Southern South American Long-Distance Pollen Dispersal and Its Relationship with Atmospheric Circulation
"> Figure 1
<p>(<b>a</b>) Even-hour <span class="html-italic">Alnus</span> trajectories arriving at 1500 m a.s.l. from 14 UTC of 31 August–12 UTC of 1 September 2013 and (<b>b</b>) 14 UTC of 1 September–12 UTC of 2nd September 2013. The Yungas Forest is shaded in green.</p> "> Figure 2
<p>Mean geopotential height at 1000 hPa (black solid lines) and 500/1000 hPa thickness fields (gray dashed lines) for the <span class="html-italic">Alnus</span> case study (31 August–1 September 2013). The shaded area shows the highest heights of the Andes (above 1500 m a.s.l.).</p> "> Figure 3
<p>Images of 850 hPa winds (vectors, m s<sup>−1</sup>) and areas satisfying the modified Bonner’s criteria for (<b>a</b>) 06 UTC 31 August and (<b>b</b>) 06 UTC 1 September showing the position of the cold front. Shading indicates wind speeds at 850 hPa greater than 12, 16, and 20 m s<sup>−1</sup>. White contours indicate a 700/850 hPa wind difference greater than 6, 8, and 10 m s<sup>−1</sup>. Dashed line masks altitudes above 1500 m.</p> "> Figure 4
<p>Images of the 800–750 hPa layer mean flow for 06 UTC 31 August (<b>a</b>) and 06 UTC 1 September showing the position of the cold front (<b>b</b>). The dashed line marks the 1500 m altitude, while the shaded area masks altitudes higher than 3250 m. The color scale shows the horizontal wind intensity (m s<sup>−1</sup>).</p> "> Figure 5
<p>Vertical cross sections (30.97° S) showing the horizontal wind (vectors, m s<sup>−1</sup>) and omega (lines, Pa s<sup>−1</sup>) by the end of the SALLJ event. The star shows the position of Sunchales. Panels show the situation every 6 h from 30 August to 1 September 2013. The shaded area shows the Andes and Córdoba ranges. The star indicates the position of Sunchales.</p> "> Figure 6
<p>Vertical cross sections (19° S) showing the horizontal wind (vectors, m s<sup>−1</sup>) and omega (lines, Pa s<sup>−1</sup>) at the latitude where the SALLJ passes over the Yungas. Panels show the situation every 6 h from 29 August to 31 August 2013 when the event started. The shaded area shows the Andes and Brazilian ranges.</p> "> Figure 7
<p>Even-hour <span class="html-italic">Nothofagus</span> (<b>a</b>) and <span class="html-italic">Podocarpus</span> (<b>b</b>) trajectories arriving at 750 m a.s.l. on 14 UTC of 24 November–12 UTC of 25 November 2012, and 14 UTC 24 October–12 UTC 25 October 2013, respectively. Light-colored lines show trajectories not passing over the pollen source area (see text). Straight lines represent the construction cuts of the Hovmöller diagrams in <a href="#aerobiology-02-00007-f008" class="html-fig">Figure 8</a> and <a href="#aerobiology-02-00007-f009" class="html-fig">Figure 9</a>. The shaded area shows the geographic distribution of the Subantarctic forests.</p> "> Figure 8
<p>Hovmöller diagram for <span class="html-italic">Nothofagus</span> case study from 15 November to 1 December 2012. The space cut corresponds to the straight line in <a href="#aerobiology-02-00007-f007" class="html-fig">Figure 7</a>a. Lines show the 700 hPa geopotential height (gpm) and the shaded areas show 700 hPa omega (Pa s<sup>−1</sup>). The lower panel shows the associated topography and the vertical line represents the geographical location of Sunchales.</p> "> Figure 9
<p>Hovmöller diagram for <span class="html-italic">Podocarpus</span> case study from 15 October to 1 November 2013. The space cut corresponds to the straight line in <a href="#aerobiology-02-00007-f007" class="html-fig">Figure 7</a>b. Lines show the 700 hPa geopotential height (gpm), and shaded areas show 700 hPa omega (Pa s<sup>−1</sup>). The lower panel shows the associated topography and the vertical line represents the geographical location of Sunchales.</p> "> Figure A1
<p>Cartoons describing the transient synoptic patterns (see <a href="#aerobiology-02-00007-t001" class="html-table">Table 1</a>, <a href="#aerobiology-02-00007-t002" class="html-table">Table 2</a> and <a href="#aerobiology-02-00007-t003" class="html-table">Table 3</a>) recognized for <span class="html-italic">Alnus</span>, <span class="html-italic">Nothofagus</span>, and <span class="html-italic">Podocarpus</span> pollen arrival at Sunchales. The red star shows the city’s location. (<b>a</b>) leading-edge trough, (<b>b</b>) trough–eastern high, (<b>c</b>) low–eastern high, (<b>d</b>) weak high, (<b>e</b>) eastern high, (<b>f</b>) weak low, (<b>g</b>) ridge, (<b>h</b>) trough, (<b>i</b>) post-frontal, (<b>j</b>) low, (<b>k</b>) high.</p> ">
Abstract
:1. Introduction
2. Main Features of Atmospheric Circulation in Southern South America
3. Material and Methods
3.1. Airborne Pollen Sampling
3.2. Meteorological Data and Calculation of Backward Trajectories
4. Results
4.1. Pollen Tracers of Subtropical Circulation
Alnus Case Study
4.2. Pollen Tracers of Midlatitude Circulation
4.2.1. Backward Trajectories
4.2.2. Nothofagus Case Study
4.2.3. Podocarpus Case Study
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SESA | Southeastern South America |
SAMS | South American Monsoon System |
SALLJ | South American Low-Level Jet |
CJ | Chaco Jet |
CJ1 | Chaco Jet with no precipitation |
ALLJ | Argentine low-level jet |
NCJ | No Chaco Jet |
UTC | Coordinated Universal Time |
m a.s.l. | meters above sea level |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory model |
ARL | Air Resources Laboratory |
NOAA | National Oceanic and Atmospheric Administration |
GDAS | Global Data Assimilation System |
NCEP | National Center for Environmental Prediction |
Appendix A
References
- Prentice, C.I. Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis. Quat. Res. 1985, 23, 76–86. [Google Scholar] [CrossRef]
- Prentice, C.I. Records of vegetation in time and space: The principles of pollen analysis. In Vegetation History; Handbook of Vegetation Science; Huntley, B., Webb, T., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volume 7, pp. 17–42. [Google Scholar]
- Sugita, S. A Model of Pollen Source Area for an Entire Lake Surface. Quat. Res. 1993, 39, 239–244. [Google Scholar]
- Sugita, S. Pollen Representation of Vegetation in Quaternary Sediments: Theory and Method in Patchy Vegetation. J. Ecol. 1994, 82, 881–897. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 2007, 17, 229–241. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. Holocene 2007, 17, 243–257. [Google Scholar] [CrossRef]
- Gaillard, M.J.; Sugita, S.; Bunting, M.J.; Middleton, R.; Broström, A.; Caseldine, C.; Giesecke, T.; Hellman, S.E.; Hicks, S.; Hjelle, K.; et al. The use of modeling and simulation approach in reconstructing past landscapes from fossil pollen data: A review and results from the POLLANDCAL network. Veget. Hist. Archaeobot. 2008, 17, 419–443. [Google Scholar] [CrossRef]
- Hjelmroos, M. Long-distance transport of Betula pollen grains and allergic symptoms. Aerobiologia 1992, 8, 231–236. [Google Scholar] [CrossRef]
- Emberlin, J. The effects of patterns in climate and pollen abundance on allergy. Allergy 1994, 49, 15–20. [Google Scholar] [CrossRef]
- Cecchi, L.; Morabito, M.; Domeneghetti, M.P.; Crisci, A.; Onorari, M.; Orlandini, S. Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann. Allerg. Asthma Imm. 2006, 96, 86–91. [Google Scholar]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar]
- Sofiev, M.; Belmonte, J.; Gehrig, R.; Izquierdo, R.; Smith, M.; Dahl, A.; Siljamo, P. Airborne Pollen Transport. In Allergenic Pollen; Sofiev, M., Bergmann, K.C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 127–159. [Google Scholar]
- Zhang, R.; Duhl, T.; Salam, M.T.; House, J.M.; Flagan, R.C.; Avol, E.L.; Gilliland, F.D.; Guenther, A.; Chung, S.H.; Lamb, B.K.; et al. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciencies 2013, 10, 3977–4023. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Sommer, J.; Stach, A.; Smith, M.; Brandt, J. The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Allergy 2007, 37, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Siljamo, P.; Sofiev, M.; Severova, E.; Ranta, H.; Kukkonen, J.; Polevova, S.; Kubin, E.; Minin, A. Sources, impact, and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia 2008, 24, 211–230. [Google Scholar] [CrossRef]
- Izquierdo, R.; Belmonte, J.; Avila, A.; Alarcón, M.; Cuevas, E.; Alonso-Pérez, S. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int. J. Biometeorol. 2011, 55, 67–85. [Google Scholar] [CrossRef]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B 2012, 64, 1–40. [Google Scholar] [CrossRef]
- Fraile, R.; Calvo, A.I.; Castro, A.; Fernández-González, D.; García-Ortega, E. The behavior of the atmosphere in long-range transport. Aerobiologia 2006, 22, 35–45. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Rantio-Lehtimäki, A. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. Int. J. Biometeorol. 2006, 50, 392–402. [Google Scholar] [CrossRef]
- Bourgeois, J.C.; Koerner, R.M.; Alt, B.T. Airborne pollen: A unique air mass tracer, its influx to the Canadian high Arctic. Ann. Glaciol. 1985, 7, 109–116. [Google Scholar] [CrossRef]
- Rousseau, D.-D.; Duzer, D.; Cambon, G.; Jolly, D.; Poulsen, U.; Ferrier, J.; Schevin, P.; Gros, R. Long-distance transport of pollen to Greenland. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Rousseau, D.-D.; Duzer, D.; Etienne, J.-L.; Cambon, G.; Jolly, D.; Ferrier, J.; Schevin, P. Pollen record of rapidly changing air trajectories to the North Pole. J. Geophys. Res. 2004, 109, 1–7. [Google Scholar] [CrossRef]
- Waisel, Y.; Ganor, E.; Epshtein, V.; Stupp, A.; Eshel, A. Airborne pollen, spores, and dust across the east Mediterranean Sea. Aerobiologia 2008, 24, 125–131. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; García-Mozo, H.; Adame, J.A.; Domínguez-Vilches, E.; Bolívar, J.P.; De la Morena, B.A.; Pérez-Badía, R.; Galán, C. Determination of potential sources of Quercus airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiologia 2011, 27, 261–276. [Google Scholar] [CrossRef]
- Celenk, C. Detection of reactive allergens in long-distance transported pollen grains: Evidence from Ambrosia. Atmos. Environ. 2019, 209, 212–219. [Google Scholar] [CrossRef]
- Negral, L.; Moreno-Grau, S.; Galera, M.D.; Elvira-Rendueles, B.; Costa-Gómez, I.; Aznar, F.; Pérez-Badía, R.; Moreno, J.M. The effects of continentality, marine nature and the recirculation of air masses on pollen concentration: Olea in the Mediterranean coastal enclave. Total Environ. 2021, 790, 1–13. [Google Scholar] [CrossRef]
- Gassmann, M.I.; Pérez, C.F. Trajectories associated with regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 2006, 50, 280–291. [Google Scholar] [CrossRef]
- Pérez, C.F.; Castañeda, M.E.; Gassmann, M.I.; Bianchi, M.M. A statistical study of Weinmannia pollen trajectories across the Andes. Adv. Geosci. 2009, 22, 79–84. [Google Scholar] [CrossRef]
- Pérez, C.F.; Bianchi, M.M.; Gassmann, M.I.; Tonti, N.; Pisso, I. A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model. Rev. Palaeobot. Palynol. 2018, 258, 215–222. [Google Scholar] [CrossRef]
- Meza Torres, E.I.; Cerne, B.; Ulke, A.G.; Morbelli, M.A. Distribution of Ophioglossum reticulatum L. in South America. A case of long-distance jump dispersal? Int. J. Biometeorol. 2015, 59, 137–150. [Google Scholar] [CrossRef]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef]
- Compagnucci, R.H.; Salles, M.A. Surface pressure patterns during the year over southern South America. Int. J. Climatol. 1997, 17, 635–653. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Wallace, J.M. Summertime incursions of midlatitude air into tropical and subtropical South America. Mon. Weather Rev. 1998, 126, 2713–2733. [Google Scholar] [CrossRef]
- Garreaud, R.D. Cold air incursions over Subtropical South America: Mean structure and dynamics. Mon. Weather Rev. 2000, 128, 2544–2559. [Google Scholar] [CrossRef]
- Müller, G.V.; Berri, G.J. Atmospheric circulation associated with persistent generalized frosts in Central-Southern South America. Mon. Weather Rev. 2007, 135, 1268–1289. [Google Scholar] [CrossRef]
- Müller, G.V.; Berri, G.J. Atmospheric circulation associated with extreme generalized frost persistence in central-southern South America. Clim. Dyn. 2012, 38, 837–857. [Google Scholar] [CrossRef]
- de Carvalho, L.M.V.; Cavalcanti, I.F.A. The South American Monsoon System (SAMS). In The Monsoons and Climate Change; de Carvalho, L., Jones, C., Eds.; Springer Climate; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Marengo, J.A.; Liebmann, B.; Grimm, A.M.; Misra, V.; Silva Dias, P.L.; Cavalcanti, I.F.A.; Carvalho, L.M.V.; Berbery, E.H.; Ambrizzi, T.; Vera, C.S.; et al. Recent developments on the South American monsoon system. Int. J. Climatol. 2012, 32, 1–21. [Google Scholar] [CrossRef]
- Nicolini, M.; Saulo, A.C. Modeled Chaco low-level jets and related precipitation patterns during the 1997–1998 warm season. Meteorol. Atmos. Phys. 2006, 94, 129–143. [Google Scholar] [CrossRef]
- Vera, C.; Baez, J.; Douglas, M.; Emmanuel, C.B.; Marengo, J.; Meitin, J.; Nicolini, M.; Nogues-Paegle, J.; Paegle, J.; Penalba, O.; et al. The South American low-level jet experiment. Bull. Am. Meteorol. Soc. 2006, 87, 63–78. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the Low Level Jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Paegle, J. A comparative review of South American low-level jets. Meteorologica 1998, 23, 73–81. [Google Scholar]
- Freitas, S.R.; Longo, K.M.; Silva Dias, M.A.F.; Silva Dias, P.L.; Chatfield, R.; Prinsd, E.; Artaxo, P.; Grell, G.A.; Recuero, F.S. Monitoring the Transport of Biomass Burning Emissions in South America. Environ. Fluid Mech. 2005, 5, 135–167. [Google Scholar] [CrossRef]
- Ulke, A.G. Influence of regional transport mechanisms on the fingerprints of biomass-burning aerosols in Buenos Aires. Adv. Meteorol. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Nicolini, M.; Salio, P.; Borque, P. Thermodynamic and kinematic characterization of the low-level troposphere during SALLJEX in different large-scale environments. In Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, 24–28 April 2006. [Google Scholar]
- Salio, P.; Nicolini, M. Seasonal characterization on the diurnal cycle of convection frequency over Southeastern South America under different low-jet conditions. In Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, 24–28 April 2006. [Google Scholar]
- Castañeda, M.E.; Ulke, A.G. Analysis of atmospheric conditions associated to CHACO events of the Low Level Jet East of the Andes and their implications for regional transport. Int. J. Climatol. 2015, 35, 4126–4138. [Google Scholar] [CrossRef]
- Pérez, C.F.; Gassmann, M.I.; Ulke, A.G.; Merino, R. Diversidad polínica atmosférica en la ciudad de Sunchales (Santa Fe, Argentina): Agosto – noviembre 2012, agosto – diciembre 2013. Bol. Soc. Argent. Bot. 2020, 55, 573–585. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Käpylä, M.; Penttinen, A. An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 1981, 20, 131–141. [Google Scholar] [CrossRef]
- Heusser, C.J. Pollen and Spores of Chile: Modern Types of the Pteridophyta, Gymnospermae, and Angiospermae, 3rd ed.; Univ. Arizona Press: Tucson, AZ, USA, 1971; pp. 154–196. [Google Scholar]
- Markgraf, V.; D’Antoni, H.L. Pollen Flora of Argentina. Modern Spore and Pollen Types of Pteridophyta, Gymnospermae and Angiospermae, 3rd ed.; Univ. Arizona Press: Tucson, AZ, USA, 1978; pp. 154–196. [Google Scholar]
- Pire, S.M.; Anzótegui, L.M.; Cuadrado, G.A. (Eds.) Flora polínica del Nordeste Argentino. Volumen I, 3rd ed.; EUDENE-UNNE: Corrientes, Argentina, 1998; p. 143. [Google Scholar]
- Pire, S.M.; Anzótegui, L.M.; Cuadrado, G.A. (Eds.) Flora polínica del Nordeste Argentino. Volumen II, 3rd ed.; EUDENE-UNNE: Corrientes, Argentina, 2001; p. 172. [Google Scholar]
- Pérez, C.F.; Gassmann, M.I.; Bianchi, M.M.; Tonti, N. Airborne pollen transport of Podocarpus sp.: The study of backward trajectories and associated synoptic situations. In Proceedings of the 9th International Congress on Aerobiology, Buenos Aires, Argentina, 23–27 August 2010. [Google Scholar]
- Pérez, C.F.; Latorre, F.; Ulke, G.; Alonso, C.A. Retro-trayectorias de masas de aire asociadas a la llegada de polen del Bosque Montano de Yungas a la ciudad de Diamante (Entre Ríos). In Proceedings of the Congremet XI, Buenos Aires, Argentina, 28 May–1 June 2012. [Google Scholar]
- Oyarzabal, M.; Clavijo, J.; Oakley, L.; Biganzoli, F.; Tognetti, P.; Barberis, I.; Maturo, H.M.; Aragón, R.; Campanello, P.I.; Prado, D.; et al. Unidades de vegetación de la Argentina. Ecol. Aust. 2018, 20, 40–63. [Google Scholar] [CrossRef]
- Arturi, M.F.; Grau, H.R.; Aceñolaza, P.G.; Brown, A.D. Estructura y sucesión en bosques montanos del noroeste de Argentina. Rev. Biol. Trop. 1998, 46, 525. [Google Scholar] [CrossRef]
- Luebert, F.; Pliscoff, P. Sinopsis Bioclimática y Vegetacional de Chile, 3rd ed.; Editorial Universitaria: Santiago, Chile, 2017; pp. 154–196. [Google Scholar]
- Draxler, R.R.; Hess, G.D. Description of the HYSPLIT 4 Modeling System; NOAA Technical Memorandum ERL ARL224; Air Resources Laboratory: Silver Spring, MD, USA, 1997; 25p. [Google Scholar]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT 4 modeling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 1998, 96, 2059–2077. [Google Scholar] [CrossRef]
- Oliveira, M.I.; Nascimento, E.L.; Kannenberg, C. A new look at the identification of low-level jets in South America. Mon. Weather Rev. 2018, 146, 2315–2334. [Google Scholar] [CrossRef]
- Seluchi, M.E.; Saulo, A.C.; Nicolini, M.; Satyamurty, P. The northwestern Argentinean low: A study of two typical events. Mon. Weather Rev. 2003, 131, 2361–2378. [Google Scholar] [CrossRef]
- Nicolini, M.; Saulo, C.; Torres, C.J.; Salio, P. Strong South American low-level jet events characterization during warm season and implications for enhanced precipitation. Meteorol. Spec. Issue S. Am. Monsoon Syst. 2002, 27, 59–69. [Google Scholar]
- Salio, P.V. Caracterización de Eventos de Corriente en Chorro en Capas Bajas de la Atmósfera en Base a Reanálisis y la Precipitación Asociada en el Sudeste de Sudamérica. Ph.D.Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2002. [Google Scholar]
- Salio, P.; Nicolini, M.; Zipser, E.J. Mesoscale Convective Systems over Southeastern South America and Their Relationship with the South American Low-Level Jet. Mon. Weather Rev. 2007, 135, 1290–1309. [Google Scholar] [CrossRef]
- Nicolini, M.; Garcia Skabar, Y. Diurnal Cycle in convergence pattern in the boundary layer east of the Andes and convection. Atmos. Res. 2011, 100, 377–390. [Google Scholar] [CrossRef]
- Marticorena, C.; Rodríguez, R. Flora de Chile I; Universidad de Concepción: Santiago, Chile, 1995; 157p. [Google Scholar]
- Furlow, J.J. The systematics of the American species of Alnus (Betulaceae). Part I. Rhodora 1979, 81, 1–121. [Google Scholar]
- Gómez, L.D. Vegetación de Costa Rica; EUNED: San José, Costa Rica, 1986; 327p. [Google Scholar]
- Rich, P.V.; Rich, T.H. The Central American dispersal route: Biotic history and paleogeography. In Costa Rican Natural History; Janzen, D.H., Ed.; The University of Chicago: Chicago, IL, USA, 1983; pp. 12–34. [Google Scholar]
- Torres, G.R.; Pérez, C.F.; Lupo, L.C. Altitudinal patterns of wind transport and deposition of Yungas tree pollen in northwestern Argentina: Implications for interpreting the Quaternary fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 520, 66–77. [Google Scholar] [CrossRef]
- Hooghiemstra, H.; Wijninga, V.M.; Cleef, A.M. The paleobotanical record of Colombia: Implications for biogeography and biodiversity. Ann. Mo. Bot. Gard. 2006, 93, 377–390. [Google Scholar] [CrossRef]
- Bianchi, M.M.; Olabuenaga, S.E. A 3-year airborne pollen and fungal spores record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia 2006, 22, 247–257. [Google Scholar] [CrossRef]
- Bianchi, M.M.; Olabuenaga, S.E.; Dzendoletas, M.; CrIvelli, E.S. El registro polínico atmosférico de San Carlos De Bariloche: Septiembre 2001–Septiembre 2002. Rev. Mus. Argent. Cienc. Nat. 2004, 6, 1–7. [Google Scholar]
- Ayma-Romay, A.I.; Sanzetenea, E.S. Variaciones fenológicas de especies de Podocarpaceae en estación seca de los Yungas (Cochabamba, Bolivia). Ecol. Boliv. 2008, 43, 16–28. [Google Scholar]
- García de Albano, M.E. Lluvia polínica en selvas montanas de la provincia de Tucumán, Argentina. Rev. Mus. Argent. Cienc. Nat. 2006, 8, 159–164. [Google Scholar] [CrossRef]
- García, M.E.; Reyes, N.J.; Espeche, M.L.; Ordano, M.; Lamelas, C.; Forciniti, J.; Gómez, L.S. Strong seasonal effects and long-term weather-related factors drive the temporal variability of airborne pollen in the atmosphere of San Miguel de Tucumán, Argentina. Grana 2021, 60, 372–384. [Google Scholar] [CrossRef]
- Pinazo, M.A.; Gasparri, N.I.; Goya, J.F.; Arturi, M.F. Caracterización estructural de un bosque de Podocarpus parlatorei y Juglans australis en Salta, Argentina. Rev. Biol. Trop. 2003, 51, 361–368. [Google Scholar] [PubMed]
- Quiroga, M.P.; Premoli, A.C. El rol de las poblaciones marginales en la conservación del acervo genético de la única conífera del sur de Yungas en Argentina y Bolivia, Podocarpus parlatorei (Podocarpaceae). Ecol. Boliv. 2013, 48, 4–16. [Google Scholar]
- Swenson, U.; Hill, R.S.; McLoughlin, S. Biogeography of Nothofagus supports the sequence of Gondwana break-up. Taxon 2001, 50, 1025–1041. [Google Scholar] [CrossRef]
- Lyn, G.C.; Michael, D.C. Not so ancient: The extant crown group of Nothofagus represents a post-Gondwanan radiation. R. Soc. Biol. Biol. Sci. 2005, 272, 2535–2544. [Google Scholar]
- Piovano, E.L.; Ariztegui, D.; Córdoba, F.; Cioccale, M.; Sylvestre, F. Hydrological Variability in South America below the Tropic of Capricorn (Pampas and Patagonia, Argentina) during the last 13.0 Ka. In Past Climate Variability in South America and Surrounding Regions. Developments in Paleoenvironmental Research; Vimeux, F., Sylvestre, F., Khodri, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 14. [Google Scholar]
- Troin, M.; Vallet-Coulomb, C.; Sylvestre, F.; Piovano, E. Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. J. Hydrol. 2010, 393, 233–244. [Google Scholar] [CrossRef]
- Hooper, J.; Marx, S.K.; May, J.H.; Lupo, L.C.; Kulemeyer, J.J.; Pereira, E.D.L.Á.; Seki, O.; Heijnis, H.; Child, D.; Gadd, P.; et al. Dust deposition tracks late-Holocene shifts in monsoon activity and the increasing role of human disturbance in the Puna-Altiplano, northwest Argentina. Holocene 2020, 30, 519–536. [Google Scholar] [CrossRef]
- Jara, I.A.; Maldonado, A.; de Porras, M.E. Late Holocene dynamics of the South American summer monsoon: New insights from the Andes of northern Chile (21° S). Quat. Sci. Rev. 2020, 246, 106533. [Google Scholar] [CrossRef]
- Jara, I.A.; Maldonado, A.; de Porras, M.E. Did modern precipitation drivers influence centennial trends in the highlands of the Atacama Desert during the most recent millennium? Geo. Res. Lett. 2022, 49, e2021GL095927. [Google Scholar] [CrossRef]
- Kock, S.T.; Schittek, K.; Mächtle, B.; Maldonado, A.; Vos, H.; Lupo, L.C.; Kulemeyer, J.J.; Wissel, H.; Schäbitz, F.; Lücke, A. Multi-centennial-scale variations of South American summer monsoon intensity in the southern central Andes (24–27° S) during the late Holocene. Geo. Res. Lett. 2020, 47, e2019GL084157. [Google Scholar] [CrossRef]
- Lücke, A.; Kock, S.; Wissel, H.; Kulemeyer, J.J.; Lupo, L.C.; Schäbitz, F.; Schittek, K. Hydroclimatic record from an Altiplano cushion peatland 24° S indicates large-scale reorganization of atmospheric circulation for the late Holocene. PLoS ONE 2020, 17, e0277027. [Google Scholar]
- Torres, G.; Lupo, L.; Pérez, C. Reconstruction of the environmental conditions for the past 2,000 years in the Perico River basin (NW Argentina) based on fossil pollen records. Veg. Hist. Archaeobot. 2023, 32, 235–251. [Google Scholar] [CrossRef]
Synoptic Pattern 1 | 2012 | 2013 | Percentage |
---|---|---|---|
Leading-edge trough | 0 | 2 | 5.6 |
Trough-eastern high | 7 | 6 | 37.0 |
Low-eastern high | 7 | 7 | 40.0 |
Weak high | 0 | 3 | 9.0 |
Eastern high | 0 | 1 | 2.8 |
Weak low | 1 | 0 | 2.8 |
Ridge | 0 | 1 | 2.8 |
Total | 15 | 20 | 100 |
Omega | 2012 | 2013 | Percentage |
> 0 (descent) | 13 | 13 | 74.2 |
< 0 (ascent) | 2 | 7 | 25.7 |
Total | 15 | 20 | 100 |
Synoptic Pattern 1 | 2012 | 2013 | Percentage |
---|---|---|---|
Leading-edge trough | 0 | 1 | 6.7 |
Trough | 0 | 1 | 6.7 |
Post-frontal | 6 | 1 | 46.6 |
Low | 0 | 1 | 6.7 |
Ridge | 0 | 1 | 6.7 |
High | 1 | 3 | 26.6 |
Total | 7 | 8 | 100 |
Omega | 2012 | 2013 | Percentage |
> 0 (descent) | 0 | 3 | 20 |
< 0 (ascent) | 7 | 5 | 80 |
Total | 7 | 8 | 100 |
Synoptic Pattern 1 | 2012 | 2013 | Percentage |
---|---|---|---|
Leading-edge trough | 0 | 3 | 25.0 |
Post-frontal | 4 | 4 | 66.7 |
High | 1 | 0 | 8.3 |
Total | 5 | 7 | 100 |
Omega | 2012 | 2013 | Percentage |
> 0 (descent) | 0 | 3 | 25 |
< 0 (ascent) | 5 | 4 | 75 |
Total | 5 | 7 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, C.F.; Ulke, A.G.; Gassmann, M.I. Southern South American Long-Distance Pollen Dispersal and Its Relationship with Atmospheric Circulation. Aerobiology 2024, 2, 85-104. https://doi.org/10.3390/aerobiology2040007
Pérez CF, Ulke AG, Gassmann MI. Southern South American Long-Distance Pollen Dispersal and Its Relationship with Atmospheric Circulation. Aerobiology. 2024; 2(4):85-104. https://doi.org/10.3390/aerobiology2040007
Chicago/Turabian StylePérez, Claudio F., Ana G. Ulke, and María I. Gassmann. 2024. "Southern South American Long-Distance Pollen Dispersal and Its Relationship with Atmospheric Circulation" Aerobiology 2, no. 4: 85-104. https://doi.org/10.3390/aerobiology2040007
APA StylePérez, C. F., Ulke, A. G., & Gassmann, M. I. (2024). Southern South American Long-Distance Pollen Dispersal and Its Relationship with Atmospheric Circulation. Aerobiology, 2(4), 85-104. https://doi.org/10.3390/aerobiology2040007