Molecular Perspectives on Prostate Cancer: The Role of microRNAs in Androgen Receptor Regulation
<p>AR pathway. Free androgens in the bloodstream can diffuse freely across the plasma membrane of cells. Within the cell cytoplasm, testosterone is converted to dihydrotestosterone (DHT) by the action of the enzyme 5α-reductase. This conversion is essential because DHT has an increased affinity for AR. Within the cell cytoplasm, the AR remains inactive and bound to chaperone proteins, such as HSPs. However, when the androgen binds to the AR, it undergoes conformational changes that allow dissociation from chaperone proteins and subsequent activation. Once active, the androgen-bound AR forms a homodimer with another complex. This complex then translocates to the cell nucleus, where it binds to the AREs, located in the promoters of various target genes. The binding of the AR to the AREs allows the recruitment of coactivator proteins that modulate the transcription of genes involved in cell proliferation, differentiation, and apoptosis [<a href="#B14-receptors-03-00025" class="html-bibr">14</a>,<a href="#B15-receptors-03-00025" class="html-bibr">15</a>,<a href="#B16-receptors-03-00025" class="html-bibr">16</a>,<a href="#B26-receptors-03-00025" class="html-bibr">26</a>]; created with Biorender.com.</p> "> Figure 2
<p>Indirect regulatory mechanisms of miRNAs on the <span class="html-italic">AR</span> gene. (<b>A</b>) Some miRNAs regulate <span class="html-italic">AR</span> regulators, such as <span class="html-italic">HSP</span> and <span class="html-italic">MYC</span>, which act as transcription factors for <span class="html-italic">AR</span> expression, or <span class="html-italic">DMT1</span>, which is responsible for methylating the <span class="html-italic">AR</span> promoter, thereby regulating its expression. (<b>B</b>) Furthermore, it has been observed that <span class="html-italic">AR</span> can be regulated by miRNAs that control master genes in <span class="html-italic">AR</span> splicing, such as hnRNPH1, or genes that act as cofactors (<span class="html-italic">MYC</span>) or transporters (<span class="html-italic">FNDC1</span>) (<b>C</b>), thus affecting the overall activity of <span class="html-italic">AR</span>; created with Biorender.com.</p> "> Figure 3
<p>AR–miRNAs mutual regulation. In positive feedback, <span class="html-italic">AR</span> facilitates the transcription of hsa-miR-21, which in turn promotes <span class="html-italic">AR</span> expression by regulating <span class="html-italic">PTEN,</span> creating a reinforcing cycle. In negative feedback, AR increases the expression of hsa-miR-31 and hsa-miR-421, which inhibit <span class="html-italic">AR</span> expression, establishing a control mechanism that prevents <span class="html-italic">AR</span> overexpression. Finally, mutual feedback shows how <span class="html-italic">AR</span> represses hsa-miR-190a, and this miRNA, in turn, represses <span class="html-italic">AR</span> expression by regulating the activity of <span class="html-italic">YB1</span>, a coactivator of <span class="html-italic">AR</span>, forming a reciprocal suppression cycle; created with Biorender.com.</p> ">
Abstract
:1. Introduction
Prostate Cancer: Epidemiology and Risk Factors
2. Androgen Receptor in Prostate Cancer
2.1. Genetic Aspects and Structure of Androgen Receptor
2.2. Androgen Receptor Signaling Pathway
2.3. Clinical Significance of Androgen Receptor in Prostate Cancer
3. microRNAs: Definition and Functional Mechanism
3.1. Characteristics and Biogenesis of microRNAs
3.2. Gene Regulation Mediated by microRNAs
4. The Role of microRNAs in Cancer
5. microRNAs in Prostate Cancer
5.1. Regulation of Androgen Receptor by microRNAs in Prostate Cancer
5.1.1. Direct Regulation of Androgen Receptor at Its microRNAs Complementary Sites in the 3′ Untranslated Region
5.1.2. Indirect Regulation of Androgen Receptor Through the Regulation of Its Effector Genes
5.1.3. Androgen Receptor–microRNAs Mutual Regulation
5.2. Identification of microRNAs Targeting Androgen Receptor Using Databases
5.3. Experimental Evidence for the Expression of microRNAs Targeting Androgen Receptor in Prostate Cancer
6. Conclusions
Funding
Conflicts of Interest
References
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and Prevention of Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Cancer (IARC), T.I.A. for R. on Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 8 December 2022).
- Al-Ghazawi, M.; Salameh, H.; Amo-Afful, S.; Khasawneh, S.; Ghanem, R. An In-Depth Look into the Epidemiological and Etiological Aspects of Prostate Cancer: A Literature Review. Cureus 2023, 15, e48252. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Jaffar, G.; Khalid, M.S.; Hussain, Z.; Zainab, S.W.; Ashraf, Z.; Haroon, A.; Javed, R.; Khalid, B.; Habib, P. Risk Factors Associated with Prostate Cancer. J. Drug Deliv. Ther. 2021, 11, 188–193. [Google Scholar] [CrossRef]
- Chowdhury-Paulino, I.M.; Ericsson, C.; Vince, R., Jr.; Spratt, D.E.; George, D.J.; Mucci, L.A. Racial Disparities in Prostate Cancer among Black Men: Epidemiology and Outcomes. Prostate Cancer Prostatic Dis. 2022, 25, 397–402. [Google Scholar] [CrossRef]
- Shin, H.J.; Hua, J.T.; Li, H. Recent Advances in Understanding DNA Methylation of Prostate Cancer. Front. Oncol. 2023, 13, 1182727. [Google Scholar] [CrossRef]
- Sugiura, M.; Sato, H.; Kanesaka, M.; Imamura, Y.; Sakamoto, S.; Ichikawa, T.; Kaneda, A. Epigenetic Modifications in Prostate Cancer. Int. J. Urol. 2021, 28, 140–149. [Google Scholar] [CrossRef]
- Ding, L.; Wang, R.; Shen, D.; Cheng, S.; Wang, H.; Lu, Z.; Zheng, Q.; Wang, L.; Xia, L.; Li, G. Role of Noncoding RNA in Drug Resistance of Prostate Cancer. Cell Death Dis. 2021, 12, 590. [Google Scholar] [CrossRef]
- Bai, Z.-T.; Bai, B.; Zhu, J.; Di, C.-X.; Li, X.; Zhou, W.-C. Epigenetic Actions of Environmental Factors and Promising Drugs for Cancer Therapy. Oncol. Lett. 2018, 15, 2049–2056. [Google Scholar] [CrossRef]
- Labbé, D.P.; Zadra, G.; Ebot, E.M.; Mucci, L.A.; Kantoff, P.W.; Loda, M.; Brown, M. Role of Diet in Prostate Cancer: The Epigenetic Link. Oncogene 2015, 34, 4683–4691. [Google Scholar] [CrossRef]
- Ho, E.; Beaver, L.M.; Williams, D.E.; Dashwood, R.H. Dietary Factors and Epigenetic Regulation for Prostate Cancer Prevention. Adv. Nutr. 2011, 2, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, S.; Guéritat, J.; Wong, C.P.; Isanejad, A.; Ho, E.; Serna, E.; Gomez-Cabrera, M.-C.; Rebillard, A. Exercise Training as a Modulator of Epigenetic Events in Prostate Tumors. Prostate Cancer Prostatic Dis. 2022, 25, 119–122. [Google Scholar] [CrossRef]
- Westaby, D.; Fenor de La Maza, M.d.L.D.; Paschalis, A.; Jimenez-Vacas, J.M.; Welti, J.; de Bono, J.; Sharp, A. A New Old Target: Androgen Receptor Signaling and Advanced Prostate Cancer. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Raj, R.; Allison, D.B.; Myint, Z.W. Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies. Cancers 2021, 13, 5417. [Google Scholar] [CrossRef] [PubMed]
- Velho, P.I.; Bastos, D.A.; Antonarakis, E.S. New Approaches to Targeting the Androgen Receptor Pathway in Prostate Cancer. Clin. Adv. Hematol. Oncol. 2021, 19, 228–240. [Google Scholar] [PubMed]
- Tang, Q.; Cheng, B.; Dai, R.; Wang, R. The Role of Androgen Receptor in Cross Talk Between Stromal Cells and Prostate Cancer Epithelial Cells. Front. Cell Dev. Biol. 2021, 9, 729498. [Google Scholar] [CrossRef]
- Sun, R.; Yan, B.; Li, H.; Ding, D.; Wang, L.; Pang, J.; Ye, D.; Huang, H. Androgen Receptor Variants Confer Castration Resistance in Prostate Cancer by Counteracting Antiandrogen-Induced Ferroptosis. Cancer Res. 2023, 83, 3192–3204. [Google Scholar] [CrossRef]
- Filella, X.; Foj, L. miRNAs as Novel Biomarkers in the Management of Prostate Cancer. Clin. Chem. Lab. Med. (CCLM) 2017, 55, 715–736. [Google Scholar] [CrossRef]
- Vanacore, D.; Boccellino, M.; Rossetti, S.; Cavaliere, C.; D’Aniello, C.; Di Franco, R.; Romano, F.J.; Montanari, M.; La Mantia, E.; Piscitelli, R.; et al. Micrornas in Prostate Cancer: An Overview. Oncotarget 2017, 8, 50240–50251. [Google Scholar] [CrossRef]
- Doghish, A.S.; Ismail, A.; El-Mahdy, H.A.; Elkady, M.A.; Elrebehy, M.A.; Sallam, A.-A.M. A Review of the Biological Role of miRNAs in Prostate Cancer Suppression and Progression. Int. J. Biol. Macromol. 2022, 197, 141–156. [Google Scholar] [CrossRef]
- Aurilio, G.; Cimadamore, A.; Mazzucchelli, R.; Lopez-Beltran, A.; Verri, E.; Scarpelli, M.; Massari, F.; Cheng, L.; Santoni, M.; Montironi, R. Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells 2020, 9, 2653. [Google Scholar] [CrossRef] [PubMed]
- Osadchuk, L.V.; Osadchuk, A.V. Role of CAG and GGC Polymorphism of the Androgen Receptor Gene in Male Fertility. Russ. J. Genet. 2022, 58, 247–264. [Google Scholar] [CrossRef]
- Fujita, K.; Nonomura, N. Role of Androgen Receptor in Prostate Cancer: A Review. World J. Mens. Health 2019, 37, 288–295. [Google Scholar] [CrossRef]
- Jillson, L.K.; Yette, G.A.; Laajala, T.D.; Tilley, W.D.; Costello, J.C.; Cramer, S.D. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers 2021, 13, 3272. [Google Scholar] [CrossRef] [PubMed]
- Formaggio, N.; Rubin, M.A.; Theurillat, J.-P. Loss and Revival of Androgen Receptor Signaling in Advanced Prostate Cancer. Oncogene 2021, 40, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Özturan, D.; Morova, T.; Lack, N.A. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022, 11, 898. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K. Splicing Factors Have an Essential Role in Prostate Cancer Progression and Androgen Receptor Signaling. Biomolecules 2019, 9, 131. [Google Scholar] [CrossRef]
- Bluemn, E.; Nelson, P.S. The Androgen/Androgen Receptor Axis in Prostate Cancer. Curr. Opin. Oncol. 2012, 24, 251–257. [Google Scholar] [CrossRef]
- Cai, C.; He, H.H.; Chen, S.; Coleman, I.; Wang, H.; Fang, Z.; Chen, S.; Nelson, P.S.; Liu, X.S.; Brown, M.; et al. Androgen Receptor Gene Expression in Prostate Cancer Is Directly Suppressed by the Androgen Receptor through Recruitment of Lysine-Specific Demethylase 1. Cancer Cell 2011, 20, 457–471. [Google Scholar] [CrossRef]
- Watson, P.A.; Chen, Y.F.; Balbas, M.D.; Wongvipat, J.; Socci, N.D.; Viale, A.; Kim, K.; Sawyers, C.L. Constitutively Active Androgen Receptor Splice Variants Expressed in Castration-Resistant Prostate Cancer Require Full-Length Androgen Receptor. Proc. Natl. Acad. Sci. USA 2010, 107, 16759–16765. [Google Scholar] [CrossRef]
- Kanayama, M.; Lu, C.; Luo, J.; Antonarakis, E.S. AR Splicing Variants and Resistance to AR Targeting Agents. Cancers 2021, 13, 2563. [Google Scholar] [CrossRef] [PubMed]
- Katleba, K.D.; Ghosh, P.M.; Mudryj, M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023, 11, 2215. [Google Scholar] [CrossRef]
- Rawat, C.; Heemers, H.V. Alternative Splicing in Prostate Cancer Progression and Therapeutic Resistance. Oncogene 2024, 43, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, N.; Neeli, P.K.; D’Angelo, A.; Pittacolo, M.; Sirico, M.; Galli, I.C.; Roviello, G.; Nesi, G. AR-V7 in Metastatic Prostate Cancer: A Strategy beyond Redemption. Int. J. Mol. Sci. 2021, 22, 5515. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, J.; Liu, Y.; Shi, Z.; Xuan, Z.; Yang, K.; Xu, C.; Bai, Y.; Fu, M.; Xiao, Q.; et al. The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers 2022, 14, 4877. [Google Scholar] [CrossRef] [PubMed]
- Kallio, H.M.L.; Hieta, R.; Latonen, L.; Brofeldt, A.; Annala, M.; Kivinummi, K.; Tammela, T.L.; Nykter, M.; Isaacs, W.B.; Lilja, H.G.; et al. Constitutively Active Androgen Receptor Splice Variants AR-V3, AR-V7 and AR-V9 Are Co-Expressed in Castration-Resistant Prostate Cancer Metastases. Br. J. Cancer 2018, 119, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Au, C.C.; Jamalruddin, M.A.B.; Abou-Ghali, N.E.; Mukhtar, E.; Portella, L.; Berger, A.; Worroll, D.; Vatsa, P.; Rickman, D.S.; et al. AR-V7 Exhibits Non-Canonical Mechanisms of Nuclear Import and Chromatin Engagement in Castrate-Resistant Prostate Cancer. eLife 2022, 11, e73396. [Google Scholar] [CrossRef]
- Uo, T.; Plymate, S.R. Clinical Significance of AR-V567es in Prostate Cancer—Letter. Clin. Cancer Res. 2019, 25, 6009. [Google Scholar] [CrossRef]
- Bernemann, C.; Humberg, V.; Thielen, B.; Steinestel, J.; Chen, X.; Duensing, S.; Schrader, A.J.; Boegemann, M. Comparative Analysis of AR Variant AR-V567es mRNA Detection Systems Reveals Eminent Variability and Questions the Role as a Clinical Biomarker in Prostate Cancer. Clin. Cancer Res. 2019, 25, 3856–3864. [Google Scholar] [CrossRef]
- Wüstmann, N.; Seitzer, K.; Humberg, V.; Vieler, J.; Grundmann, N.; Steinestel, J.; Tiedje, D.; Duensing, S.; Krabbe, L.-M.; Bögemann, M.; et al. Co-Expression and Clinical Utility of AR-FL and AR Splice Variants AR-V3, AR-V7 and AR-V9 in Prostate Cancer. Biomark. Res. 2023, 11, 37. [Google Scholar] [CrossRef]
- Hung, C.-L.; Liu, H.-H.; Fu, C.-W.; Yeh, H.-H.; Hu, T.-L.; Kuo, Z.-K.; Lin, Y.-C.; Jhang, M.-R.; Hwang, C.-S.; Hsu, H.-C.; et al. Targeting Androgen Receptor and the Variants by an Orally Bioavailable Proteolysis Targeting Chimeras Compound in Castration Resistant Prostate Cancer. eBioMedicine 2023, 90, 104500. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, E.; Giantulli, S.; Sciarra, A.; Silvestri, I. AR and PI3K/AKT in Prostate Cancer: A Tale of Two Interconnected Pathways. Int. J. Mol. Sci. 2023, 24, 2046. [Google Scholar] [CrossRef] [PubMed]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, T.; Nevedomskaya, E.; Heller, S.; Böhme, A.; Lesche, R.; von Ahsen, O.; Grünewald, S.; Nguyen, H.M.; Corey, E.; Baumgart, S.J.; et al. Dual Targeting of the Androgen Receptor and PI3K/AKT/mTOR Pathways in Prostate Cancer Models Improves Antitumor Efficacy and Promotes Cell Apoptosis. Mol. Oncol. 2024, 18, 726–742. [Google Scholar] [CrossRef] [PubMed]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An Overview of microRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Komatsu, S.; Kitai, H.; Suzuki, H.I. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023, 12, 306. [Google Scholar] [CrossRef]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef]
- Tafrihi, M.; Hasheminasab, E. MiRNAs: Biology, Biogenesis, Their Web-Based Tools, and Databases. Microrna 2019, 8, 4–27. [Google Scholar] [CrossRef]
- Leitão, A.L.; Enguita, F.J. A Structural View of miRNA Biogenesis and Function. Non-Coding RNA 2022, 8, 10. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Cheng, Q.; Wang, G.; Bai, Z. Androgen Receptor Suppresses Prostate Cancer Cell Invasion via Altering the miR-4496/β-Catenin Signals. Biochem. Biophys. Res. Commun. 2018, 504, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Pasqualini, L.; Bu, H.; Puhr, M.; Narisu, N.; Rainer, J.; Schlick, B.; Schäfer, G.; Angelova, M.; Trajanoski, Z.; Börno, S.T.; et al. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol. Endocrinol. 2015, 29, 1037–1054. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.E.; Dart, D.A.; Sita-Lumsden, A.; Cheng, H.; Rennie, P.S.; Bevan, C.L. Androgen-Regulated Processing of the Oncomir MiR-27a, Which Targets Prohibitin in Prostate Cancer. Hum. Mol. Genet. 2012, 21, 3112–3127. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Zhang, J.; Li, X.; Meng, D.; Gao, Y.; Yang, S.; Wan, X.; Zhou, C.; Guo, F.; Huang, Y.; et al. Identification of Novel AR-Targeted MicroRNAs Mediating Androgen Signalling through Critical Pathways to Regulate Cell Viability in Prostate Cancer. PLoS ONE 2013, 8, e56592. [Google Scholar] [CrossRef]
- Vannini, I.; Fanini, F.; Fabbri, M. Emerging Roles of microRNAs in Cancer. Curr. Opin. Genet. Dev. 2018, 48, 128–133. [Google Scholar] [CrossRef]
- Naeli, P.; Winter, T.; Hackett, A.P.; Alboushi, L.; Jafarnejad, S.M. The Intricate Balance between microRNA-Induced mRNA Decay and Translational Repression. FEBS J. 2023, 290, 2508–2524. [Google Scholar] [CrossRef]
- Eisen, T.J.; Eichhorn, S.W.; Subtelny, A.O.; Bartel, D.P. MicroRNAs Cause Accelerated Decay of Short-Tailed Target mRNAs. Mol. Cell 2020, 77, 775–785.e8. [Google Scholar] [CrossRef]
- Kandettu, A.; Radhakrishnan, R.; Chakrabarty, S.; Sriharikrishnaa, S.; Kabekkodu, S.P. The Emerging Role of miRNA Clusters in Breast Cancer Progression. Biochim. Biophys. Acta (BBA) Rev. Cancer 2020, 1874, 188413. [Google Scholar] [CrossRef]
- Behl, T.; Kumar, C.; Makkar, R.; Gupta, A.; Sachdeva, M. Intercalating the Role of MicroRNAs in Cancer: As Enemy or Protector. Asian Pac. J. Cancer Prev. 2020, 21, 593–598. [Google Scholar] [CrossRef]
- Arif, K.M.T.; Elliott, E.K.; Haupt, L.M.; Griffiths, L.R. Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers 2020, 12, 2922. [Google Scholar] [CrossRef]
- Hill, M.; Tran, N. miRNA Interplay: Mechanisms and Consequences in Cancer. Dis. Models Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef] [PubMed]
- Schanen, B.C.; Li, X. Transcriptional Regulation of Mammalian miRNA Genes. Genomics 2011, 97, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Orbán, T.I. One Locus, Several Functional RNAs—Emerging Roles of the Mechanisms Responsible for the Sequence Variability of microRNAs. Biol. Futur. 2023, 74, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Michlewski, G.; Cáceres, J.F. Post-Transcriptional Control of miRNA Biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; et al. miRNA-Based Biomarkers, Therapies, and Resistance in Cancer. Int. J. Biol. Sci. 2020, 16, 2628–2647. [Google Scholar] [CrossRef]
- Hussen, B.M.; Hidayat, H.J.; Salihi, A.; Sabir, D.K.; Taheri, M.; Ghafouri-Fard, S. MicroRNA: A Signature for Cancer Progression. Biomed. Pharmacother. 2021, 138, 111528. [Google Scholar] [CrossRef]
- Sell, M.C.; Ramlogan-Steel, C.A.; Steel, J.C.; Dhungel, B.P. MicroRNAs in Cancer Metastasis: Biological and Therapeutic Implications. Expert Rev. Mol. Med. 2023, 25, e14. [Google Scholar] [CrossRef]
- Semina, E.V.; Rysenkova, K.D.; Troyanovskiy, K.E.; Shmakova, A.A.; Rubina, K.A. MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. Biochemistry 2021, 86, 785–799. [Google Scholar] [CrossRef]
- Shah, V.; Shah, J. Recent Trends in Targeting miRNAs for Cancer Therapy. J. Pharm. Pharmacol. 2020, 72, 1732–1749. [Google Scholar] [CrossRef]
- Ghavi Dorabad, D.; Foruzandeh, Z.; Torki, Z.; Ebrahimi, A.; Hashemi, S.; Alivand, M.R. Identification of Dysregulated miRNAs and Their Roles in Breast Cancer; An in Silico Meta-analysis Study. Inform. Med. Unlocked 2024, 44, 101434. [Google Scholar] [CrossRef]
- van Schooneveld, E.; Wildiers, H.; Vergote, I.; Vermeulen, P.B.; Dirix, L.Y.; Van Laere, S.J. Dysregulation of microRNAs in Breast Cancer and Their Potential Role as Prognostic and Predictive Biomarkers in Patient Management. Breast Cancer Res. 2015, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Ahadi, A. The Significance of microRNA Deregulation in Colorectal Cancer Development and the Clinical Uses as a Diagnostic and Prognostic Biomarker and Therapeutic Agent. Noncoding RNA Res. 2020, 5, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Jafari Najaf Abadi, M.H.; Bazyari, M.J.; Jalili, A.; Kazemi Oskuee, R.; Aghaee-Bakhtiari, S.H. Dysregulated microRNAs in Prostate Cancer: In Silico Prediction and in Vitro Validation. Iran. J. Basic Med. Sci. 2024, 27, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A. MicroRNA and Cancer: A Path to Discovery. MicroRNA 2024, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Mallén, A.; Hueso, M. Dynamic Variations of 3′UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021, 9, 1560. [Google Scholar] [CrossRef]
- Fu, T.; Amoah, K.; Chan, T.W.; Bahn, J.H.; Lee, J.-H.; Terrazas, S.; Chong, R.; Kosuri, S.; Xiao, X. Massively Parallel Screen Uncovers Many Rare 3′ UTR Variants Regulating mRNA Abundance of Cancer Driver Genes. Nat. Commun. 2024, 15, 3335. [Google Scholar] [CrossRef]
- Haas, U.; Sczakiel, G.; Laufer, S. MicroRNA-Mediated Regulation of Gene Expression Is Affected by Disease-Associated SNPs within the 3′-UTR via Altered RNA Structure. RNA Biol. 2012, 9, 924–937. [Google Scholar] [CrossRef]
- Rykova, E.; Ershov, N.; Damarov, I.; Merkulova, T. SNPs in 3’UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int. J. Mol. Sci. 2022, 23, 13725. [Google Scholar] [CrossRef]
- Fehlmann, T.; Sahay, S.; Keller, A.; Backes, C. A Review of Databases Predicting the Effects of SNPs in miRNA Genes or miRNA-Binding Sites. Brief. Bioinform. 2019, 20, 1011–1020. [Google Scholar] [CrossRef]
- Chhichholiya, Y.; Suryan, A.K.; Suman, P.; Munshi, A.; Singh, S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front. Genet. 2021, 12, 793523. [Google Scholar] [CrossRef]
- Chen, P.-S.; Su, J.-L.; Hung, M.-C. Dysregulation of MicroRNAs in Cancer. J. Biomed. Sci. 2012, 19, 90. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Lu, Q.; Xu, B. hsa-miR-5580-3p Inhibits Oral Cancer Cell Viability, Proliferation and Migration by Suppressing LAMC2. Mol. Med. Rep. 2021, 23, 453. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hou, L.; Wei, J.; Du, Y.; Zhao, Y.; Deng, X.; Lin, X. Hsa-miR-217 Inhibits the Proliferation, Migration, and Invasion in Non-Small Cell Lung Cancer Cells Via Targeting SIRT1 and P53/KAI1 Signaling. Balk. Med. J. 2020, 37, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Lupu, O.T.; Popescu, B.; Avram, E.; Dragomir, M.; Cimponeriu, G.D.; Mighiu, I.; Aposteanu, S.; Coriu, D. Downregulation of hsa-miR-4328 and target gene prediction in Acute Promyelocytic Leukemia. Rev. Romana Med. Lab. 2022, 30, 261–272. [Google Scholar] [CrossRef]
- Ghamlouche, F.; Yehya, A.; Zeid, Y.; Fakhereddine, H.; Fawaz, J.; Liu, Y.-N.; Al-Sayegh, M.; Abou-Kheir, W. MicroRNAs as Clinical Tools for Diagnosis, Prognosis, and Therapy in Prostate Cancer. Transl. Oncol. 2023, 28, 101613. [Google Scholar] [CrossRef]
- Abramovic, I.; Ulamec, M.; Katusic Bojanac, A.; Bulic-Jakus, F.; Jezek, D.; Sincic, N. miRNA in Prostate Cancer: Challenges toward Translation. Epigenomics 2020, 12, 543–558. [Google Scholar] [CrossRef]
- Sun, C.; Lu, C.; Li, X.; Li, R.; Wen, Z.; Ge, Z.; Chen, W.; Li, Y.; Sun, S.; Yang, Q.; et al. The Value of a Panel of Circulating microRNAs in Screening Prostate Cancer. Transl. Cancer Res. 2024, 13, 686–698. [Google Scholar] [CrossRef]
- Luu, H.N.; Lin, H.-Y.; Sørensen, K.D.; Ogunwobi, O.O.; Kumar, N.; Chornokur, G.; Phelan, C.; Jones, D.; Kidd, L.; Batra, J.; et al. miRNAs Associated with Prostate Cancer Risk and Progression. BMC Urol. 2017, 17, 18. [Google Scholar] [CrossRef]
- Coman, R.A.; Schitcu, V.H.; Budisan, L.; Raduly, L.; Braicu, C.; Petrut, B.; Coman, I.; Berindan-Neagoe, I.; Al Hajjar, N. Evaluation of miR-148a-3p and miR-106a-5p as Biomarkers for Prostate Cancer: Pilot Study. Genes 2024, 15, 584. [Google Scholar] [CrossRef]
- Martínez-González, L.J.; Sánchez-Conde, V.; González-Cabezuelo, J.M.; Antunez-Rodríguez, A.; Andrés-León, E.; Robles-Fernandez, I.; Lorente, J.A.; Vázquez-Alonso, F.; Alvarez-Cubero, M.J. Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines 2021, 9, 646. [Google Scholar] [CrossRef]
- Nayak, B.; Khan, N.; Garg, H.; Rustagi, Y.; Singh, P.; Seth, A.; Dinda, A.K.; Kaushal, S. Role of miRNA-182 and miRNA-187 as Potential Biomarkers in Prostate Cancer and Its Correlation with the Staging of Prostate Cancer. Int. Braz. J. Urol. 2020, 46, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wen, Y.; Xuan, C.; Chen, Q.; Xiang, Q.; Wang, J.; Liu, Y.; Luo, L.; Zhao, S.; Deng, Y.; et al. Identifying the Key Genes and microRNAs in Prostate Cancer Bone Metastasis by Bioinformatics Analysis. FEBS Open Bio 2020, 10, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Valera, V.A.; Parra-Medina, R.; Walter, B.A.; Pinto, P.; Merino, M.J. microRNA Expression Profiling in Young Prostate Cancer Patients. J. Cancer 2020, 11, 4106–4114. [Google Scholar] [CrossRef] [PubMed]
- Pagoni, M.; Cava, C.; Sideris, D.C.; Avgeris, M.; Zoumpourlis, V.; Michalopoulos, I.; Drakoulis, N. miRNA-Based Technologies in Cancer Therapy. J. Pers. Med. 2023, 13, 1586. [Google Scholar] [CrossRef] [PubMed]
- Baumann, V.; Winkler, J. miRNA-Based Therapies: Strategies and Delivery Platforms for Oligonucleotide and Non-Oligonucleotide Agents. Future Med. Chem. 2014, 6, 1967–1984. [Google Scholar] [CrossRef]
- Xiang, Z.; Xu, C.; Wu, G.; Liu, B.; Wu, D. CircRNA-UCK2 Increased TET1 Inhibits Proliferation and Invasion of Prostate Cancer Cells via Sponge miRNA-767-5p. Open Med. 2019, 14, 833–842. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Zhang, Z.-C.; Shi, B.-K.; Jiang, X.-Z. DANCR Sponges miR-135a to Regulate Paclitaxel Sensitivity in Prostate Cancer. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6849–6857. [Google Scholar] [CrossRef]
- Lin, H.-M.; Nikolic, I.; Yang, J.; Castillo, L.; Deng, N.; Chan, C.-L.; Yeung, N.K.; Dodson, E.; Elsworth, B.; Spielman, C.; et al. MicroRNAs as Potential Therapeutics to Enhance Chemosensitivity in Advanced Prostate Cancer. Sci. Rep. 2018, 8, 7820. [Google Scholar] [CrossRef]
- Tao, J.; Wu, D.; Xu, B.; Qian, W.; Li, P.; Lu, Q.; Yin, C.; Zhang, W. microRNA-133 Inhibits Cell Proliferation, Migration and Invasion in Prostate Cancer Cells by Targeting the Epidermal Growth Factor Receptor. Oncol. Rep. 2012, 27, 1967–1975. [Google Scholar] [CrossRef]
- Ru, P.; Steele, R.; Newhall, P.; Phillips, N.J.; Toth, K.; Ray, R.B. miRNA-29b Suppresses Prostate Cancer Metastasis by Regulating Epithelial–Mesenchymal Transition Signaling. Mol. Cancer Ther. 2012, 11, 1166–1173. [Google Scholar] [CrossRef]
- Schitcu, V.H.; Raduly, L.; Nutu, A.; Zanoaga, O.; Ciocan, C.; Munteanu, V.C.; Cojocneanu, R.; Petrut, B.; Coman, I.; Braicu, C.; et al. MicroRNA Dysregulation in Prostate Cancer. Pharmgenom. Pers. Med. 2022, 15, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zou, C.; Tian, Y.; Li, W.; Li, Y.; Zhang, D. An Integrated ceRNA Network Identifies miR-375 as an Upregulated miRNA Playing a Tumor Suppressive Role in Aggressive Prostate Cancer. Oncogene 2024, 43, 1594–1607. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Bajo-Santos, C.; Hessvik, N.P.; Lorenz, S.; Fromm, B.; Berge, V.; Sandvig, K.; Linē, A.; Llorente, A. Identification of Non-Invasive miRNAs Biomarkers for Prostate Cancer by Deep Sequencing Analysis of Urinary Exosomes. Mol. Cancer 2017, 16, 156. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Sharma, V.; Serajuddin, M.; Kirabo, A. Integrated Grade-Wise Profiling Analysis Reveals Potential Plasma miR-373-3p as Prognostic Indicator in Prostate Cancer & Its Target KPNA2. Noncoding RNA Res. 2024, 9, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Gujrati, H.; Ha, S.; Wang, B.-D. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers 2023, 15, 3140. [Google Scholar] [CrossRef]
- Valentino, A.; Calarco, A.; Di Salle, A.; Finicelli, M.; Crispi, S.; Calogero, R.A.; Riccardo, F.; Sciarra, A.; Gentilucci, A.; Galderisi, U.; et al. Deregulation of MicroRNAs Mediated Control of Carnitine Cycle in Prostate Cancer: Molecular Basis and Pathophysiological Consequences. Oncogene 2017, 36, 6030–6040. [Google Scholar] [CrossRef]
- Bielska, A.; Skwarska, A.; Kretowski, A.; Niemira, M. The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int. J. Mol. Sci. 2022, 23, 1553. [Google Scholar] [CrossRef]
- Mishra, S.; Deng, J.J.; Gowda, P.S.; Rao, M.K.; Lin, C.-L.; Chen, C.L.; Huang, T.; Sun, L.-Z. Androgen Receptor and microRNA-21 Axis Downregulates Transforming Growth Factor Beta Receptor II (TGFBR2) Expression in Prostate Cancer. Oncogene 2014, 33, 4097–4106. [Google Scholar] [CrossRef]
- Eringyte, I.; Zamarbide Losada, J.N.; Powell, S.M.; Bevan, C.L.; Fletcher, C.E. Coordinated AR and microRNA Regulation in Prostate Cancer. Asian J. Urol. 2020, 7, 233–250. [Google Scholar] [CrossRef]
- Östling, P.; Leivonen, S.-K.; Aakula, A.; Kohonen, P.; Mäkelä, R.; Hagman, Z.; Edsjö, A.; Kangaspeska, S.; Edgren, H.; Nicorici, D.; et al. Systematic Analysis of MicroRNAs Targeting the Androgen Receptor in Prostate Cancer Cells. Cancer Res. 2011, 71, 1956–1967. [Google Scholar] [CrossRef]
- Shi, X.-B.; Xue, L.; Ma, A.-H.; Tepper, C.G.; Gandour-Edwards, R.; Kung, H.-J.; deVere White, R.W. Tumor Suppressive miR-124 Targets Androgen Receptor and Inhibits Proliferation of Prostate Cancer Cells. Oncogene 2013, 32, 4130–4138. [Google Scholar] [CrossRef] [PubMed]
- Rui, X.; Gu, T.-T.; Pan, H.-F.; Shao, S.-L.; Shao, H.-X. MicroRNA-381 Suppresses Proliferation and Invasion of Prostate Cancer Cells through Downregulation of the Androgen Receptor. Oncol. Lett. 2019, 18, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Larne, O.; Hagman, Z.; Lilja, H.; Bjartell, A.; Edsjö, A.; Ceder, Y. miR-145 Suppress the Androgen Receptor in Prostate Cancer Cells and Correlates to Prostate Cancer Prognosis. Carcinogenesis 2015, 36, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Cui, X.; Hong, Y.; Wang, J.; Li, Y.; Chen, L.; Liu, Y.; Gao, Y.; Xu, D.; Wang, Q. MicroRNA-185 Suppresses Proliferation, Invasion, Migration, and Tumorigenicity of Human Prostate Cancer Cells through Targeting Androgen Receptor. Mol. Cell Biochem. 2013, 377, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Sikand, K.; Slaibi, J.E.; Singh, R.; Slane, S.D.; Shukla, G.C. miR 488* Inhibits Androgen Receptor Expression in Prostate Carcinoma Cells. Int. J. Cancer 2011, 129, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Huang, X.; Li, P.; Tang, J.E. miR-34a Inhibits Proliferation of Prostate Cancer LNCaP Cells by Regulating Androgen Receptor Gene. Chin. J. Clin. Pharmacol. Ther. 2021, 26, 10. [Google Scholar] [CrossRef]
- Fletcher, C.E.; Sulpice, E.; Combe, S.; Shibakawa, A.; Leach, D.A.; Hamilton, M.P.; Chrysostomou, S.L.; Sharp, A.; Welti, J.; Yuan, W.; et al. Androgen Receptor-Modulatory microRNAs Provide Insight into Therapy Resistance and Therapeutic Targets in Advanced Prostate Cancer. Oncogene 2019, 38, 5700–5724. [Google Scholar] [CrossRef]
- Ganapathy, K.; Staklinski, S.; Hasan, M.F.; Ottman, R.; Andl, T.; Berglund, A.E.; Park, J.Y.; Chakrabarti, R. Multifaceted Function of MicroRNA-299-3p Fosters an Antitumor Environment Through Modulation of Androgen Receptor and VEGFA Signaling Pathways in Prostate Cancer. Sci. Rep. 2020, 10, 5167. [Google Scholar] [CrossRef]
- Razdan, A.; de Souza, P.; Roberts, T.L. Role of MicroRNAs in Treatment Response in Prostate Cancer. Curr. Cancer Drug Targets 2018, 18, 929–944. [Google Scholar] [CrossRef]
- Lin, P.-C.; Chiu, Y.-L.; Banerjee, S.; Park, K.; Mosquera, J.M.; Giannopoulou, E.; Alves, P.; Tewari, A.K.; Gerstein, M.B.; Beltran, H.; et al. Epigenetic Repression of miR-31 Disrupts Androgen Receptor Homeostasis and Contributes to Prostate Cancer Progression. Cancer Res. 2013, 73, 1232–1244. [Google Scholar] [CrossRef]
- Sato, S.; Katsushima, K.; Shinjo, K.; Hatanaka, A.; Ohka, F.; Suzuki, S.; Naiki-Ito, A.; Soga, N.; Takahashi, S.; Kondo, Y. Histone Deacetylase Inhibition in Prostate Cancer Triggers miR-320-Mediated Suppression of the Androgen Receptor. Cancer Res. 2016, 76, 4192–4204. [Google Scholar] [CrossRef] [PubMed]
- Hagman, Z.; Haflidadóttir, B.S.; Ceder, J.A.; Larne, O.; Bjartell, A.; Lilja, H.; Edsjö, A.; Ceder, Y. miR-205 Negatively Regulates the Androgen Receptor and Is Associated with Adverse Outcome of Prostate Cancer Patients. Br. J. Cancer 2013, 108, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.C.; Hickey, T.E.; Tilley, W.D.; Selth, L.A. Interplay between the Androgen Receptor Signaling Axis and microRNAs in Prostate Cancer. Endocr. Relat. Cancer 2019, 26, R237–R257. [Google Scholar] [CrossRef] [PubMed]
- Nadiminty, N.; Tummala, R.; Lou, W.; Zhu, Y.; Zhang, J.; Chen, X.; deVere White, R.W.; Kung, H.-J.; Evans, C.P.; Gao, A.C. MicroRNA Let-7c Suppresses Androgen Receptor Expression and Activity via Regulation of Myc Expression in Prostate Cancer Cells*. J. Biol. Chem. 2012, 287, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Todorova, K.; Hayrabedyan, S. Mir-15A Reconstitution in Prostate Cancer Cell Line Suppresses Cancer Progression Through Down Regulation of MYB and Androgen Receptor Upregulation. Acta Medica Bulg. 2015, 42, 18–22. [Google Scholar] [CrossRef]
- Das, D.K.; Naidoo, M.; Ilboudo, A.; Park, J.Y.; Ali, T.; Krampis, K.; Robinson, B.D.; Osborne, J.R.; Ogunwobi, O.O. miR-1207-3p Regulates the Androgen Receptor in Prostate Cancer via FNDC1/Fibronectin. Exp. Cell Res. 2016, 348, 190–200. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, D.; Kim, H.; Abd Elmageed, Z.Y.; Datta, A.; Davis, R.; Srivastav, S.; Moroz, K.; Crawford, B.E.; Moparty, K.; et al. Dysregulation of miR-212 Promotes Castration Resistance through hnRNPH1-Mediated Regulation of AR and AR-V7: Implications for Racial Disparity of Prostate Cancer. Clin. Cancer Res. 2016, 22, 1744–1756. [Google Scholar] [CrossRef]
- Xiao, J.; Gong, A.-Y.; Eischeid, A.N.; Chen, D.; Deng, C.; Young, C.Y.F.; Chen, X.-M. miR-141 Modulates Androgen Receptor Transcriptional Activity in Human Prostate Cancer Cells through Targeting the Small Heterodimer Partner Protein. Prostate 2012, 72, 1514–1522. [Google Scholar] [CrossRef]
- Qiu, X.; Boufaied, N.; Hallal, T.; Feit, A.; de Polo, A.; Luoma, A.M.; Alahmadi, W.; Larocque, J.; Zadra, G.; Xie, Y.; et al. MYC Drives Aggressive Prostate Cancer by Disrupting Transcriptional Pause Release at Androgen Receptor Targets. Nat. Commun. 2022, 13, 2559. [Google Scholar] [CrossRef]
- Ghosh, P.; Ogunwobi, O.O. Intracellular Interaction of FNDC1/FN1/AR/cMYC in Prostate Cancer Cells. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lee, E.; Wang, J.; Yumoto, K.; Jung, Y.; Cackowski, F.C.; Decker, A.M.; Li, Y.; Franceschi, R.T.; Pienta, K.J.; Taichman, R.S. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia 2016, 18, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Valdez, C.D.; Davis, J.N.; Odeh, H.M.; Layfield, T.L.; Cousineau, C.S.; Berton, T.R.; Johnson, D.G.; Wojno, K.J.; Day, M.L. Repression of Androgen Receptor Transcription through the E2F1/DNMT1 Axis. PLoS ONE 2011, 6, e25187. [Google Scholar] [CrossRef] [PubMed]
- Ribas, J.; Ni, X.; Haffner, M.; Wentzel, E.A.; Salmasi, A.H.; Chowdhury, W.H.; Kudrolli, T.A.; Yegnasubramanian, S.; Luo, J.; Rodriguez, R.; et al. miR-21: An Androgen Receptor–Regulated MicroRNA That Promotes Hormone-Dependent and Hormone-Independent Prostate Cancer Growth. Cancer Res. 2009, 69, 7165–7169. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Yang, S.; Wan, X.; Zhang, Y.; Huang, W.; Zhao, P.; Li, T.; Wang, L.; Huang, Y.; Li, T.; et al. A Transcriptional Target of Androgen Receptor, miR-421 Regulates Proliferation and Metabolism of Prostate Cancer Cells. Int. J. Biochem. Cell Biol. 2016, 73, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, T.; Song, W.; Jiang, T.; Zhang, F.; Yin, Y.; Jiang, S.-W.; Wu, K.; Yu, Z.; Wang, C.; et al. The Inhibitory Effects of AR/miR-190a/YB-1 Negative Feedback Loop on Prostate Cancer and Underlying Mechanism. Sci. Rep. 2015, 5, 13528. [Google Scholar] [CrossRef]
- Shiota, M.; Takeuchi, A.; Song, Y.; Yokomizo, A.; Kashiwagi, E.; Uchiumi, T.; Kuroiwa, K.; Tatsugami, K.; Fujimoto, N.; Oda, Y.; et al. Y-Box Binding Protein-1 Promotes Castration-Resistant Prostate Cancer Growth via Androgen Receptor Expression. Endocr.-Relat. Cancer 2011, 18, 505–517. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ziebarth, J.D.; Cui, Y. PolymiRTS Database 3.0: Linking Polymorphisms in microRNAs and Their Target Sites with Human Diseases and Biological Pathways. Nucleic Acids Res. 2014, 42, D86–D91. [Google Scholar] [CrossRef]
- Lashkarboloki, M.; Boozarpour, S.; Jorjani, E.; Sabouri, H.; Fahimi, M. Association Study of miR-124-a-3 Gene Rs34059726 Polymorphism with Prostate Cancer in Gonbad Kavous. Alborz Univ. Med. J. 2020, 9, 287–294. [Google Scholar] [CrossRef]
- Mi, Y.; Ren, K.; Zou, J.; Bai, Y.; Zhang, L.; Zuo, L.; Okada, A.; Yasui, T. The Association Between Three Genetic Variants in MicroRNAs (Rs11614913, Rs2910164, Rs3746444) and Prostate Cancer Risk. Cell. Physiol. Biochem. 2018, 48, 149–157. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wang, Z.; Li, Y.; Li, Y.; Zou, Z.; Zhong, J.; Deng, N.; Zhou, G.; Liu, P. Association of Rs3746444 in MiRNA-499 and Rs3787016 in Long Non-Coding RNAs POLR2E with Prostate Cancer: An Updated Meta-Analysis and Systematic Review. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Y.; Ling, Y.; Zhou, C.; Wang, H.; Teschendorff, A.E.; Zhao, Y.; Zhao, H.; He, Y.; Zhang, G.; et al. dbDEMC 3.0: Functional Exploration of Differentially Expressed miRNAs in Cancers of Human and Model Organisms. Genom. Proteom. Bioinform. 2022, 20, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; et al. Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell 2010, 18, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Urabe, F.; Matsuzaki, J.; Yamamoto, Y.; Kimura, T.; Hara, T.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Sakamoto, H.; et al. Large-Scale Circulating microRNA Profiling for the Liquid Biopsy of Prostate Cancer. Clin. Cancer Res. 2019, 25, 3016–3025. [Google Scholar] [CrossRef] [PubMed]
- Mello-Grand, M.; Gregnanin, I.; Sacchetto, L.; Ostano, P.; Zitella, A.; Bottoni, G.; Oderda, M.; Marra, G.; Munegato, S.; Pardini, B.; et al. Circulating microRNAs Combined with PSA for Accurate and Non-Invasive Prostate Cancer Detection. Carcinogenesis 2019, 40, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, M.; Hwang, D.; Park, M.; Kim, W.K.; Kim, S.K.; Shin, J.; Park, E.S.; Kang, C.M.; Paik, Y.-K.; et al. Characterization of Gene Expression and Activated Signaling Pathways in Solid-Pseudopapillary Neoplasm of Pancreas. Mod. Pathol. 2014, 27, 580–593. [Google Scholar] [CrossRef]
- Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; et al. Circulating miRNA Panels for Specific and Early Detection in Bladder Cancer. Cancer Sci. 2019, 110, 408–419. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kondo, S.; Matsuzaki, J.; Esaki, M.; Okusaka, T.; Shimada, K.; Murakami, Y.; Enomoto, M.; Tamori, A.; Kato, K.; et al. Highly Sensitive Circulating MicroRNA Panel for Accurate Detection of Hepatocellular Carcinoma in Patients with Liver Disease. Hepatol. Commun. 2020, 4, 284–297. [Google Scholar] [CrossRef]
- Keller, A.; Leidinger, P.; Bauer, A.; Elsharawy, A.; Haas, J.; Backes, C.; Wendschlag, A.; Giese, N.; Tjaden, C.; Ott, K.; et al. Toward the Blood-Borne miRNome of Human Diseases. Nat. Methods 2011, 8, 841–843. [Google Scholar] [CrossRef]
dbSNP ID | Variant Type | miR ID | miRSite |
---|---|---|---|
rs11351755 | INDEL | hsa-miR-129-5p | gcaaaCAAAAAAa |
rs77029761 | INDEL | hsa-miR-129-5p | gcaaaCAAAAAAa |
rs185168988 | SNV | hsa-miR-196a-5p hsa-miR-196b-5p hsa-miR-4668-5p hsa-miR-548m hsa-miR-6124 hsa-miR-553 | ACTACCTtttccc ACTACCTtttccc actaccTTTTCCC acTACCTTTtccc actacCTTTTCCc actACCGTTTccc |
rs190014544 | SNV | hsa-miR-1248 hsa-miR-4297 hsa-miR-532-5p hsa-miR-5581-5p hsa-miR-219b-5p hsa-miR-4778-3p hsa-miR-6740-3p | AAGAAGGcatcaa aaGAAGGCAtcaa aagAAGGCATcaa aaGAAGGCAtcaa aagaaGACATCAa AAGAAGAcatcaa aAGAAGACAtcaa |
rs188374642 | SNV | hsa-miR-3912-5p | ATGGACAccatct |
rs191798952 | SNV | hsa-miR-3620-3p hsa-miR-10a-5p hsa-miR-10b-5p hsa-miR-3945 hsa-miR-4761-3p | CAGGGTGtgccct CAGGGTAtgccct CAGGGTAtgccct cagggTATGCCCt cagggtATGCCCT |
rs73227886 | SNV | hsa-miR-125a-3p hsa-miR-513a-5p hsa-miR-552-3p hsa-miR-4257 hsa-miR-6847-5p hsa-miR-7854-3p | TCACCTGtgaggg tcaCCTGTGAggg tCACCTGTgaggg tcACCTCTGAggg tcaCCTCTGAggg TCACCTCtgaggg |
rs1931537 | SNV | hsa-miR-3614-3p hsa-miR-483-5p | GAAGGCTccgtct gaaggcCCCGTCT |
rs189763567 | SNV | hsa-miR-5692a | ATTATTTttttaa |
rs145911502 | SNV | hsa-miR-4327 hsa-miR-520f-3p hsa-miR-5586-3p hsa-miR-636 | GCAAGCActctat gcAAGCACTctat gcaagCACTCTAt gCAAGCACtctat |
rs140808887 | SNV | hsa-miR-219a-2-3p hsa-miR-511-5p hsa-miR-6830-3p hsa-miR-130b-5p hsa-miR-4753-3p hsa-miR-5571-5p hsa-miR-6809-3p | gaaagACAATTCt gAAAGACAAttct GAAAGACAattct GAAAGAGAattct gAAAGAGAAttct gaaaGAGAATTct gaAAGAGAAttct |
rs2362520 | SNV | hsa-miR-1225-3p hsa-miR-1233-3p hsa-miR-1252-3p hsa-miR-5680 | GGGGCTCAtttct gGGGCTCAtttct ggggCTCATTTct ggggctCATTTCT |
miR ID | dbSNP ID | miR Seed | miRSite |
---|---|---|---|
hsa-miR-4311 | rs142080198 | AA[AG/-]GAGA | UCUCUUU |
hsa-miR-3910 | rs149611497 | AAGGCA[GGCAT/-] | AUGCCUU |
hsa-miR-6814-5p | rs185472832 | CCCAA[G/A]G | CCUUGGG |
hsa-miR-6818-5p | rs186621048 | U[G/T]UGUGA | CACACAA |
hsa-miR-488-5p | rs199722070 | CCA[G/A]AUA | UAUCUGG |
hsa-miR-488-5p | rs186200318 | CC[A/G]GAUA | UAUCUGG |
hsa-miR-124-3p | rs34059726 | AA[G/T]GCAC | GUGCCUU |
hsa-miR-3125 | rs200914693 | AG[A/G]GGAA | UUCCUCUA |
hsa-miR-6805-5p | rs201627498 | AGGGGG[C/T] | GCCCCCU |
hsa-miR-499a-3p | rs3746444 | AC[A/G]UCAC | UGAUGUA |
hsa-miR-499a-3p | rs150018420 | ACAUCA[C/T] | UGAUGUA |
miRNA | Status in PCa | Design | LogFC | Reference |
---|---|---|---|---|
hsa-miR-129-5p | Downregulated | Cancer (n = 99) vs. normal (n = 28) | −0.53 | [143] |
hsa-miR-4668-5p | Upregulated | Blood from PCa (n = 809) vs. normal blood (n = 41) | 0.71 | [144] |
hsa-miR-6124 | Upregulated | Cancer (n = 60) vs. normal (n = 27) | 0.31 | [145] |
hsa-miR-553 | Downregulated | Cancer (n = 7) vs. normal (n = 5) | −0.12 | [146] |
hsa-miR-5581-5p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −2.40 | [147] |
hsa-miR-219b-5p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −1.02 | [147] |
hsa-miR-6740-3p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −2.59 | [147] |
hsa-miR-3912-5p | Upregulated | Blood from PCa (n = 809) vs. normal blood (n = 41) | 0.54 | [144] |
hsa-miR-3620-3p | Downregulated | Blood from PCa (n = 809) vs. normal blood (n = 41) | −1.29 | [144] |
hsa-miR-3945 | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −1.96 | [147] |
hsa-miR-4761-3p | Downregulated | Blood from PCa (n = 809) vs. normal blood (n = 41) | −0.84 | [144] |
hsa-miR-513a-3p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −3.57 | [147] |
hsa-miR-4257 | Upregulated | Cancer (n = 60) vs. normal (n = 27) | 0.09 | [145] |
hsa-miR-483-5p | Upregulated | Cancer (n = 99) vs. normal (n = 28) | 0.76 | [143] |
hsa-miR-5692a | Upregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | 1.53 | [147] |
hsa-miR-5586-3p | Upregulated | Blood from PCa (n = 25) vs. normal blood (n = 969) | 1.93 | [148] |
hsa-miR-636 | Downregulated | Blood from PCa (n = 25) vs. normal blood (n = 969) | −1.25 | [148] |
hsa-miR-219a-2-3p | Upregulated | Blood from PCa (n = 23) vs. normal blood (n = 70) | 1.72 | [149] |
hsa-miR-6830-3p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −1.82 | [147] |
hsa-miR-130b-5p | Upregulated | Blood from PCa (n = 23) vs. normal blood (n = 70) | 1.75 | [149] |
hsa-miR-6809-3p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −1.08 | [147] |
hsa-miR-1225-3p | Downregulated | Blood from PCa (n = 40) vs. normal blood (n = 100) | −0.37 | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garibaldi-Ríos, A.F.; Rivera-Cameras, A.; Figuera, L.E.; Zúñiga-González, G.M.; Gómez-Meda, B.C.; García-Ortíz, J.E.; Gallegos-Arreola, M.P. Molecular Perspectives on Prostate Cancer: The Role of microRNAs in Androgen Receptor Regulation. Receptors 2024, 3, 494-512. https://doi.org/10.3390/receptors3040025
Garibaldi-Ríos AF, Rivera-Cameras A, Figuera LE, Zúñiga-González GM, Gómez-Meda BC, García-Ortíz JE, Gallegos-Arreola MP. Molecular Perspectives on Prostate Cancer: The Role of microRNAs in Androgen Receptor Regulation. Receptors. 2024; 3(4):494-512. https://doi.org/10.3390/receptors3040025
Chicago/Turabian StyleGaribaldi-Ríos, Asbiel Felipe, Alicia Rivera-Cameras, Luis E. Figuera, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, José Elías García-Ortíz, and Martha Patricia Gallegos-Arreola. 2024. "Molecular Perspectives on Prostate Cancer: The Role of microRNAs in Androgen Receptor Regulation" Receptors 3, no. 4: 494-512. https://doi.org/10.3390/receptors3040025
APA StyleGaribaldi-Ríos, A. F., Rivera-Cameras, A., Figuera, L. E., Zúñiga-González, G. M., Gómez-Meda, B. C., García-Ortíz, J. E., & Gallegos-Arreola, M. P. (2024). Molecular Perspectives on Prostate Cancer: The Role of microRNAs in Androgen Receptor Regulation. Receptors, 3(4), 494-512. https://doi.org/10.3390/receptors3040025