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Abstract: The metaverse is gradually expanding. There is a growing number of photo and video
recordings of metaverse virtual worlds being used in multiple domains, and the collection of these
recordings is a rapidly growing field. An essential element of the metaverse and its recordings is
the concept of avatars. In this paper, we present the novel task of avatar detection in metaverse
recordings, supporting semantic retrieval in collections of metaverse recordings and other use cases.
Our work addresses the characterizations and definitions of avatars and presents a new model that
supports avatar detection. The latest object detection algorithms are trained and tested on a variety
of avatar types in metaverse recordings. Our work achieves a significantly higher level of accuracy
than existing models, which encourages further research in this field.

Keywords: avatars; object detection; YOLO; artificial intelligence; convolutional neural networks;
metaverse

1. Introduction

Recognized as a global trend in 2022 [1], the metaverse [2,3] is continuously grow-
ing [4]. Global crises, such as climate change and COVID, made it clear that digital
technologies, such as video calls [5], present options for replacing in-person meetings or
even providing effective virtual collaborations. This trend is likely to continue and makes
the metaverse especially interesting, as it yields the potential to partially replace or at
least support many in-person activities. Some of the largest companies worldwide have
heavily invested in the metaverse [6–8], and public interest in this area is continuously
increasing [3,9]. In recent years, numerous metaverse virtual worlds have emerged in the
wild. One of the first is Second Life [10], which commenced in 2003. More recent metaverses
with a high level of usage [4] are Decentraland [11], Roblox [12], and Fortnite [13]. Notably,
Meta Horizon Worlds [14] is a virtual world based on Virtual Reality (VR) [15].

The metaverse is a concept that can be represented in various forms. In this paper,
we follow the metaverse definition provided by Ritterbush and Teichmann: “Metaverse, a
crossword of ‘meta’ (meaning transcendency) and ‘universe’, describes a (decentralized)
three-dimensional online environment that is persistent and immersive, in which users
represented by avatars can participate socially and economically with each other in a
creative and collaborative manner in virtual spaces decoupled from the real physical
world” [3]. The term avatar is based on the ancient Hindu concept of calling the physical
representation of a Hindu god an avatar [16]. It is therefore not a simple placeholder but the
actual representation of something in a different sphere of reality. If users create a custom
character or are represented by a particular character, then this can be seen as their avatar
in this world.

In these non-real or virtual worlds, there is usually at least one avatar, i.e., the repre-
sentation of a user, who is taking control over the environment. These characters interact
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with their environment. For a user, their own avatar can be shown in a first- or third-person
view. Most 3D virtual worlds use a third-person view, while almost all VR-based virtual
worlds use a first-person view. A world is typically shared with others, is persistent, to
some degree, and reacts to actions happening in real-time [17].

User sessions in the metaverse can be recorded [18] as, for example, screen recordings,
which we refer to as metaverse recordings (MVRs) [18]. Hence, the metaverse produces
Multimedia Content Objects (MMCOs), i.e., images or videos. MVRs can serve a variety of
use cases, including the creation of personal memories, such as lifelogs [19], the sharing of
experiences with others [20], and the implementation of quality control in VR training [21].
Another significant use case emerges from the industrial metaverse, where the virtual
world is employed for simulations to validate production lines or to generate training data
for machine learning (ML) in autonomous driving [22–24].

In Multimedia Information Retrieval (MMIR) [25], avatar detection can be used to find
MVRs in larger collections. For example, in VR training, a trainer could search recorded
trainings for specific actions of avatars, or, in the case of ML training data, they could find
examples for certain conditions. To search for MVRs with MMIR, a computer should be able
to understand the content of MVRs and gain semantic information in virtual worlds [17].
Therefore, avatars are crucial elements that represent users in the virtual world. To achieve
a semantic understanding, avatars must be detected and classified within MVRs.

We introduce the detection and classification of avatars within images and videos as a
novel task termed Avatar Detection. Avatar Detection can be viewed as a specialized subset of
object detection [26] for images and videos. One might argue that virtual world providers
could offer semantic labeling or metadata for avatars during live gameplay, which we
define as Scene Raw Data [27]. While this approach is considered feasible, current virtual
worlds, e.g., Roblox [12,28] or Meta Horizon Worlds [14], do not provide such information
for recordings. The task of avatar detection is relevant for searching and indexing large
collections of images and videos within the metaverse. By incorporating this specific
semantic information, the efficiency and accuracy of image and video retrieval processes
can be enhanced, thus providing a robust framework for metaverse retrieval [29]. The
ability to locate and classify avatars within collections would increase the effectiveness
of search processes and enrich the metadata associated with digital content, thus offering
substantial advancements in the management and utilization of MMCOs.

The need for research on avatar detection in virtual world recordings stems from the
increasing relevance of these digital environments in both social and professional contexts,
as well as the increasing number of streams and recordings of virtual worlds. Avatars
serve as the primary medium through which users interact, representing their identities
and actions within virtual worlds; therefore, the interest to search for avatars is a relevant
capability for MVR retrieval systems. Further developments could use the detected avatars
to identify them, similar to face identification for photos. Furthermore, the interactions
of avatars are also interesting in terms of enabling searches. Interaction detection, e.g.,
human–object interaction or human-human interactions, rely on the detection of humans,
in this case avatars, in virtual worlds. Hence, reliable avatar detection is relevant.

In MMIR, semantic information can be used to examine a situation based on the
automatically extracted meta information. Semantic information describes information
about the content, its meaning, and possibly even its meaning in relation to other content.
For example, we can look at the statement that two avatars of the humanoid class are
standing in close proximity to each other. The information can be annotated in the source
image, shown in Figure 1, with two avatars interacting in an abstract location. The semantic
information enables semantic search queries which, beyond a simple query for avatars, can
search for avatars standing next to each other.
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Avatar: Humanoid Avatar: Humanoid

Figure 1. Highlighted by the yellow and red squares are two recognised avatars interacting with
each other.

To create the semantic information, the algorithm receives an image as input, then au-
tomatically detects semantic information by locating avatars, drawing boxes around them,
classifying them, and then noting their classes on the top of these boxes as Avatar: Humanoid.

This paper focuses on detecting whether or not some form of avatar is present and, if
so, where it is located in the image. Therefore, additional information is extracted from the
raw pixel data. To perform avatar detection, an appropriate algorithm must be found or
implemented. Based on our research, a sufficient way to detect avatars in virtual worlds
with artificial intelligence is unknown. This paper presents a method for avatar detection
that demonstrates superior performance compared to the baseline methods.

In summary, avatar detection supports organizing and searching large collections of
MVRs. Early experiments [30] show the limitations of existing object detection in regard to
this task. We derived the problem statement that the object detection of avatars in MVRs is
unknown. Our research addresses the research question of how avatars can be detected
and classified in MVRs. The scientific approach used for this work follows the method
described by Nunamaker et al. [31]. The application enables the researcher to present a clear
and organized response to the research question. The Nunamaker framework connects the
four disciplines of Observation, Theory Building, System Development, and Experimentation.
These areas influence each other, with System Development being in the center.

The remainder of the paper is organized as follows. Section 2 presents the current
state of the art and forms the baseline for our work. In Section 3, we present our modeling
work to classify and detect avatars in MVRs. Section 4 describes the implementation of our
model and the dataset, which are then used for the evaluation, presented in Section 5.

In the process of preparing this manuscript, we utilized AI-powered language tools,
including DeepL and Writefull. These tools were employed to enhance the efficiency
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of the writing process and to ensure clarity in presenting complex ideas. However, all
interpretations, conclusions, and the final content of the article were thoroughly reviewed
and validated by the human authors to maintain the integrity of the research.

2. Current State of the Art

Applying the scientific methodology of Nunamaker, this section presents our observa-
tions on the current state of the art.

2.1. Definitions and Characterizations of Avatars in Literature

Avatars represent the user in a virtual world [32,33]; however, they are more than
just a tool to for interacting with the world and others. The ability to customize avatars
allows the users to express themselves and is a relevant part of the immersive experience
that the user engages in [32,34,35]. This, for example, contributes to a better learning
experience [36]. This culminates in the realistic representation of facial expressions and
gestures, which leads to an increased emotional and empathetic relationship with one’s
own and others’ avatars [33]. The avatar concept also provides a form of anonymity, which
provides a degree of liberty but also leads to the risks of misuse and abuse [9]. Digital
identities connected to avatars have been put in place with the intention of helping to track
people and holding them accountable [37]. With regard to the recognition of avatars, the
infinite variations in their appearance and the lack of associated information about them in
video footage represent a significant challenge.

According to Miao et al. [38], avatars in the virtual worlds of the metaverse lack a
unified definition and taxonomy [38]. They suggest the following definition based on
their empirical findings of different avatar definitions used in relevant papers: “We define
avatars as digital entities with anthropomorphic appearance, controlled by a human or
software, that are able to interact” [38]. They suggest a simple taxonomy that is two-by-two
in dimension. The first dimension is form realism and the second one is behavioral realism.
Realism in form is defined mainly by the level of anthropomorphism, which increases with
realistic human appearance, movement, and spatial dimensions. The behavioral realism is
determined by interactivity and the controlling entity. For the purposes of this discussion, it
is sufficient to note that four simple characters can be created and are of the types Simplistic
Character, which is low in form and behavior, Superficial Avatar, which is high in form but
low in behavior, Intelligent Unrealistic Avatar, which is low in form but high in behavior,
and Digital Human Avatar, which is high in form and behavior. They define a typology of
avatars where the form realism part describes attributes that are relevant when looking
at an avatar; these include the representation as a 2D or 3D model, its static or dynamic
graphic, and human characteristics such as gender, race, age, and name [38].

Ante et al. [37] present a similar definition. They define an avatar of a user as “one or
more digital representations of themselves in the digital world” [37]. At a high level, they
classify them into the following types: Customizable, Non-customizable, Self-representational,
NonHuman and abstract. They again see a high level of anthropomorphism, but they also
include abstract and nonhuman characters, which can lack these attributes [37].

In consideration of the aforementioned classifications, it is evident that humanoid
avatars (human) are a prominent subject of interest, particularly in the context of the
metaverse. By the classification of Miao et al. [38] they are regarded as Superficial Avatars
or Digital Human Avatars. By the classification of Ante et al. [37] they fit the categories of
Customizable, Non-customizable and Self-representational. These humanoid avatars are
most easily recognized by their silhouette, with four limbs, a torso, and a head, but also a
face and clothing. All other detected avatars are then broadly subsumed with a residue
class (NonHuman).

Anthropomorphism is described as an important feature of an avatar [37]. Using
humanoid avatars makes it easier to assert human features to avatars and strengthens
social interactions and general engagement in a virtual world [33]. This includes a simpler
possibility of self-representing and identifying with an avatar. In addition, a higher level of
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empathy, social connection, and satisfaction is reached [37]. The human-centered design
approach [39] is another argument to focus on in regard to humanoid avatars.

In summary, a characterization of avatars as roughly either being Human or NonHuman
is found, while NonHuman can still include anthropomorphic features at a lower level (but
they are not required). This might make it harder to classify them as avatars than with
Human avatars. Furthermore, there is no unified or widely used avatar characterization,
and creating or extending an ontology is helpful in regard to modelling avatars.

The 256-Metaverse Records dataset [40,41] contains video-based MVRs collected in
the wild from different metaverse virtual worlds. A sample of different avatars from the
dataset is shown in Figure 2. The virtual worlds displayed all contain an avatar that is,
at least, a self-representation of the user engaging in the virtual world. On the top left, a
scene from Second Life [42] is displayed, followed by a snapshot of Roblox [12]. On the
bottom left, a gathering in Fortnite [13] is shown, next to a scene in a restaurant in Meta
Horizon Worlds. All avatars are close to a humanoid representation with different levels of
abstraction. The Roblox sample displays a blocky toy-like representation and Second Life
is close to a photorealistic representation, while Fortnite has a more realistic look that has
some cartoonish elements. Finally, Horizon Worlds uses an oversimplified but still realistic
look, but, at the same time, the avatars are missing their lower body and are free-floating.
Even though there is an avatar-labeled training dataset, it is highly likely that the labels
might require adaption or the videos must be converted to either images of specific sizes,
formats, or something similar. Figure 2 shows different examples of avatars in the dataset.
From the observations on the dataset made by the authors of this paper, virtual worlds
employ indicators of different forms that hover over the avatars’ heads, including text boxes,
diamonds, or arrows. Examples of such indicators are shown in Figure 2, as seen in the
white downward arrows in the lower left example or the names that hover above the heads
in the upper left and lower right examples. However, such indicators are not guaranteed to
be used in a virtual world or be visible in the scene.

Figure 2. Samples of the 256 Metaverse Recording dataset.

Steinert et al. [27] investigate the differences in the ontologies of common multimedia
with MVRs. They also propose defining an avatar as a tuple of a name tag, referring to the
described Indicator, and a character. Further, the characterization describing a character
can be a text line, a 2D model, or a 3D model. Although Steinert et al. do not find an
existing ontology containing an avatar, they propose extending the Large-Scale Concept
Ontology for Multimedia (LSCOM) [43]. They name as a possible super-class the perceptual
agent class. After reviewing the literature and visually inspecting MVRs with avatar data,
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it might be easier to classify avatars when extending the found characterization. When
something of type Human is found, it could be an avatar but could also be a simple
representation of a human in a painting. For honhuman avatars it can be even harder. The
author proposes including a sign in the recognition that refers to the described Indicator
used to emphasize that a character is a player character. When such indicators are found in
relation to the detection of a human or NonHuman, it may allow for easier identification of
avatars. However, based on the observations in the wild, the described name tag is only
one form of Indicator and no method and evaluation is presented.

Upon examination of the MVRs, it becomes evident that a significant proportion of
nonhuman avatars are anthropomorphic animals or animal-like creatures. This observation
has the potential to influence recognition, yet it is not reflected in existing categoriza-
tion schemes.

However, the extension of the existing avatar classification by modeling the Indicator
property, and the use in avatar detection remains a challenge.

2.2. Object Detection

The automatic detection of object instances in images and video, machine learning, in
particular object detection, has proven to be efficient [44]. There are multiple algorithms
from the field of supervised learning used for classification and localization, which might
be applicable to the task of avatar detection. Neural networks are computational models
inspired by the human brain [26], consisting of interconnected layers of nodes (neurons) that
process data to recognize patterns and make predictions. Convolutional Neural Networks
(CNNs) are a specialized type of neural network designed for image and video recognition,
using convolutional layers to automatically detect features such as edges, textures, and
shapes in visual data [26,45].

One can use existing object detection models to detect avatars. For example, avatars
are similar to humans. Hence, a model successfully detecting humans could be used for
avatar detection. This approach likely reduces the amount of training data needed [46], by
using a combination of active learning and transfer learning. Transfer learning provides
a pre-trained model that has been trained on a different dataset [46]. Active learning
describes a selective annotation of only unlabeled training data with a high entropy; e.g.,
this could be determined by classification of the unlabeled data and then checking for data
points with low probabilities assigned [46]. Therefore, only some training data have to
be labeled.

A similar approach is used by Ratner et al. [47], showing three things when using
their data programming framework within the field of weak supervision, where some
is automatically labeled by simple solutions such as labeling function that are based on
heuristics and therefore noisy, biased, or otherwise error-prone. First, Ratner et al. show that
data programming can generate high-quality training datasets. Second, they demonstrate
that LSTM models can be used in conjunction with data programming to automatically
generate better training data. As a last point, they present empirical evidence that this is an
intuitive and productive tool for domain experts.

These approaches outline that acquiring training data is not a simple or solved issue,
because not even the labeling can be handled fully automatically. In theory, if the model that
is planned to be trained works well, then this could also be regarded an automatic creator
for labels of training data within the field of weak supervision. Other than that, these
approaches might help to create more labels for training data, but still require generation
of training data to label.

Other approaches that seem promising due to current success with image recognition
are based on Convolutional Neural Networks (CNN) [48], basic CNNs have been extended
and improved to models such as You Only Look Once (YOLO) [49] or Regional CNNs
(R-CNNs) [50], which have proven to be useful for object detection. In short comparison,
R-CNNs work in multiple steps which increases accuracy but reduces speed for live object
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detection, while YOLO does all these steps at once which reduces complexity and increases
speed, but slightly lowers detection accuracy.

The YOLO algorithm works by dividing an image into a grid, predicting bounding
boxes and class probabilities for each region in a single pass through a neural network [26].
YOLO generalizes objects better compared to R-CNNs by a wide margin, e.g., after training
on images of real humans, it is still able to detect abstract persons quite well in artworks.
A high capability in abstraction might be a big advantage. At the same time it is really
fast, allowing for a wider use case or less resource consumption due to its more simple
and efficient modeling. Furthermore, it takes in the input of the entire picture including
the background, which might be helpful to include contextual information, especially
when trying to detect more abstract avatars. However, even if an avatar would look like
something amorphic, YOLO has proven to detect unspecific objects like potholes [51,52].

YOLO’s major shortcoming in accuracy is with exact detection location and multiple
objects in proximity. This might limit the ability of the model when multiple avatars might
be close to each other, but newer versions of YOLO are quite capable at reducing these
issues [45]. In general, YOLO is an adaptable, fast, real-time object-detection method that
achieves good accuracy in comparisons [45].

Our literature search could not find an approach that directly attempts to apply object
detection on avatars in MVRs, but there are multiple highly potent candidate algorithms at
hand. Some, such as a pre-trained YOLO model, might work quite well without further
modification, since they are able to generalize well from human images to humanoid
representations. Then, specialized training data is provided to such models. A remaining
challenge is the modeling and implementation of an adapted YOLO model, specialized by
transfer learning on the avatar class annotated MVRs.

2.3. Summary

The existing avatar classification is inadequate for object detection purposes. It in-
cludes irrelevant characteristics and fails to account for a crucial indicator used widely in
metaverse virtual worlds to identify avatars. Although effective object-detection methods
have been extensively researched and provide a solid foundation for training on avatar-
specific classes, our literature review reveals a gap in object detection specifically tailored
for avatars. In the next section, we present our modeling as a solution for these challenges.

3. Modeling

This section presents our modeling and design work. Based on the body of research,
we modeled an avatar classification, and selected an ML model for Avatar Detection. We
use the Unified Modeling Language (UML) [53] for our modeling work.

3.1. Avatar Classification

As presented, the existing classification of avatars lacks supporting object detection.
We propose an avatar class model that can be deduced from the aforementioned research
that includes two types of avatars HumanAvatar and NonHumanAvatar, visualized in the
class diagram in Figure 3. The classes contain an extension part, which includes attributes
of these classes via aggregation, adding Indicator to Human to form a HumanAvatar and to
NonHuman to form a NonHumanAvatar.

The class model can be used in information systems and, therefore, has additional
attributes. The core of the model is the Avatar class which contains a unique ID of the
avatar displayed. The location given by xCord and yCord and the size of the box, centered
around these coordinates, given by xBox and yBox. Measured in pixels, their data types are
integer. The confidence value of a detector can be stored in the confidence attribute.

When looking at the extension part of the model, a human-like appearance is an
essential attribute for HumanAvatar detection; therefore, it has exactly one association with
the human class representing this attribute. Similarly, the NonHuman class is an essential
part of the NonHumanAvatar. There might be issues with detecting avatars using only this
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characteristic. One reason for error might be the detection of a human or human-like image
or picture that is not an avatar. A typical issue could also be that an anthropomorphic
appearance of a figure might be given but is not controlled by a human or machine user.
The biggest issue might arise when trying to detect nonhuman avatars which feature little
to no human-like appearances. To clarify, the Human and NonHuman classes are both
anthropomorphic. NonHuman is not a simple negation of Human but rather a classification
related to Human while not being Human, typically featuring less anthropomorphic features.
Both classes represent a detected instance of an avatar in an MVR.

Avatars

-Avatars: List

+addAvatar()
+removeAvatar()
+getAvatar() : Avatar
+getAllAvatars() : List
+countAvatars() : Int

Avatar

#ID: Int
#confidence: Float
#xCord: Int
#yCord: Int
#xBox: Int
#yBox: Int

+getID() : Int
+getConfidence() : Float
+getxCord() : Int
+getyCord() : Int
+getxBox() : Int
+getyBox() : Int

HumanAvatar NonHumanAvatar

SignHuman NonHuman

1

0..*

1

1

1

0..1

1

1

1

0..1

Extension

Figure 3. Information UML Class Diagram of Avatars.

The second attribute for avatar detection is the Indicator. Possible instances of an
Indicator could be text boxes, i.e., name tags, symbols ( such as arrows), or other indicators,
which mostly hover above the head of an avatar. An Indicator might be especially useful
for NonHumanAvatar classes if non-obvious representations, such as normal animals, are
used for a NonHuman or, in general, if the shown avatar is very small in its representation.
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Indicators may only appear in specific circumstances, i.e., depending on the distance to the
avatar or the context in the virtual world. Including the second attribute, Indicator, in the
class model, the aggregation of Human and Indicator make up the HumanAvatar class. The
Indicator is kept optional, to respect a possible disappearance in context, which is modeled
by the 1 to 0.1 relationship with the Indicator. Similarly, the Indicator is also added as an
optional feature for the NonHumanAvatar class.

A common way to define such classifications is through ontologies, e.g., the RDF [54]
-based ontology in Notation 3 (N3) [55] displayed in Listing 1. An Avatar can be added as a
subclass of the perceptual agent in the existing LSCOM ontology. The HumanAvatar and
NonHumanAvatar subclasses can also be added.

Including an Indicator, such as the proposed name tag [27], in conjunction with Human
or NonHuman detection is thought to be a valid way to create the HumanAvatar and
NonHumanAvatar class. Thus, it is included as a relation or, in RDF terms, a Property.

Listing 1. Information Model Formal Language Specification of Avatars.

@prefix : <https://github.com/JokerFelix/MasterThesisCode/AvatarOntology> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
# Define Classes
:Avatar rdf:type rdfs:Class .

: AvatarHuman rdfs:subClassOf :Avatar .
: AvatarNonHuman rdfs:subClassOf :Avatar .

:Human rdf:type rdfs:Class .
: NonHuman rdf:type rdfs:Class .
: Sign rdf:type rdfs:Class .

# Define Properties for Aggregation
: includesHuman rdf:type rdf:Property ;

rdfs:domain :AvatarNonHuman ;
rdfs: range: Human .

: includesSignForHuman rdf:type rdf:Property ;
rdfs: domain: AvatarHuman ;
rdfs: range : Indicator .

:includesSignForNonHuman rdf:type rdf:Property ;
rdfs: domain: AvatarNonHuman ;
rdfs: range : Indicator .

: includesNonHuman rdf:type rdf:Property ;
rdfs:domain :AvatarHuman;
rdfs: range :NonHuman .

The resulting class model presents four distinct classes which can be used in Avatar
Detection for MVRs.

3.2. Avatar Detector Model

The state-of-the-art object detection mechanisms promise good results with proper
transfer learning. Hence, our avatar detector, referred to as ADET is based on an existing
model trained with avatar training data. The selected algorithm family is YOLO. The
training is based on a training and test dataset and a set of hyperparameters. These
hyperparameters influence the model’s exact structure and training process to converge to
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a decent minimum of the loss function. Common hyperparameters include the learning
rate, batch, and epoch sizes. For our training, the software performs one optimization step,
using the optimizer selected for every batch and for every epoch, in the direction of steepest
descent provided by the negative gradient, accessing the model’s parameters and basing
the magnitude of change on the learning rate.

YOLO is available in multiple network architectures and with different sets of hyper-
parameters. For ADET, the YOLOv7 standard model is selected with minor configuration
changes to fit the amount and types of classes selected for avatar detection. The exact set of
hyperparameters is then determined in the implementation by trial and error, also called
hyperparameter tuning; however, as a starting point, a default set of hyperparameters
is used again.

4. Implementation

This section describes our results in terms of the Nunamaker phase system’s devel-
opment. The results comprise a created dataset for training and evaluation of the object
recognition, as well as the selection and parameterization of object recognition models.

4.1. ADET Dataset

Dataset Statistics: We created a dataset of 408 images sampled from the 256-Metaverse
Records dataset [30]. We refer to this as ADET-DS. ADET-DS contains 716 labeled avatars,
478 instances of class HumanAvatar, and 238 instances of class NonHumanAvatar.

The original dataset consists of video files. The first step of selecting individual frames
and marking their timestamps is tedious work. The 256 Recordings dataset is diverse
in terms of the environments and avatars displayed while being in the video format,
providing per second roughly 30 possible candidate frames to select. With the provided
MVRs covering over 8 hours, approximately 882,719 candidate frames are provided. Hence,
the annotator skipped through the footage at a higher speed or to specific time stamps.
When investing only a little time on each frame, a clear indicator, such as a name tag, a
health bar, a highlighting contour line around a character, or a symbolic indicator such as
an arrow hovering over a character’s head, is easier to recognize and allowed for faster
recognition of an avatar, increasing the efficiency of the process. This supports the thesis
that indicators are relevant in the recognition process. One risk is to rely too much on the
presence of these indicators, creating an imbalanced and unrealistic dataset, because some
avatar representations do not include this Indicator attribute. Thus, relying solely on these
indicators when quickly screening through frames should be avoided.

For frame extraction and labeling, a custom Python script using FFmpeg [56] and
LabelImg [57] is used. The annotation of frames is achieved manually by a human expert
in the field. LabelImg is used to draw bounding boxes and label them with HumanAvatar
and NonHumanAvatar as text names, as suggested by the classification. Figure 4 displays an
example of the labeling process. The instances of cat and unicorn feature a clear Indicator-
type indicator, including their names. The NonHuman classification is made because even
though the form realism is low, it still features quite a bit of anthropomorphic features, such
as a 3D model with arms, torso, legs and an overly big head. The race, even though not
human, is still clearly present as a cat and a unicorn. They also feature a name, displayed
with Indicator. Although they are probably most likely NPC controlled, they are classified
as a NonHumanAvatar. If the race is more clearly that of a human, then it is classified as
Human with a low form of realism. This example demonstrates that it is non-trivial to
assign the correct class labels and that, while the indicator helps to identify avatars, it is
sometimes not present or unique to an avatar.
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Figure 4. Example image annotation of avatars in MVRs with LabelImg.

4.2. Avatar Detector

The actual detection model is mostly the default YOLOv7 implementation [58]. The
final implementation code is provided in [59,60].

The first YOLOv7 implementation created is called YOLObase or YOLObase, represent-
ing the original vanilla YOLOv7 [58] model, and was trained using the COCO dataset [61].
Without any further training, it can simply detect person-type classes, which are then in-
terpreted as avatar detections. The second created YOLOv7 implementation is referred to
as ADET, representing the adapted YOLO model, and it specializes in transfer learning
in regard to the two avatar classes of HumanAvatar and NonHumanAvatar. Here, ADET,
or ADETindicator, is the avatar detection implementation based on YOLObase and is trained
with the avatar training data, yielding different weights and biases; it also features minimal
adjustments for the hyperparameters of the P5 configuration [62] delivered with YOLOv7.
The number of known classes was adopted for the two classes HumanAvatar and NonHu-
manAvatar. The learning rate lr0 was set to 0.001. A third model was trained, referred to
as ADETNI , which is identical to ADETindicator but was trained with modified test images
in which the feature of type Indicator was removed; therefore, no indicator is visible. The
same configuration of ADETindicator was used for training ADETNI .

For the final training of both models, a batch size of 16, an image size of 640, and a
maximum of 1300 epochs are used. The dataset ADET-DS was split in a 70/15/15 ratio for
train/test/validation. During the hyperparameter tuning test that was used to compare the
detection results of models trained with different sets of hyperparameters, the validation
part was left unseen by the model until the final model was selected and evaluated.

Table 1 summarizes the different avatar detectors. YOLObase, a plane yolov7 model
which can detect persons, can be used as a baseline. ADETindicator can classify the presented
classification model with indicators trained with avatar-specific data. In contrast, ADETNI

is trained on the classification without the indicators. An example output of the detected
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images is presented in Figure 5. It demonstrates that the avatar instances can be detected,
but some avatars are missing, such as the cat, and other detection bounding boxes differ
when compared to the annotations in Figure 4.

Table 1. Overview of the avatar detectors.

Detector YOLObase ADET indicator ADET N I

Base Algorithm YOLOv7 YOLOv7 YOLOv7
Classes MS COCO classes, e.g., Person HumanAvatar, NonHumanAvatar HumanAvatar, NonHumanAvatar

Training Dataset MS COCO ADET-DS with indicators in
bounding box annotations

ADET-DS without indicators in
bounding box annotations

Configuration - p5 p5
Learning rate - 0.001 0.001

Figure 5. Example of detected avatar instances.

The implementation shows that existing object detection algorithms can be used to
detect avatars. The limitation of the training data is noteworthy, with only 687 instances
of class HumanAvatar and 687 instances of class NonHumanAvatar. Despite the research
showing that transfer learning is achievable with 1500 images [51], the diversity of avatars
suggests that more training data could yield better results. The next section provides a
detailed evaluation of the effectiveness.

5. Evaluation

In this section, we present and discuss the results of our experiments for the avatar
detector ADET. In addition, an ablation study analyzes the impact of the Indicator in regard
to ADET.

5.1. Evaluation of the Avatar Detection

The following experiments evaluate the effectiveness of the avatar detector ADET.
First, a baseline is created to compare the effectiveness of ADET.
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5.1.1. Baseline

The first test is performed using the vanilla YOLObase detector to test the performance
of detecting instances of the class Avatar. Since YOLObase is trained on COCO classes, all
the labels of type Avatar in the validation dataset are renamed as person.

Dataset Settings: The YOLObase was trained with the COCO dataset. The ADET-DS
test split was used for the evaluation.

Training and Inference: The YOLObase model was used pre-trained from the model
zoo [58].

Metrics: The common metrics Precision, Recall, mean Average Precision (mAP) [44]
at threshold T (mAP@T), and Intersection over Union (IOU) [44] are used to evaluate the
performance of the models.

Results: When using person only as an approximation for both avatar classes, the
model delivered an mAP@0.5 of 0.582. This is already a decent result, which also implies
that, for a fixed IOU of 0.5, the AP is also the same as mAP since only one class is included.
The Precision Recall (PR) curve is shown in Figure 6.

The default class person included in the COCO dataset is obviously also a good
approximation for the avatar class Human on its own; however, overall, the results of the
YOLObase are mediocre.

The F1 score is quite consistent for different threshold levels, with higher confidence
values falling off, and it is optimal at 0.155, as shown in Figure 7.

An in-depth analysis of the predictions of the YOLObase model shows that the model
rarely identified an avatar as a horse, cow, or similar class that can be regarded a subclass
of NonHuman in the sense of our modeling. Most of the time, the NonHuman avatars are
detected as a person.

With respect to the class Indicator, there are two detections of frisbee close to an avatar
that are actually indicators belonging to an avatar. An example of detection is shown in
Figure 8.

Figure 6. AP and mAP of YOLObase on Test Data.
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Figure 7. F1 Score for Different Thresholds of YOLObase.

Figure 8. Predicted Avatars YOLObase on Test Data of ADET-DS.

These results support the idea of the anthropomorphic appearance of avatars and the
idea of NonHuman representing something that is not actually a human but close to it. The
results also show that animal classes cannot be suitable subclasses for NonHuman.

Indicators of type Indicator could usefully be included in an avatar characterization,
but the standard recognition model shows only a weak indication of this. This might be
caused by the training data classes themselves. There are no well-fitting classes of indicators
in the basic COCO training data, such as text boxes, arrows, name tags, etc. The included
classes of the COCO dataset, such as street signs and frisbee, are confusing in terms of avatar
detection and give false positive results. Thus, the YOLObase model is not a good fit to
differentiate avatar classes into HumanAvatar and NonHumanAvatar.
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5.1.2. Avatar Detector

The adapted YOLO model, which specialized in transfer learning on the avatar class
using the avatar-annotated MVRs, is presented next.

Dataset Settings: ADET-DS is used in the 70/15/15 train/test/val split.
Training and Inference: ADETindicator was used after being pre-trained with COCO

from the YOLOv7 model zoo. Further training with avatar data was done for 1300 epochs
Using the ADETindicator detector, in contrast to the YOLObase detector, HumanAvatar

and NonHumanAvatar can be detected separately.
Metrics: Previous metrics are used.
Results: The mAP@0.5 for both classes is at 0.825; the HumanAvatar class is at 0.905

and the NonHumanAvatar achieved an AP of 0.745. The classes Human, NonHuman, and
Indicator, or any other class, are not included explicitly in the training.

The results are shown in Figure 9.

Figure 9. AP and mAP of ADETindicator on test data of ADET-DS.

The F1 score is quite consistent for different threshold levels and is optimal at 0.245, as
shown in Figure 10.

An example of the detection is shown in Figure 11. The same sub-sample of test
data is selected as what was used for YOLObase. Only relevant objects such as Avatars are
detected, especially NonHumanAvatars which are correctly classified.Detecting far-away
or tiny avatars seems easier for the model, and, at the same time, the bounding boxes are
comparable in precision.

Table 2 summarizes the key statistics comparing ADETindicator and YOLObase. The
adapted ADETindicator implementation prototype of ADET trained on the avatar-annotated
MVR is clearly an overall improvement. There is a percentage point rise of 24.5 in mAP,
indicating a relative improvement of 0.422.

The detection of the NonHumanAvatar class is weaker compared to the HumanAvatar
class with an absolute delta of 0.160 percentage points; however, in contrast to YOLObase,
the detection is at least possible. For future work, the performance could be increased for
this class by including more training data of NonHumanAvatars, as this class is more diverse.
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Figure 10. F1 Score for Different Thresholds of ADETindicator.

Figure 11. Predicted Avatars ADETindicator on Test Data of ADET-DS.

Table 2. Comparison of ADETindicator and YOLObase Detection Metrics.

AP ↑ mAP@0.5 ↑ F1@Optimum ↑

ADETindicator Class HumanAvatar 0.905
ADETindicator Class NonHumanAvatar 0.745
ADETindicator Both Classes 0.825 0.800
YOLObase Person 0.582 0.580

5.2. Ablation Study: Evaluating the Avatar Indicator

An ablation study investigates the performance of an AI system by removing certain
components to understand the contribution of the component to the overall system. The
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experiment is carried out to test whether the Indicator indicator class is meaningful to an
avatar classification. Thus, the avatar-trained YOLO model ADETindicator is tested on data
that include the Indicator indicator (ADETindicator) and data that exclude it (ADETNI). The
idea is that these models can explicitly provide the important detected features that make
up an avatar. Therefore, the complex implicit knowledge involved when a human labels
these avatars is returned quantitatively by the avatar detection algorithm. If elements
such as Human and Indicator are detected by the algorithm, this is a clear indicator that the
suggested model includes relevant features of an avatar.

Dataset Settings: We split ADAT-DS into test/train/val and edited out indicators
such as name tags or graphical symbols.

Training and Inference: ADETNI was used and was pre-trained with COCO from the
YOLOv7 model zoo. Further training with avatar data was done for 1300 epochs.

Metrics: Previous metrics are used.
Results: In regard to testing ADETindicator while including the Indicator indicators

first, the mAP@0.5 for both classes is at 0.825, the HumanAvatar class is at 0.905 and the
NonHumanAvatar achieves an AP of 0.745. Subclasses such as Human, NonHuman, and
Indicator, as well as any other class, are not included directly as subclass detections. As
shown in Table 3, the results for mAP@0.5 dropped by 0.09 percentage points to 0.735, the
HumanAvatar class dropped slightly by 2.4 percent, from 0.905 to 0.883, and the NonHu-
manAvatar class dropped in AP from 0.745 to 0.586. The decrease by 21.3 percent is quite
significant and most relevant to the overall mAP drop. This shows that Indicator is an
important element for NonHumanAvatar detections and that it slightly helps with HumanA-
vatar detections, as the same model showed inferior performance in regard to detecting
avatars when the indicator class Indicator was not included for the same test images.

Table 3. Comparison with and without Indicator.

Model Train Set AP Human ↑ AP Non-Human ↑ mAP ↑

ADET Indicator 0.905 0.745 0.825
ADET No Indicator 0.883 0.586 0.735
YOLO COCO 0.582 * -

* class person.

Two reasons may be responsible for this, the first being the large variability in the
NonHuman class compared to the Human class. The second reason is the often observed
similarity between NonHuman and Human. In future work, it might be interesting to identify
more NonHuman classes and to repeat these tests for more diverse training and test data.
The experiments allow for evaluating the avatar characterization suggested and, especially,
the positive relevance of the Indicator class as required.

Furthermore, the results presented previously suggest that an AI-based avatar detector
such as ADETindicator uses this indicator to classify an avatar. The classes Indicator and
NonHuman are both detected for the NonHumanAvatar detections, while it is mostly Human
that is detected with HumanAvatar. This supports the thesis that Indicator is a reasonable
extension that helps to spot avatars.

In future work, utilizing more significant subclasses of the NonHuman class in the
context of avatars might result in another meaningful extension of avatar classifications.

6. Discussion and Future Work

In this paper, we have explored the novel task of avatar detection in MVRs, presenting
a significant contribution to the fields of MMIR and artificial intelligence. The presented
avatar classification model provides a classification for object detection models and includes
a novel approach to incorporating visual indicators in the classification.

Utilizing the YOLO algorithm, specifically the YOLOv7 architecture, the ADET model
was developed and fine-tuned to detect avatars within various virtual environments. This
approach achieved significant improvements in accuracy of 0.825 mAP@0.5, particularly
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compared to standard models such as YOLObase, which only detected human-like avatars.
The research demonstrates a notable improvement in detection accuracy that is mainly
attributed to the specialized training on avatar-specific datasets. The inclusion of visual
indicators, such as name tags and hovering arrows, significantly improves the performance
of the model, highlighting its importance in the detection process. This model effectively
addresses the complexities inherent in identifying avatars, particularly those with varying
degrees of anthropomorphism and abstract features, thereby advancing the capabilities of
current object-detection methodologies.

Despite these advancements, several limitations were observed. First, the reliance
on indicators introduces a vulnerability in virtual worlds where such indicators are not
always present, limiting the robustness of the model for nonhuman avatars in certain
contexts. Second, the dataset may not fully represent the diversity of avatars found in all
metaverse environments, particularly for nonhuman forms that exhibit a wide variety of
shapes and behaviors.

The ADET models provide avatar detectors that can be used in MVR-specific MMIR
systems to recognize avatars in images and videos. This allows at least MVRs or segments
to be differentiated into MVRs with and without avatars. The ADET models can also be
used as a foundation for human–object and human–human interaction detection.

Future research should aim to expand the training datasets to encompass a broader
range of avatar types and virtual environments. This expansion is essential for improving
the generalizability and robustness of the model, particularly for nonhuman avatars, which
exhibit a wider variety of forms and characteristics. Moreover, addressing the model’s
current dependency on visual indicators should be a key focus, as reducing this reliance
would make the model more adaptable to environments with fewer or no external cues.
Additionally, refining the avatar classification schema to include more granular subclasses
will enhance the detection accuracy and applicability of the model across different meta-
verse platforms. For MMIR use cases, the identification of an avatar, or at least the detection
of individual avatars over a temporal segment in a video, could improve search results.

We also suggest exploring additional object detection algorithms, such as R-CNN
or CLIP-based models, which may provide different strengths compared to YOLO-based
models. These models could be tested against ADET in future studies to identify potential
areas of improvement, particularly in handling nonhuman avatars and reducing the reliance
on indicators.

To conclude, the idea of this paper is to add avatar detections as semantic information
non-manually to images taken in virtual worlds such as the metaverse. Our findings
demonstrate that, by adapting existing models, such as YOLO, with specific avatar classifi-
cations, we achieved superior results compared to generic object detection models. This
work lays the groundwork for future improvements and applications in regard to avatar
detection in the metaverse and other virtual environments. Although there is room for
further research, this work demonstrates that, by combining and adapting the existing
model, improvements on the YOLO-COCO person-class baseline can be achieved.
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