | 11,253 |
Variables | Height | Cognitive Score | BMI | Depressive Symptoms |
---|---|---|---|---|
(Ref. U.S.-born) | ||||
Foreign-born | −0.007 * | −0.396 ** | −0.638 ** | −0.068 |
(0.003) | (0.146) | (0.231) | (0.093) | |
Age | 0.002 *** | 0.222 *** | 0.369 *** | −0.157 *** |
(0.001) | (0.034) | (0.057) | (0.021) | |
Age squared | −0.000 *** | −0.002 *** | −0.003 *** | 0.001 *** |
(0.000) | (0.000) | (0.000) | (0.000) | |
(Ref. Male) | ||||
Female | −0.152 *** | 1.117 *** | −0.594 *** | 0.296 *** |
(0.001) | (0.053) | (0.098) | (0.033) | |
(Ref. Northeast) | ||||
Midwest | −0.001 | −0.103 | 0.547 *** | −0.051 |
(0.002) | (0.084) | (0.164) | (0.054) | |
South | 0.004 * | −0.165 * | −0.123 | 0.099 |
(0.002) | (0.080) | (0.154) | (0.052) | |
West | 0.005 ** | 0.047 | −0.424 * | 0.111 |
(0.002) | (0.091) | (0.168) | (0.059) | |
PGI (respective) | 0.031 *** | 0.384 *** | 1.792 *** | 0.165 *** |
(0.001) | (0.030) | (0.056) | (0.019) | |
10 PCs | Yes | Yes | Yes | Yes |
Education (yrs) | - | 0.319 *** | −0.142 *** | −0.120 *** |
(0.011) | (0.021) | (0.007) | ||
Constant | 1.735 *** | 3.267 * | 21.089 *** | 8.043 *** |
(0.023) | (1.280) | (2.049) | (0.725) | |
N | 11,664 | 11,639 | 11,627 | 11,638 |
R-squared | 0.659 | 0.294 | 0.141 | 0.052 |
References
- McAuliffe, M.; Triandafyllidou, A. (Eds.) World Migration Report 2022; International Organization for Migration (IOM): Geneva, Switzerland, 2022. [Google Scholar]
- Castañeda, H.; Holmes, S.M.; Madrigal, D.S.; Young, M.-E.D.; Beyeler, N.; Quesada, J. Immigration as a Social Determinant of Health. Annu. Rev. Public Health 2015, 36, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Borrell, L.N.; Lancet, E.A. Race/Ethnicity and All-Cause Mortality in US Adults: Revisiting the Hispanic Paradox. Am. J. Public Health 2012, 102, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.A.; Ruben, J.D.; Narayan, K.M.V. Health of Foreign-Born People in the United States: A Review. Health Place 2008, 14, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Markides, K.S.; Coreil, J. The Health of Hispanics in the Southwestern United States: An Epidemiologic Paradox. Public Health Rep. 1986, 101, 253. [Google Scholar] [PubMed]
- Hamilton, T.G.; Robert, A. Hummer. Immigration and the Health of U.S. Black Adults: Does Country of Origin Matter? Soc. Sci. Med. 2011, 73, 1551–1560. [Google Scholar] [CrossRef]
- Mehta, N.K.; Elo, I.T.; Engelman, M.; Lauderdale, D.S.; Kestenbaum, B.M. Life Expectancy among US-Born and Foreign-Born Older Adults in the United States: Estimates from Linked Social Security and Medicare Data. Demography 2016, 53, 1109–1134. [Google Scholar] [CrossRef]
- Palarino, J.V. The immigrant health advantage: An examination of African-origin Black immigrants in the United States. Popul. Res. Policy Rev. 2021, 40, 5–929. [Google Scholar] [CrossRef]
- Riosmena, F.; Kuhn, R.; Jochem, W.C. Explaining the Immigrant Health Advantage: Self-Selection and Protection in Health-Related Factors among Five Major National-Origin Immigrant Groups in the United States. Demography 2017, 54, 175–200. [Google Scholar] [CrossRef]
- Ichou, M.; Wallace, M. The healthy immigrant effect: The role of educational selectivity in the good health of migrants. Demogr. Res. 2019, 40, 61–94. [Google Scholar] [CrossRef]
- Shor, E.; Roelfs, D.; Vang, Z.M. The ‘Hispanic Mortality Paradox’ Revisited: Meta-Analysis and Meta-Regression of Life-Course Differentials in Latin American and Caribbean Immigrants’ Mortality. Soc. Sci. Med. 2017, 186, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Vang, Z.M.; Sigouin, J.; Flenon, A.; Gagnon, A. Are Immigrants Healthier than Native-Born Canadians? A Systematic Review of the Healthy Immigrant Effect in Canada. Ethn. Health 2017, 22, 209–241. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.; Kulu, H. Low Immigrant Mortality in England and Wales: A Data Artefact? Soc. Sci. Med. 2014, 120, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Garcia, D.; Bates, L.M. Latino Health Paradoxes: Empirical Evidence, Explanations, Future Research, and Implications. Lat. Os United States Chang. Face Am. 2008, 101–113. [Google Scholar]
- Arenas, E.; Goldman, N.; Pebley, A.R.; Teruel, G. Return Migration to Mexico: Does Health Matter? Demography 2015, 52, 1853–1868. [Google Scholar] [CrossRef]
- Palloni, A.; Arias, E. Paradox Lost: Explaining the Hispanic Adult Mortality Advantage. Demography 2004, 41, 385–415. [Google Scholar] [CrossRef] [PubMed]
- Turra, C.M.; Elo, I.T. The Impact of Salmon Bias on the Hispanic Mortality Advantage: New Evidence from Social Security Data. Popul. Res. Policy Rev. 2008, 27, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Akresh, I.R.; Frank, R. Health Selection among New Immigrants. Am. J. Public Health 2008, 98, 2058–2064. [Google Scholar] [CrossRef] [PubMed]
- Bostean, G. Does Selective Migration Explain the Hispanic Paradox? A Comparative Analysis of Mexicans in the US and Mexico. J. Immigr. Minor. Health 2013, 15, 624–635. [Google Scholar] [CrossRef]
- Crimmins, E.M.; Soldo, B.J.; Kim, J.K.; Alley, D.E. Using Anthropometric Indicators for Mexicans in the United States and Mexico to Understand the Selection of Migrants and the ‘Hispanic Paradox’. Soc. Biol. 2005, 52, 164–177. [Google Scholar] [CrossRef]
- Jasso, G.; Massey, D.S.; Rosenzweig, M.R.; Smith, J.P. Immigrant health: Selectivity and acculturation. In IFS Working Papers No. 04/23; Institute for Fiscal Studies (IFS): London, UK, 2004. [Google Scholar]
- Feliciano, C. Educational Selectivity in US Immigration: How Do Immigrants Compare to Those Left Behind? Demography 2005, 42, 131–152. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, D.W.; Gushulak, B.D. Health screening in immigrants, refugees, and international adoptees. In The Travel and Tropical Medicine Manual, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 260–270. [Google Scholar]
- Fairchild, A.L. Science at the Borders: Immigrant Medical Inspection and the Shaping of the Modern Industrial Labor Force; JHU Press: Baltimore, MD, USA, 2003. [Google Scholar]
- Abraído-Lanza, A.F.; Chao, M.T.; Flórez, K.R. Do Healthy Behaviors Decline with Greater Acculturation?: Implications for the Latino Mortality Paradox. Soc. Sci. Med. 2005, 61, 1243–1255. [Google Scholar] [CrossRef]
- Riosmena, F.; Wong, R.; Palloni, A. Migration Selection, Protection, and Acculturation in Health: A Binational Perspective on Older Adults. Demography 2013, 50, 1039–1064. [Google Scholar] [CrossRef]
- Angel, J.L.; Buckley, C.J.; Sakamoto, A. Duration or Disadvantage? Exploring Nativity, Ethnicity, and Health in Midlife. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2001, 56, S275–S284. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, C. Effects of Immigration and Age on Health of Older People in the United States. J. Appl. Gerontol. 2010, 29, 697–719. [Google Scholar] [CrossRef]
- Hayward, M.D.; Hummer, R.A.; Chiu, C.-T.; González-González, C.; Wong, R. Does the Hispanic Paradox in US Adult Mortality Extend to Disability? Popul. Res. Policy Rev. 2014, 33, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Blue, L.; Fenelon, A. Explaining Low Mortality among US Immigrants Relative to Native-Born Americans: The Role of Smoking. Int. J. Epidemiol. 2011, 40, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Bosdriesz, J.R.; Lichthart, N.; Witvliet, M.I.; Busschers, W.B.; Stronks, K.; Kunst, A.E. Smoking prevalence among migrants in the US compared to the US-born and the population in countries of origin. PLoS ONE 2013, 8, e58654. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, N.L.; Ro, A.; Bostean, G. Smoking selectivity among Mexican immigrants to the United States using binational data, 1999–2012. Prev. Med. 2017, 97, 26–32. [Google Scholar] [CrossRef]
- Lariscy, J.T.; Hummer, R.A.; Hayward, M.D. Hispanic Older Adult Mortality in the United States: New Estimates and an Assessment of Factors Shaping the Hispanic Paradox. Demography 2015, 52, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; Hwang, S.J.; et al. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef]
- Hjelmborg, J.v.; Iachine, I.; Skytthe, A.; Vaupel, J.W.; McGue, M.; Koskenvuo, M.; Kaprio, J.; Pedersen, N.L.; Christensen, K. Genetic Influence on Human Lifespan and Longevity. Hum. Genet. 2006, 119, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Belsky, D.W.; Moffitt, T.E.; Sugden, K.; Williams, B.; Houts, R.; McCarthy, J.; Caspi, A. Development and Evaluation of a Genetic Risk Score for Obesity. Biodemogr. Soc. Biol. 2013, 59, 85–100. [Google Scholar] [CrossRef]
- Boardman, J.D.; Blalock, C.L.; Pampel, F.C. Trends in the Genetic Influences on Smoking. J. Health Soc. Behav. 2010, 51, 108–123. [Google Scholar] [CrossRef]
- Domingue, B.W.; Conley, D.; Fletcher, J.; Boardman, J.D. Cohort Effects in the Genetic Influence on Smoking. Behav. Genet. 2016, 46, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Furberg, H.; Kim, Y.; Dackor, J.; Boerwinkle, E.; Franceschini, N.; Ardissino, D.; Bernardinelli, L.; Mannucci, P.M.; Mauri, F.; Merlini, P.A.; et al. Genome-Wide Meta-Analyses Identify Multiple Loci Associated with Smoking Behavior. Nat. Genet. 2010, 42, 441–447. [Google Scholar] [CrossRef]
- Belsky, D.W.; Moffitt, T.E.; Corcoran, D.L.; Domingue, B.; Harrington, H.; Hogan, S.; Houts, R.; Ramrakha, S.; Sugden, K.; Williams, B.S. The Genetics of Success: How Single-Nucleotide Polymorphisms Associated with Educational Attainment Relate to Life-Course Development. Psychol. Sci. 2016, 27, 957–972. [Google Scholar] [CrossRef] [PubMed]
- Branigan, A.R.; McCallum, K.J.; Freese, J. Variation in the Heritability of Educational Attainment: An International Meta-Analysis. Soc. Forces 2013, 92, 109–140. [Google Scholar] [CrossRef]
- Domingue, B.W.; Belsky, D.W.; Conley, D.; Harris, K.M.; Boardman, J.D. Polygenic Influence on Educational Attainment: New Evidence from the National Longitudinal Study of Adolescent to Adult Health. AERA Open 2015, 1, 2332858415599972. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Linnér, R.K.; et al. Gene Discovery and Polygenic Prediction from a Genome-Wide Association Study of Educational Attainment in 1.1 Million Individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef]
- Okbay, A.; Beauchamp, J.P.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.B.; Emilsson, V.; Meddens, S.F.W.; et al. Genome-Wide Association Study Identifies 74 Loci Associated with Educational Attainment. Nature 2016, 533, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, E.M.; Finch, C.E. Infection, Inflammation, Height, and Longevity. Proc. Natl. Acad. Sci. USA 2006, 103, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M. Social Determinants of Health Inequalities. Lancet 2005, 365, 1099–1104. [Google Scholar] [CrossRef]
- Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef]
- Barker, D.J.; Osmond, C.; Golding, J. Height and mortality in the counties of England and Wales. Ann. Hum. Biol. 1990, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jousilahti, P.; Tuomilehto, J.; Vartiainen, E.; Eriksson, J.; Puska, P. Relation of adult height to cause-specific and total mortality: A prospective follow-up study of 31, 199 middle-aged men and women in Finland. Am. J. Epidemiol. 2000, 151, 1112–1120. [Google Scholar] [CrossRef]
- Leon, D.A.; Smith, G.D.; Shipley, M.; Strachan, D. Adult height and mortality in London: Early life, socioeconomic confounding, or shrinkage? J. Epidemiol. Community Health 1995, 49, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Perkins, J.M.; Subramanian, S.V.; Davey Smith, G.; Özaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 2016, 74, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Polderman, T.J.; Benyamin, B.; De Leeuw, C.A.; Sullivan, P.F.; Van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 7. [Google Scholar] [CrossRef] [PubMed]
- Bozzoli, C.; Deaton, A.; Quintana-Domeque, C. Adult height and childhood disease. Demography 2009, 46, 4–669. [Google Scholar]
- Ng, M.; Freeman, M.K.; Fleming, T.D.; Robinson, M.; Dwyer-Lindgren, L.; Thomson, B.; Lopez, A.D. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. J. Am. Med. Assoc. 2014, 311, 2–192. [Google Scholar] [CrossRef]
- Franco, Y.; Choi, E.Y. The relationship between immigrant status and undiagnosed dementia: The role of limited English proficiency. J. Immigr. Minor. Health 2020, 22, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Liew, H.P. Cognitive disparities between US- and foreign-born individuals. J. Public Health 2021, 29, 1121–1134. [Google Scholar] [CrossRef]
- Moon, H.; Badana, A.N.; Hwang, S.Y.; Sears, J.S.; Haley, W.E. Dementia prevalence in older adults: Variation by race/ethnicity and immigrant status. Am. J. Geriatr. Psychiatry 2019, 27, 241–250. [Google Scholar]
- Xu, H.; Zhang, Y.; Wu, B. Association between migration and cognitive status among middle-aged and older adults: A systematic review. BMC Geriatr. 2017, 17, 184. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.D.; Angel, J.L.; Balistreri, K.S.; Herrera, A.P. Immigrant status and cognitive functioning in late-life: An examination of gender variations in the healthy immigrant effect. Soc. Sci. Med. 2012, 75, 12–2084. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Ortiz, K.; Arévalo, S.P.; Diminich, E.D.; Briceño, E.; Vega, I.E.; Tarraf, W. Age of migration and cognitive function among older Latinos in the United States. J. Alzheimer’s Dis. 2020, 76, 1493–1511. [Google Scholar] [CrossRef] [PubMed]
- Casanova, M.; Aguila, E. Gender differences in cognitive function among older Mexican immigrants. J. Econ. Ageing 2020, 16, 100226. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Choi, E.Y.; Wu, B.; Dong, X.; Kim, M.T. Linguistic adaptation and cognitive function in older Chinese and Korean immigrants in the United States: A cross-sectional study. J. Aging Health 2022, 34, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Padilla, C.; Mendez, M.F.; Jimenez, E.E.; Teng, E. Bilingualism in older Mexican-American immigrants is associated with higher scores on cognitive screening. BMC Geriatr. 2016, 16, 189. [Google Scholar] [CrossRef] [PubMed]
- Bas-Sarmiento, P.; Saucedo-Moreno, M.J.; Fernández-Gutiérrez, M.; Poza-Méndez, M. Mental health in immigrants versus native population: A systematic review of the literature. Arch. Psychiatr. Nurs. 2017, 31, 111–121. [Google Scholar] [CrossRef] [PubMed]
- González, H.M.; Tarraf, W.; Whitfield, K.E.; Vega, W.A. The epidemiology of major depression and ethnicity in the United States. J. Psychiatr. Res. 2010, 44, 15–1051. [Google Scholar] [CrossRef] [PubMed]
- Ladin, K.; Reinhold, S. Mental Health of Aging Immigrants and Native-Born Men Across 11 European Countries. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2013, 68, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Stinson, F.S.; Hasin, D.S.; Dawson, D.A.; Chou, S.P.; Anderson, K. Immigration and Lifetime Prevalence of DSM-IV Psychiatric Disorders Among Mexican Americans and Non-Hispanic Whites in the United States: Results From the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry 2004, 61, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.; Fletcher, J. The Genome Factor: What the Social Genomics Revolution Reveals About Ourselves, Our History, and the Future; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Belsky, D.W.; Israel, S. Integrating Genetics and Social Science: Genetic Risk Scores. Biodemogr. Soc. Biol. 2014, 60, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Health and Retirement Study, (HRS Polygenic Scores–Release 3) Public Use Dataset. Produced and Distributed by the University of Michigan with Funding from the National Institute on Aging (Grant Number NIA U01AG009740). Ann Arbor, MI, 2020. Available online: https://hrs.isr.umich.edu/news/data-announcements/hrs-polygenic-scores-2006-2012-genetic-data-release-3 (accessed on 18 October 2024).
- Servais, M.A. Overview of HRS Public Data Files for Cross-Sectional and Longitudinal Analysis. 2010. Available online: http://hrsonline.isr.umich.edu/sitedocs/dmgt/OverviewofHRSPublicData.pdf (accessed on 1 August 2020).
- Crimmins, E.M.; Faul, J.D.; Kim, J.K.; David, R.W. Documentation of Biomarkers in the 2010 and 2012 Health and Retirement Study; University of Michigan Institute for Social Research Survey Research Center: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Ware, E.B.; Gard, A.M.; Faul, J.D.; Schmitz, L.L. HRS Polygenic Scores—Release; University of Michigan Institute for Social Research Survey Research Center: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Health and Retirement Study, (RAND HRS Longitudinal File 2016) Public Use Dataset. Produced and Distributed by the University of Michigan with Funding from the National Institute on Aging (Grant Number NIA U01AG009740). Ann Arbor, MI, 2018. Available online: https://hrs.isr.umich.edu/news/data-announcements/rand-hrs-2016-data-now-available (accessed on 18 October 2024).
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M. Meta-Analysis of Genome-Wide Association Studies for Height and Body Mass Index in 700000 Individuals of European Ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C. Association Studies of up to 1.2 Million Individuals Yield New Insights into the Genetic Etiology of Tobacco and Alcohol Use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.; Lam, M.; Harris, S.E.; Trampush, J.W.; Luciano, M.; Hill, W.D.; Hagenaars, S.P.; Ritchie, S.J.; Marioni, R.E.; Fawns-Ritchie, C.; et al. Study of 300,486 Individuals Identifies 148 Independent Genetic Loci Influencing General Cognitive Function. Nat. Commun. 2018, 9, 2098. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-Wide Association Analyses Identify 44 Risk Variants and Refine the Genetic Architecture of Major Depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Kohler, U.; Karlson, K.B.; Holm, A. Comparing Coefficients of Nested Nonlinear Probability Models. Stata J. 2011, 11, 420–438. [Google Scholar] [CrossRef]
Variables | Native-Born | Foreign-Born | |||
---|---|---|---|---|---|
Mean (SD)/Proportion | Min/Max | Mean (SD)/Proportion | Min/Max | Sign. | |
Age | 67.32 (10.62) | 50/101 | 69.53 (10.98) | 50/96 | *** |
Female | 0.562 | 0.582 | |||
Education (years) | 13.26 (2.50) | 0/17 | 13.36 (3.06) | 2/17 | |
Region | |||||
Northeast | 0.156 | 0.276 | *** | ||
Midwest | 0.289 | 0.189 | *** | ||
South | 0.371 | 0.235 | *** | ||
West | 0.183 | 0.300 | *** | ||
Height (meters) | 1.69 (0.102) | 1.22/2.25 | 1.68 (0.097) | 1.42/1.93 | ** |
BMI | 28.05 (5.78) | 13.3/64.9 | 26.88 (4.80) | 17.9/46.0 | *** |
Normal or low (BMI < 25) | 0.309 | 0.365 | * | ||
Overweight (BMI 25–29.9) | 0.382 | 0.401 | |||
Obese (BMI 30+) | 0.309 | 0.234 | ** | ||
Ever smoked | 0.570 | 0.610 | |||
Never smoked | 0.430 | 0.390 | |||
Former smoker | 0.433 | 0.518 | *** | ||
Current smoker | 0.137 | 0.092 | ** | ||
Cognitive score (word recall) | 10.21 (3.30) | 0/20 | 9.67 (3.55) | 0/19 | ** |
Cognitive score < 8 | 0.191 | 0.244 | ** | ||
Cognitive score 8–12 | 0.571 | 0.524 | |||
Cognitive score 13+ | 0.238 | 0.232 | |||
Depression (CESD-8) | 1.29 (1.85) | 0/8 | 1.26 (1.87) | 0/8 | |
No depressive symptoms | 0.491 | 0.505 | |||
1–2 depressive symptoms | 0.323 | 0.321 | |||
3+ depressive symptoms | 0.187 | 0.174 | |||
N | 11,253 | 414 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
(Ref. 8–12) | (Ref. 8–12) | (Ref. 8–12) | ||||
<8 | 13+ | <8 | 13+ | <8 | 13+ | |
(Ref. U.S.-born) | ||||||
Foreign-born | 0.243 | 0.088 | 0.265 * | 0.039 a | 0.227 | −0.030 |
(0.133) | (0.128) | (0.133) | (0.132) | (0.140) | (0.136) | |
Age | −0.094 ** | 0.145 *** | −0.099 ** | 0.155 *** | −0.118 ** | 0.156 *** |
(0.035) | (0.041) | (0.035) | (0.042) | (0.036) | (0.043) | |
Age squared | 0.001 *** | −0.001 *** | 0.001 *** | −0.002 *** | 0.001 *** | −0.001 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
(Ref. Male) | ||||||
Female | −0.425 *** | 0.578 *** | −0.444 *** | 0.613 *** | −0.512 *** | 0.730 *** |
(0.053) | (0.049) | (0.053) | (0.050) | (0.054) | (0.051) | |
(Ref. Northeast) | ||||||
Midwest | 0.066 | −0.175 * | 0.067 | −0.203 ** | 0.071 | −0.143 |
(0.081) | (0.073) | (0.086) | (0.077) | (0.088) | (0.079) | |
South | 0.168 * | −0.110 | 0.176 * | −0.121 | 0.187 * | −0.089 |
(0.078) | (0.070) | (0.081) | (0.073) | (0.084) | (0.074) | |
West | −0.140 | 0.079 | −0.115 | 0.025 | 0.011 | −0.044 |
(0.092) | (0.077) | (0.096) | (0.080) | (0.098) | (0.082) | |
Cognitive function PGIs | −0.187 *** | 0.390 *** | −0.117 *** | 0.288 *** | ||
(0.030) | (0.027) | (0.031) | (0.028) | |||
10 PCs | Yes | Yes | Yes | Yes | ||
Education (yrs) | −0.155 *** | 0.208 *** | ||||
(0.011) | (0.012) | |||||
Constant | −0.760 | −3.657 * | −0.700 | −3.960 ** | 1.874 | −6.727 *** |
(1.362) | (1.461) | (1.363) | (1.487) | (1.392) | (1.525) | |
N | 11,639 | 11,639 | 11,639 | |||
Pseudo R2 | 0.098 | 0.113 | 0.143 | |||
Chi2 | 1700 | 1906 | 2249 | |||
Df | 22 | 44 | 46 | |||
Log likelihood | −10,287 | −10,114 | −9774 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
(Ref. BMI < 25) | (Ref. BMI < 25) | (Ref. BMI < 25) | ||||
BMI 25–29.9 | BMI 30+ | BMI 25–29.9 | BMI 30+ | BMI 25–29.9 | BMI 30+ | |
(Ref. U.S.-born) | ||||||
Foreign-born | −0.040 | −0.296 * | −0.024 | −0.241 b | −0.026 | −0.240 |
(0.118) | (0.138) | (0.120) | (0.143) | (0.120) | (0.143) | |
Age | 0.102 *** | 0.280* ** | 0.096 *** | 0.274 *** | 0.093 *** | 0.267 *** |
(0.026) | (0.032) | (0.027) | (0.034) | (0.027) | (0.034) | |
Age squared | −0.001 *** | −0.002 *** | −0.001 *** | −0.002 *** | −0.001 *** | −0.002 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
(Ref. Male) | ||||||
Female | −0.684 *** | −0.383 *** | −0.708*** | −0.439 *** | −0.719 *** | −0.463 *** |
(0.046) | (0.050) | (0.047) | (0.052) | (0.047) | (0.052) | |
(Ref. Northeast) | ||||||
Midwest | 0.104 | 0.275 *** | 0.140 | 0.281*** | 0.134 | 0.268 ** |
(0.072) | (0.076) | (0.076) | (0.083) | (0.076) | (0.083) | |
South | 0.010 | 0.020 | 0.028 | −0.007 | 0.024 | −0.019 |
(0.068) | (0.073) | (0.071) | (0.079) | (0.071) | (0.079) | |
West | −0.075 | −0.171 * | −0.042 | −0.161 | −0.027 | −0.122 |
(0.076) | (0.083) | (0.080) | (0.089) | (0.080) | (0.089) | |
BMI PGIs | 0.358 *** | 0.859 *** | 0.355 *** | 0.847 *** | ||
(0.027) | (0.030) | (0.027) | (0.030) | |||
10 PCs | Yes | Yes | Yes | Yes | ||
Education (yrs) | −0.026 ** | −0.069 *** | ||||
(0.010) | (0.011) | |||||
Constant | −2.229 * | −7.831 *** | −1.959 * | −7.609 *** | −1.474 | −6.329 *** |
(0.915) | (1.089) | (0.932) | (1.140) | (0.946) | (1.160) | |
N | 11,639 | 11,639 | 11,639 | |||
Pseudo R2 | 0.030 | 0.068 | 0.070 | |||
Chi2 | 693.5 | 1432 | 1458 | |||
Df | 20 | 42 | 44 | |||
Log likelihood | −12,343 | −11,860 | −11,838 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
(Ref. Former) | (Ref. Former) | (Ref. Former) | ||||
Never | Current | Never | Current | Never | Current | |
(Ref. U.S.-born) | ||||||
Foreign-born | −0.243 * | −0.455 * | −0.259 * | −0.440 * | −0.261 * | −0.433 * |
(0.110) | (0.185) | (0.111) | (0.187) | (0.112) | (0.188) | |
Age | −0.120 *** | 0.090 | −0.105 *** | 0.080 | −0.104 *** | 0.081 |
(0.027) | (0.049) | (0.027) | (0.049) | (0.027) | (0.050) | |
Age squared | 0.001** | −0.001 ** | 0.001 ** | −0.001 ** | 0.001 ** | −0.001 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
(Ref. Male) | ||||||
Female | 0.793 *** | 0.351 *** | 0.837 *** | 0.322 *** | 0.858 *** | 0.294 *** |
(0.042) | (0.061) | (0.042) | (0.061) | (0.043) | (0.062) | |
(Ref. Northeast) | ||||||
Midwest | 0.281 *** | 0.156 | 0.248 *** | 0.108 | 0.259 *** | 0.080 |
(0.064) | (0.093) | (0.068) | (0.099) | (0.068) | (0.100) | |
South | 0.136 * | 0.198 * | 0.184 ** | 0.132 | 0.186 ** | 0.100 |
(0.062) | (0.089) | (0.065) | (0.093) | (0.065) | (0.094) | |
West | 0.093 | −0.259 * | 0.096 | −0.288 ** | 0.063 | −0.205 |
(0.070) | (0.105) | (0.073) | (0.110) | (0.073) | (0.111) | |
Smoking initiation PGIs | −0.336 *** | 0.229 *** | −0.324 *** | 0.192 *** | ||
(0.023) | (0.034) | (0.023) | (0.035) | |||
Smoking frequency PGIs | −0.017 | 0.127 *** | −0.007 | 0.098 ** | ||
(0.021) | (0.031) | (0.021) | (0.031) | |||
10 PCs | Yes | Yes | Yes | Yes | ||
Education (yrs) | 0.054 *** | −0.148 *** | ||||
(0.009) | (0.013) | |||||
Constant | 3.040 ** | −2.336 | 2.487 * | −2.048 | 1.669 | −0.082 |
(1.013) | (1.753) | (1.023) | (1.765) | (1.035) | (1.799) | |
N | 11,588 | 11,588 | 11,588 | |||
Pseudo R2 | 0.043 | 0.064 | 0.075 | |||
Chi2 | 849.3 | 1274 | 1422 | |||
Df | 22 | 46 | 48 | |||
Log likelihood | −11,044 | −10,801 | −10,677 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubernskaya, Z.; Conley, D. Does Genetic Predisposition Explain the “Immigrant Health Paradox”? Evidence for Non-Hispanic White Older Adults in the U.S. Populations 2025, 1, 4. https://doi.org/10.3390/populations1010004
Gubernskaya Z, Conley D. Does Genetic Predisposition Explain the “Immigrant Health Paradox”? Evidence for Non-Hispanic White Older Adults in the U.S. Populations. 2025; 1(1):4. https://doi.org/10.3390/populations1010004
Chicago/Turabian StyleGubernskaya, Zoya, and Dalton Conley. 2025. "Does Genetic Predisposition Explain the “Immigrant Health Paradox”? Evidence for Non-Hispanic White Older Adults in the U.S." Populations 1, no. 1: 4. https://doi.org/10.3390/populations1010004
APA StyleGubernskaya, Z., & Conley, D. (2025). Does Genetic Predisposition Explain the “Immigrant Health Paradox”? Evidence for Non-Hispanic White Older Adults in the U.S. Populations, 1(1), 4. https://doi.org/10.3390/populations1010004