Advances in Photothermal and Photodynamic Nanotheranostics for Precision Cancer Treatment
<p>Schematic representation of the fabrication process of HA-IR808-SWNHs and the programmed treatment of tumors. Reprinted with permission from Ref. [<a href="#B39-jnt-05-00014" class="html-bibr">39</a>]. 2022, Elsevier.</p> "> Figure 2
<p>Imaging-guided photothermal-triggered immunotherapy using magnetic-responsive nanoagents (MINPs) stimulates immune responses to target both primary and distant untreated tumors. Reprinted with permission from Ref. [<a href="#B62-jnt-05-00014" class="html-bibr">62</a>], 2019, Elsevier.</p> "> Figure 3
<p>Schematic illustration of the design and preparation of Cy7-TCF-SS-NLG PNAs for synergistic treatments, which include photothermal therapy and checkpoint blockade immunotherapy. Reprinted with permission from Ref. [<a href="#B71-jnt-05-00014" class="html-bibr">71</a>], 2024, Elsevier.</p> ">
Abstract
:1. Introduction and Mechanisms of Nanotheranostics
2. Foundational Innovations in Nanosystem Mechanisms
2.1. Integrating Photothermal and Photodynamic Therapies
2.2. Stimuli-Responsive and Tumor Microenvironment Adaptation
2.3. Multimodal Imaging for Enhanced Precision
2.4. Catalytic and Enzyme-Based Innovations
3. Advances in Multifunctional Nanomaterials for Cancer Theranostics
4. Nanomaterial Innovations for Enhanced PDT, PTT, and Combination Therapies
5. Designing High-Efficiency, Responsive Nanotheranostics for Cancer Therapy
6. Key Preparation and Processing Techniques for Effective Nanotheranostic Cancer Treatments
7. Evaluating Nanotheranostics for Precision Imaging and Responsive Cancer Therapy
8. Multifunctional Nanotheranostics: Advancing Precision Cancer Therapy and Monitoring
9. Overcoming Barriers in Nanotheranostic Cancer Therapies for Clinical Integration
- Balancing Synthesis Complexity with Clinical Feasibility
- Tumor Heterogeneity and Immune Risks
- Enhancing Tissue Penetration for Effective Therapy
- Optimizing Tumor Microenvironment Responsiveness
- Biocompatibility, Stability, and Safety
- Overcoming Resistance and Precision Challenges
- Integrating Multimodal Imaging and Personalized Therapies
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cai, C.; Tian, F.; Ma, J.; Yu, Z.; Yang, M.; Yi, C. BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy. Nanoscale 2023, 15, 4457–4468. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Sun, X.; Qi, Q.; Fu, M.; Han, B.; Zhang, Y.; Zhao, W.; Ni, T.; Li, Q.; Yang, Z.; et al. NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy. Biosensors 2023, 13, 642. [Google Scholar] [CrossRef]
- Chang, R.; Li, T.; Fu, Y.; Chen, Z.; He, Y.; Sun, X.; Deng, Y.; Zhong, Y.; Xie, Z.; Yang, Y.; et al. A PD-L1 targeting nanotheranostic for effective photoacoustic imaging guided photothermal-immunotherapy of tumor. J. Mater. Chem. B 2023, 11, 8492–8505. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, J.; Hou, M.; Yang, M.; Yi, C. Gadolinium–porphyrin based polymer nanotheranostics for fluorescence/magnetic resonance imaging guided photodynamic therapy. Nanoscale 2021, 13, 16197–16206. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zong, W.; Guo, H.; Li, F.; Zhang, X.; Yu, P.; Ren, F.; Zhang, X.; Shi, X.; Gao, F.; et al. Programmed Size-Changeable Nanotheranostic Agents for Enhanced Imaging-Guided Chemo/Photodynamic Combination Therapy and Fast Elimination. Adv. Mater. 2021, 33, 2100398. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhang, P.; Xu, X.; Lei, P.; Du, K.; Zhang, M.; Wang, D.; Feng, J.; Li, W.; Zhang, H. Simple construction of Cu2−xS:Pt nanoparticles as nanotheranostic agent for imaging-guided chemo-photothermal synergistic therapy of cancer. Nanoscale 2018, 10, 10945–10951. [Google Scholar] [CrossRef]
- Chen, C.H.; Wu, Y.-J.; Chen, J.-J. Gold Nanotheranostics: Photothermal Therapy and Imaging of Mucin 7 Conjugated Antibody Nanoparticles for Urothelial Cancer. BioMed Res. Int. 2015, 2015, 813632. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, Y.; Ding, D.; Lin, H.; Sun, W.; Wang, G.D.; Huang, W.; Zhang, W.; Lee, D.; Liu, G.; et al. Gadolinium-Encapsulated Graphene Carbon Nanotheranostics for Imaging-Guided Photodynamic Therapy. Adv. Mater. 2018, 30, e1802748. [Google Scholar] [CrossRef]
- Cui, M.; Liu, S.; Song, B.; Guo, D.; Wang, J.; Hu, G.; Su, Y.; He, Y.; Cui, M.; Liu, S.; et al. Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. Nano-Micro Lett. 2019, 11, 73. [Google Scholar] [CrossRef]
- Dang, H.; Cheng, Q.; Tian, Y.; Teng, C.; Xie, K.; Yan, L. Double pH-sensitive nanotheranostics of polypeptide nanoparticle encapsulated BODIPY with both NIR activated fluorescence and enhanced photodynamic therapy. J. Mater. Chem. B 2021, 9, 8871–8881. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Y.; Li, C.; Deng, X.; Hou, Z.; Cheng, Z.; Han, Y.; Xing, B.; Lin, J. 808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy. J. Mater. Chem. B 2017, 5, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, D.; Lee, C.; Xie, J. Nanoparticle Phototherapy in the Era of Cancer Immunotherapy. Trends Chem. 2020, 2, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Jang, M.-S.; Wang, N.; Li, Y.; Wu, T.P.; Lee, J.H.; Lee, D.S.; Yang, H.Y. Dual activatable self-assembled nanotheranostics for bioimaging and photodynamic therapy. J. Control. Release 2020, 327, 129–139. [Google Scholar] [CrossRef]
- Dou, Y.; Li, X.; Yang, W.; Guo, Y.; Wu, M.; Liu, Y.; Li, X.; Zhang, X.; Chang, J. PB@Au Core–Satellite Multifunctional Nanotheranostics for Magnetic Resonance and Computed Tomography Imaging in Vivo and Synergetic Photothermal and Radiosensitive Therapy. ACS Appl. Mater. Interfaces 2017, 9, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Guo, L.; Li, J.; Mu, X.; Liu, L.; Song, S.; Luo, N.; Zhang, Q.; Zheng, B.; Jin, G. Precision USPIO-PEG-SLex Nanotheranostic Agent Targeted Photothermal Therapy for Enhanced Anti-PD-L1 Immunotherapy to Treat Immunotherapy Resistance. Int. J. Nanomed. 2024, 19, 1249–1272. [Google Scholar] [CrossRef] [PubMed]
- He, T.; He, J.; Younis, M.R.; Blum, N.T.; Lei, S.; Zhang, Y.; Huang, P.; Lin, J. Dual-Stimuli-Responsive Nanotheranostics for Dual-Targeting Photothermal-Enhanced Chemotherapy of Tumor. ACS Appl. Mater. Interfaces 2021, 13, 22204–22212. [Google Scholar] [CrossRef]
- Wan, Y.; Li, C.; Fu, L.; Feng, T.; Zhang, Y.; Li, Y.; Lin, J.; Huang, P.; Cui, D. Erythrocyte Membrane Camouflaged Nanotheranostics for Optical Molecular Imaging-Escorted Self-Oxygenation Photodynamic Therapy. Small 2024, 20, e2309026. [Google Scholar] [CrossRef]
- Ponzio, R.A.; Ibarra, L.E.; Achilli, E.E.; Odella, E.; Chesta, C.A.; Martínez, S.R.; Palacios, R.E. Sweet light o’ mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. J. Photochem. Photobiol. B Biol. 2022, 234, 112510. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, S.-J.; Wang, F.; Jiang, J.-H. In Situ Transformable Pro-nanotheranostic Platform for Activable Photoacoustic Imaging and Synergistic Photothermal/Chemodynamic Cancer Therapy. Anal. Chem. 2023, 95, 9453–9461. [Google Scholar] [CrossRef]
- Ding, X.; Liu, J.; Li, J.; Wang, F.; Wang, Y.; Song, S.; Zhang, H. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci. 2016, 7, 6695–6700. [Google Scholar] [CrossRef]
- Du, C.; Qian, J.; Zhou, L.; Su, Y.; Zhang, R.; Dong, C.-M. Biopolymer–Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal–Chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 31576–31588. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Yan, C.; Chen, Z.; Zhao, Q.; Yuan, M.; Xu, Y.; Zhao, B. Multifunctional NIR-responsive poly(vinylpyrrolidone)-Cu-Sb-S nanotheranostic agent for photoacoustic imaging and photothermal/photodynamic therapy. Acta Biomater. 2018, 74, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Q.; Yang, N.; Xue, L.; Shao, J.; Li, B.; Shao, J.; Dong, X. Thieno[3,2-b]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. J. Mater. Chem. B 2019, 7, 2454–2462. [Google Scholar] [CrossRef]
- Yan, H.T.; Jang, M.-S.; Liu, C.; Fu, Q.; Wang, B.; Fu, Y.; Lee, J.H.; Yang, H.Y. Tumor microenvironment activated mussel-inspired hollow mesoporous nanotheranostic for enhanced synergistic photodynamic/chemodynamic therapy. J. Colloid Interface Sci. 2024, 665, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yi, W.; Shao, Q.; Ma, M.; Bai, L.; Song, R.; Zhang, P.; Si, J.; Hou, X.; Fan, J. Automatic-degradable Mo-doped W18O49 based nanotheranostics for CT/FL imaging guided synergistic chemo/photothermal/chemodynamic therapy. Chem. Eng. J. 2023, 462, 142156. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Z.; Wang, Z.; Zhou, J.; Sun, L. PdAu-based nanotheranostic agent for photothermally initiated and oxygen-independent free radical generation. CrystEngComm 2022, 24, 5090–5096. [Google Scholar] [CrossRef]
- Li, J.; Jiang, R.; Wang, Q.; Li, X.; Hu, X.; Yuan, Y.; Lu, X.; Wang, W.; Huang, W.; Fan, Q. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. Biomaterials 2019, 217, 119304. [Google Scholar] [CrossRef]
- Wu, J.; Bremner, D.H.; Niu, S.; Shi, M.; Wang, H.; Tang, R.; Zhu, L.-M. Chemodrug-Gated Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Multimodal Imaging-Guided Low-Temperature Photothermal Therapy/Chemotherapy of Cancer. ACS Appl. Mater. Interfaces 2018, 10, 42115–42126. [Google Scholar] [CrossRef]
- Xu, C.; Gao, F.; Wu, J.; Niu, S.; Li, F.; Jin, L.; Shi, Q.; Du, L. Biodegradable nanotheranostics with hyperthermia-induced bubble ability for ultrasound imaging-guided chemo-photothermal therapy. Int. J. Nanomed. 2019, 14, 7141–7153. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, L.; Sun, T.; Zhang, Y.; Liu, Y.; Gong, M.; Xu, Z.; Du, M.; Liu, Y.; Liu, G.; et al. Activatable NIR-II Plasmonic Nanotheranostics for Efficient Photoacoustic Imaging and Photothermal Cancer Therapy. Adv. Mater. 2021, 33, e2006532. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Wang, X.; Song, G.; Ye, L.; Gu, W. BSA-templated ultrasmall Ag/Gd2O3 as a self-enabled nanotheranostic for MR/CT/PA tri-modality imaging and photothermal therapy. Biomater. Sci. 2022, 10, 4508–4514. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Lu, S.-T.; Yu, H.; Liao, R.-F.; Li, H.; Lucie Zafitatsimo, B.V.; Li, Y.-S.; Zhang, Y.; Zhu, X.-L.; Liu, H.-G.; et al. Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy. Biomaterials 2018, 159, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K.; et al. A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048. [Google Scholar] [CrossRef]
- Zheng, Z.; Jia, Z.; Qin, Y.; Dai, R.; Chen, X.; Ma, Y.; Xie, X.; Zhang, R. All-in-One Zeolite–Carbon-Based Nanotheranostics with Adjustable NIR-II Window Photoacoustic/Fluorescence Imaging Performance for Precise NIR-II Photothermal-Synergized Catalytic Antitumor Therapy. Small 2021, 17, 2103252. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yin, C.; Feng, Q.; Wu, Y.; Pan, X.; Liu, C.; Tian, J.; Geng, S.; Wang, K.; Xing, J.; et al. Polypyrrole-based nanotheranostic agent for MRI guided photothermal-chemodynamic synergistic cancer therapy. Nanoscale 2021, 13, 19085–19097. [Google Scholar] [CrossRef]
- Fang, X.; Lui, K.-H.; Li, S.; Lo, W.-S.; Li, X.; Gu, Y.; Wong, W.-T. Multifunctional Nanotheranostic Gold Nanocage/Selenium Core-Shell for PAI-Guided Chemo-Photothermal Synergistic Therapy in vivo. Int. J. Nanomed. 2020, 15, 10271–10284. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Hsia, Y.; Chu, C.-H.; Maharajan, S.; Hsu, F.-C.; Lee, H.-L.; Chiou, J.F.; Ch’ang, H.-J.; Liao, L.-D.; Lo, L.-W. Photothermal Temperature-Modulated Cancer Metastasis Harnessed Using Proteinase-Triggered Assembly of Near-Infrared II Photoacoustic/Photothermal Nanotheranostics. ACS Appl. Mater. Interfaces 2024, 16, 40611–40627. [Google Scholar] [CrossRef]
- Eyvazzadeh, N.; Shakeri-Zadeh, A.; Fekrazad, R.; Amini, E.; Ghaznavi, H.; Kamrava, S.K. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med. Sci. 2017, 32, 1469–1477. [Google Scholar] [CrossRef]
- Gao, C.; Jian, J.; Luo, L.; Liang, J.; Li, Z.; Pang, M.; Cai, H.; Shen, X.-C. Single-walled carbon nanohorns-based smart nanotheranostic: From phototherapy to enzyme-activated fluorescence imaging-guided photodynamic therapy. J. Colloid Interface Sci. 2022, 628, 273–286. [Google Scholar] [CrossRef]
- Qu, B.; Li, X.; Zhang, X.; Li, W.; Zhang, R. PVP-coated Sb2Se3 nanorods as nanotheranostic agents for photoacoustic imaging and photothermal therapy in NIR-I bio-windows. RSC Adv. 2020, 10, 15221–15227. [Google Scholar] [CrossRef]
- Thakur, N.S.; Patel, G.; Kushwah, V.; Jain, S.; Banerjee, U.C. Facile development of biodegradable polymer-based nanotheranostics: Hydrophobic photosensitizers delivery, fluorescence imaging and photodynamic therapy. J. Photochem. Photobiol. B Biol. 2019, 193, 39–50. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, D.; Zhu, A.; Ding, M.; Yu, N.; Li, J. Neutrophil-Targeting Semiconducting Polymer Nanotheranostics for NIR-II Fluorescence Imaging-Guided Photothermal-NO-Immunotherapy of Orthotopic Glioblastoma. Adv. Sci. 2024, 11, e2406750. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, M.; Liu, W.; Zeng, X.; Song, X.; Yang, X.; Zhang, X.; Feng, J. Metal Ion/Tannic Acid Assembly as a Versatile Photothermal Platform in Engineering Multimodal Nanotheranostics for Advanced Applications. ACS Nano 2018, 12, 3917–3927. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, Y.; Wu, H.; Li, J.; Xie, P.; Xu, F.; Zhou, L.; Zhao, J.; Chen, H. Thermosensitive and tum or microenvironment activated nanotheranostics for the chemodynamic/photothermal therapy of colorectal tumor. J. Colloid Interface Sci. 2021, 612, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Ferreira, C.A.; Chen, F.; Ellison, P.A.; Siamof, C.M.; Barnhart, T.E.; Cai, W. Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Adv. Mater. 2017, 30, 1704367. [Google Scholar] [CrossRef]
- Fan, W.; Shen, B.; Bu, W.; Chen, F.; He, Q.; Zhao, K.; Zhang, S.; Zhou, L.; Peng, W.; Xiao, Q.; et al. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials 2014, 35, 8992–9002. [Google Scholar] [CrossRef]
- Fan, Z.; Ren, L.; Zhang, W.; Li, D.; Zhao, G.; Yu, J. AIE luminogen-functionalised mesoporous silica nanoparticles as nanotheranostic agents for imaging guided synergetic chemo-/photothermal therapy. Inorg. Chem. Front. 2017, 4, 833–839. [Google Scholar] [CrossRef]
- Liu, W.; Miao, W.; Li, Y.; He, D.; Tang, Y.; Guan, X.; Li, C.; Wu, F.; Tang, J.; Wang, S. Hybridized double-shell periodic mesoporous organosilica nanotheranostics for ultrasound imaging guided photothermal therapy. J. Colloid Interface Sci. 2021, 608, 2964–2972. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Ma, W.; Wu, X.; Fang, W.; Guo, C.; Jin, Y. Construction of a nanotheranostic system Zr-MOF@PPa/AF@PEG for improved photodynamic therapy effects based on the PDT-oxygen consumption and hypoxia sensitive chemotherapeutic drug. J. Photochem. Photobiol. B Biol. 2021, 222, 112274. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, J.; Chen, L.; Xu, D.; Zhang, X.; Chen, Z.; Wei, Y.; Zhang, Y. One-pot synthesis of AIE based bismuth sulfide nanotheranostics for fluorescence imaging and photothermal therapy. Colloids Surfaces B Biointerfaces 2017, 160, 297–304. [Google Scholar] [CrossRef]
- Wang, K.; Fan, X.; Zhao, L.; Zhang, X.; Zhang, X.; Li, Z.; Yuan, Q.; Zhang, Q.; Huang, Z.; Xie, W.; et al. Aggregation Induced Emission Fluorogens Based Nanotheranostics for Targeted and Imaging-Guided Chemo-Photothermal Combination Therapy. Small 2016, 12, 6568–6575. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.; Cheng, X.; Bao, T.; Zu, M.; Yan, L.; Yin, W.; Ge, C.; Wang, D.; Gu, Z.; Zhao, Y. Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano 2015, 9, 12451–12463. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yin, W.; Zheng, X.; Tian, G.; Zhang, X.; Bao, T.; Dong, X.; Wang, Z.; Gu, Z.; Ma, X.; et al. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics 2015, 5, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, L.; Xu, P.; Yuan, P.; Tian, Y.; Cheng, Q.; Yan, L. Multifunctional Nanotheranostic Agent for NIR-II Imaging-Guided Synergetic Photothermal/Photodynamic Therapy. Adv. Ther. 2020, 4, 2000240. [Google Scholar] [CrossRef]
- Huang, M.; Xu, C.; Yang, S.; Zhang, Z.; Wei, Z.; Wu, M.; Xue, F. Vehicle-Free Nanotheranostic Self-Assembled from Clinically Approved Dyes for Cancer Fluorescence Imaging and Photothermal/Photodynamic Combinational Therapy. Pharmaceutics 2022, 14, 1074. [Google Scholar] [CrossRef]
- Jia, H.-R.; Jiang, Y.-W.; Zhu, Y.-X.; Li, Y.-H.; Wang, H.-Y.; Han, X.; Yu, Z.-W.; Gu, N.; Liu, P.; Chen, Z.; et al. Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy. J. Control. Release 2017, 255, 231–241. [Google Scholar] [CrossRef]
- Yang, Z.; He, W.; Zheng, H.; Wei, J.; Liu, P.; Zhu, W.; Lin, L.; Zhang, L.; Yi, C.; Xu, Z.; et al. One-pot synthesis of albumin-gadolinium stabilized polypyrrole nanotheranostic agent for magnetic resonance imaging guided photothermal therapy. Biomaterials 2018, 161, 1–10. [Google Scholar] [CrossRef]
- Du, K.M.; Lei, P.P.; Dong, L.L.; Zhang, M.L.; Gao, X.; Yao, S.; Feng, J.; Zhang, H.J. In situ decorating of ultrasmall Ag2Se on upconversion nanoparticles as novel nanotheranostic agent for multimodal imaging-guided cancer photothermal therapy. Appl. Mater. Today 2020, 18, 15. [Google Scholar] [CrossRef]
- Gao, J.; Sanchez-Purra, M.; Huang, H.; Wang, S.; Chen, Y.; Yu, X.; Luo, Q.; Hamad-Schifferli, K.; Liu, S. Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Sci. China Chem. 2017, 60, 1219–1229. [Google Scholar] [CrossRef]
- Hong, T.; Jiang, Y.; Yue, Z.; Song, X.; Wang, Z.; Zhang, S. Construction of Multicolor Upconversion Nanotheranostic Agent for in-situ Cooperative Photodynamic Therapy for Deep-Seated Malignant Tumors. Front. Chem. 2020, 8, 52. [Google Scholar] [CrossRef]
- Xiu, W.; Gan, S.; Wen, Q.; Qiu, Q.; Dai, S.; Dong, H.; Li, Q.; Yuwen, L.; Weng, L.; Teng, Z.; et al. Biofilm Microenvironment-Responsive Nanotheranostics for Dual-Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial Infections. Research 2020, 2020, 9426453. [Google Scholar] [CrossRef]
- Guo, Y.; Ran, Y.; Wang, Z.; Cheng, J.; Cao, Y.; Yang, C.; Liu, F.; Ran, H. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials 2019, 219, 119370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, T.; Feng, T.; Wan, Y.; Blum, N.T.; Liu, C.; Zheng, C.; Zhao, Z.; Jiang, T.; Wang, J.; et al. Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today 2020, 35, 100987. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, W.; Lu, J.; Guo, X.; Chi, Y.; Wang, D.; Takuya, N.; Xu, W.; Ye, J.; Liu, X.; et al. Ferrous ions doped layered double hydroxide: Smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomater. Sci. 2021, 9, 5928–5938. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, M.; Liu, S.; Liang, X.; Lu, R.; Shuai, X.; Wu, D.; Cao, Z. Holmium (III)-doped multifunctional nanotheranostic agent for ultra-high-field magnetic resonance imaging-guided chemo-photothermal tumor therapy. Acta Biomater. 2023, 172, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wan, Y.; Chen, Y.; Blum, N.T.; Lin, J.; Huang, P. Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin “Nanoglue”-Based Nanotheranostics. ACS Nano 2020, 14, 5560–5569. [Google Scholar] [CrossRef]
- Ding, F.; Liu, J.; Ai, K.; Xu, C.; Mao, X.; Liu, Z.; Xiao, H. Simultaneous Activation of Pyroptosis and cGAS-STING Pathway with Epigenetic/Photodynamic Nanotheranostic for Enhanced Tumor Photoimmunotherapy. Adv. Mater. 2023, 36, e2306419. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Lee, D.; Kim, G.; Lee, B.; Cho, Y.; Zheng, B.-Y.; Ke, M.-R.; Huang, J.-D.; Nam, K.T.; et al. Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy. ACS Nano 2018, 12, 681–688. [Google Scholar] [CrossRef]
- Du, C.; Ding, Y.; Qian, J.; Zhang, R.; Dong, C.-M.; Du, C.; Ding, Y.; Qian, J.; Zhang, R.; Dong, C.-M.; et al. Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers via mild photothermal-cocktail chemotherapy. J. Mater. Chem. B 2019, 7, 5306–5319. [Google Scholar] [CrossRef]
- Ren, Q.; Sheng, Y.; Tao, C.; Niu, S.; Yu, N.; Chen, Z.; Lian, W. Zinc peroxide-based nanotheranostic platform with endogenous hydrogen peroxide/oxygen generation for enhanced photodynamic-chemo therapy of tumors. J. Colloid Interface Sci. 2024, 668, 88–97. [Google Scholar] [CrossRef]
- Li, Y.; Mu, X.; Feng, W.; Gao, M.; Wang, Z.; Bai, X.; Ren, X.; Lu, Y.; Zhou, X. Supramolecular prodrug-like nanotheranostics with dynamic and activatable nature for synergistic photothermal immunotherapy of metastatic cancer. J. Control. Release 2024, 367, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, Y.; Wu, Z.; Jiang, J.-H. Self-Tracking Multifunctional Nanotheranostics for Sensitive miRNA Imaging Guided Photodynamic Therapy. ACS Appl. Bio Mater. 2020, 3, 2597–2603. [Google Scholar] [CrossRef] [PubMed]
- Nagy-Simon, T.; Potara, M.; Craciun, A.-M.; Licarete, E.; Astilean, S. IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging. J. Colloid Interface Sci. 2018, 517, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chong, Y.; Liu, X.; Fu, H.; Yu, C.; Huang, J.; Zhang, Z. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomater. 2019, 84, 328–338. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Y.; Miao, Q.; Qi, X.; Ding, D.; Chen, P.; Pu, K. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. ACS Nano 2017, 11, 8998–9009. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, G.; Li, X.; Chen, H.; Zhang, B.; Pan, H.; Li, T.; Gong, X.; Wang, H.; Wu, X.; et al. Human HSP70 Promoter-Based Prussian Blue Nanotheranostics for Thermo-Controlled Gene Therapy and Synergistic Photothermal Ablation. Adv. Funct. Mater. 2018, 28, 1802026. [Google Scholar] [CrossRef]
- Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; et al. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. Theranostics 2019, 9, 4168–4181. [Google Scholar] [CrossRef]
- Yang, W.T.; Guo, W.S.; Le, W.J.; Lv, G.X.; Zhang, F.H.; Shi, L.; Wang, X.L.; Wang, J.; Wang, S.; Chang, J.; et al. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Nano 2016, 10, 10245–10257. [Google Scholar] [CrossRef]
- Zhu, Y.; Deng, M.; Xu, N.; Xie, Y.; Zhang, X. A Tumor Microenvironment Responsive Nanotheranostics Agent for Magnetic Resonance Imaging and Synergistic Photodynamic Therapy/Photothermal Therapy of Liver Cancer. Front. Chem. 2021, 9, 650899. [Google Scholar] [CrossRef]
- Fu, L.; Wan, Y.; Li, C.; Qi, C.; He, T.; Yang, C.; Zhang, Y.; Lin, J.; Huang, P. Biodegradable Calcium Phosphate Nanotheranostics with Tumor-Specific Activatable Cascade Catalytic Reactions-Augmented Photodynamic Therapy. Adv. Funct. Mater. 2021, 31, 2009848. [Google Scholar] [CrossRef]
- Nuthalapati, K.; Vankayala, R.; Shanmugam, M.; Thangudu, S.; Chiang, C.; Hwang, K.C. Engineering Tumor-Specific Nanotheranostic Agent with MR Image-Guided NIR-II & -III Photodynamic Therapy to Combat Against Deeply Seated Orthotopic Glioblastoma. Small Sci. 2024, 4, 2400191. [Google Scholar] [CrossRef]
- Tao, Y.; Yan, C.; Wu, Y.; Li, D.; Li, J.; Xie, Y.; Cheng, Y.; Xu, Y.; Yang, K.; Zhu, W.; et al. Uniting Dual-Modal MRI/Chemiluminescence Nanotheranostics: Spatially and Sensitively Self-Reporting Photodynamic Therapy in Oral Cancer. Adv. Funct. Mater. 2023, 33, 2303240. [Google Scholar] [CrossRef]
- Wang, Z.; Zhen, X.; Upputuri, P.K.; Jiang, Y.; Lau, J.; Pramanik, M.; Pu, K.; Xing, B. Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy. ACS Nano 2019, 13, 5816–5825. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiang, C.; Li, S.; Mao, C.; Chen, H.; Chen, J.; Tian, S.; Cui, X.; Wan, Y.; Huang, Z.; et al. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. Small 2020, 16, e2002672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, W.; Sun, W.; Yu, H.; Sheng, Z.; Wang, J.; Jiang, Y.; Liu, Y. Activatable self-assembled organic nanotheranostics: Aspartyl aminopeptidase triggered NIR fluorescence imaging-guided photothermal/photodynamic synergistic therapy. Anal. Chim. Acta 2022, 1231, 340198. [Google Scholar] [CrossRef]
- Li, S.; Lui, K.-H.; Lau, W.-S.; Chen, J.; Lo, W.-S.; Li, X.; Gu, Y.-J.; Lin, L.-T.; Wong, W.-T. MSOT-Guided Nanotheranostics for Synergistic Mild Photothermal Therapy and Chemotherapy to Boost Necroptosis/Apoptosis. ACS Appl. Mater. Interfaces 2022, 14, 33712–33725. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Yin, C.; Lu, G.; Wan, Y.; Huang, Z.; Tan, J.; Li, S.; Luo, J.; Lee, C.-S. A Diradicaloid Small Molecular Nanotheranostic with Strong Near-Infrared Absorbance for Effective Cancer Photoacoustic Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2021, 13, 15983–15991. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Luo, X.F.; Li, J.; He, H.; Yang, F.; Di, Y.; Jin, C.; Jiang, X.G.; Shen, S.; et al. Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials 2014, 35, 9473–9483. [Google Scholar] [CrossRef]
- Ren, S.; Dai, R.; Zheng, Z.; Chen, X.; Wu, S.; Zhang, R.; Gui, Z. Multifunctional AuPd-cluster nanotheranostic agents with a cascade self-regulating redox tumor-microenvironment for dual-photodynamic synergized enzyme catalytic therapy. J. Mater. Chem. B 2022, 11, 109–118. [Google Scholar] [CrossRef]
- Lu, Y.-J.; S., A.T.; Chuang, C.-C.; Chen, J.-P. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers 2021, 13, 3690. [Google Scholar] [CrossRef]
- Yue, Z.; Hong, T.; Song, X.; Wang, Z. Construction of a targeted photodynamic nanotheranostic agent using upconversion nanoparticles coated with an ultrathin silica layer. Chem. Commun. 2018, 54, 10618–10621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Y.; Hang, L.; Zhang, T.; Luo, C.; Li, W.; Sun, Y.; Wen, H.; Chen, Y.; Jiang, G.; et al. Bionic nanotheranostic for multimodal imaging-guided NIR-II-photothermal cancer therapy. Nanoscale 2024, 16, 6095–6108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zu, M.; Ma, X.; Jia, D.; Lu, Y.; Zhang, T.; Xue, P.; Kang, Y.; Xu, Z. Glutathione-Responsive Multifunctional “Trojan Horse” Nanogel as a Nanotheranostic for Combined Chemotherapy and Photodynamic Anticancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 50896–50908. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, N.; Wang, W.; Ma, L.; Sun, Y.; Wang, H.; Zhan, J.; Yu, D. A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with Fe3O4 and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer. Int. J. Nanomed. 2023, 18, 881–897. [Google Scholar] [CrossRef]
- Yang, J.; Ren, B.; Yin, X.; Xiang, L.; Hua, Y.; Huang, X.; Wang, H.; Mao, Z.; Chen, W.; Deng, J. Expanded ROS Generation and Hypoxia Reversal: Excipient-free Self-assembled Nanotheranostics for Enhanced Cancer Photodynamic Immunotherapy. Adv. Mater. 2024, 36, e2402720. [Google Scholar] [CrossRef]
- Wang, B.; Dai, Y.; Kong, Y.; Du, W.; Ni, H.; Zhao, H.; Sun, Z.; Shen, Q.; Li, M.; Fan, Q. Tumor Microenvironment-Responsive Fe(III)–Porphyrin Nanotheranostics for Tumor Imaging and Targeted Chemodynamic–Photodynamic Therapy. ACS Appl. Mater. Interfaces 2020, 12, 53634–53645. [Google Scholar] [CrossRef]
- Park, D.; Ahn, K.-O.; Jeong, K.-C.; Choi, Y. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer. Nanotechnology 2016, 27, 185102. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, L.; Mo, C.; Zhou, X.; Chen, D.; He, Y.; He, H.; Kang, W.; Zhao, Y.; Jin, G. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy. J. Nanobiotechnol. 2021, 19, 171. [Google Scholar] [CrossRef]
- Shou, P.; Yu, Z.; Wu, Y.; Feng, Q.; Zhou, B.; Xing, J.; Liu, C.; Tu, J.; Akakuru, O.U.; Ye, Z.; et al. Zn2+ Doped Ultrasmall Prussian Blue Nanotheranostic Agent for Breast Cancer Photothermal Therapy under MR Imaging Guidance. Adv. Healthc. Mater. 2019, 9, e1900948. [Google Scholar] [CrossRef]
- Ni, D.; Ferreira, C.A.; Barnhart, T.E.; Quach, V.; Yu, B.; Jiang, D.; Wei, W.; Liu, H.; Engle, J.W.; Hu, P.; et al. Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. J. Am. Chem. Soc. 2018, 140, 14971–14979. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, P.; Xie, F.; Chen, J.; Cai, M.; Li, Y.; Yan, J.; Lin, Q.; Luo, F. Virus-Inspired Hollow Mesoporous Gadolinium-Bismuth Nanotheranostics for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Radiotherapy. Adv. Healthc. Mater. 2021, 11, 2102060. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Jang, M.-S.; Li, Y.; Fu, Y.; Wu, T.P.; Lee, J.H.; Lee, D.S. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. J. Control. Release 2019, 301, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, X.; Wang, Y.; Chen, H.; Gao, Y. A nanotheranostics with hypoxia-switchable fluorescence and photothermal effect for hypoxia imaging-guided immunosuppressive tumor microenvironment modulation. J. Colloid Interface Sci. 2024, 678, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Xue, L.; Yang, N.; Ren, Y.; Fan, Z.; Wang, W.; Si, W.; Zhang, Y.; Huang, W.; Dong, X. A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Mater. Chem. Front. 2019, 3, 2143–2150. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, L.; Yang, Z.; Liu, P.; Wang, J.; Cao, J.; Shen, A.; Xu, Z. An efficient tumor-inducible nanotheranostics for magnetic resonance imaging and enhanced photodynamic therapy. Chem. Eng. J. 2018, 358, 969–979. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Wang, Y.; Xu, B.; Zhang, S.; Liu, J.; Zhang, T.; Jin, L.; Song, S.; Zhang, H. Rapidly clearable MnCo2O4@PAA as novel nanotheranostic agents for T1/T2 bimodal MRI imaging-guided photothermal therapy. Nanoscale 2021, 13, 16251–16257. [Google Scholar] [CrossRef]
- Huang, K.; Li, F.; Yuan, K.; Yang, Y.; Chang, H.; Liang, Y.; Yan, X.; Zhao, J.; Tang, T.; Yang, S. A MOF-armored zinc-peroxide nanotheranostic platform for eradicating drug resistant bacteria via image-guided and in situ activated photodynamic therapy. Appl. Mater. Today 2022, 28, 101513. [Google Scholar] [CrossRef]
- Yang, C.; Che, X.; Zhang, Y.; Gu, D.; Dai, G.; Shu, J.; Yang, L. Hybrid FeWO4-Hyaluronic Acid Nanoparticles as a Targeted Nanotheranostic Agent for Multimodal Imaging-Guided Tumor Photothermal Therapy. Int. J. Nanomed. 2023, 18, 8023–8037. [Google Scholar] [CrossRef]
- Yang, C.; Tian, S.; Qiu, W.; Mo, L.; Lin, W. Hierarchical MOF@AuNP/Hairpin Nanotheranostic for Enhanced Photodynamic Therapy via O2 Self-Supply and Cancer-Related MicroRNA Imaging In Vivo. Anal. Chem. 2023, 95, 16279–16288. [Google Scholar] [CrossRef]
- Zou, Y.; Jin, H.; Sun, F.; Dai, X.; Xu, Z.; Yang, S.; Liao, G. Design and Synthesis of a Lead Sulfide Based Nanotheranostic Agent for Computer Tomography/Magnetic Resonance Dual-Mode-Bioimaging-Guided Photothermal Therapy. ACS Appl. Nano Mater. 2018, 1, 2294–2305. [Google Scholar] [CrossRef]
Imaging Modality | Short Description | Ref. | |
---|---|---|---|
Organics | |||
Conjugated Polymer, Thermosensitive Nitric Oxide Donor | NIR-II Imaging | Enables hyperthermia and NO release, enhancing tumor ablation. | [2] |
Polypeptide-Encapsulated Boron-Dipyrromethene (BODIPY) | Fluorescence Imaging | pH-sensitive fluorescence enhancement and lysosome targeting with high singlet oxygen quantum yield. | [10] |
Polypeptide-Coated BODIPY Polymer Micelles (P@BDP) | NIR Imaging | Dual NIR-I/NIR-II imaging with ROS production for tumor ablation. | [54] |
Indocyanine Green and Methylene Blue | Fluorescence, PTT | High photothermal conversion and singlet oxygen generation, with minimal toxicity. | [55] |
Protoporphyrin IX-Conjugated Glycol Chitosan | Fluorescence and ROS Imaging | Plasma membrane targeting with prolonged tumor retention and imaging-guided therapy. | [56] |
Albumin-Gadolinium Stabilized Polypyrrole (PPy@BSA-Gd) | MRI Imaging | Efficient photothermal conversion, high cytocompatibility, and effective MRI-guided tumor therapy. | [57] |
Polydopamine-Coated Hollow Mesoporous Organosilica | Fluorescence and Chemo/Photothermal Therapy | Controlled DOX release, high imaging quality, and effective therapy under dual-mode imaging. | [29] |
Inorganics | |||
Gadolinium Oxide (Gd2O3), Iridium Oxide (IrO2) | MR/CT Imaging | High relaxivity and X-ray attenuation for enhanced imaging and therapeutic effects. | [1] |
Gold Nanorods (GNRs) | Photoacoustic Imaging (PA) | Immune checkpoint inhibition and enhanced photothermal therapy for efficient tumor suppression. | [3] |
Gold Nanoparticles (GNPs) | MR and Optical Imaging | Selective cancer cell destruction, with minimal damage to healthy cells. | [7] |
Gadolinium-Encapsulated Graphene Carbon Nanoparticles | MRI and Fluorescence Imaging | High relaxivity, renal clearance, and minimal toxicity. | [8] |
Gold Nanodandelions (GNDs) with Gelatin | PA/PTT Imaging | Multibranched structure activated by tumor acidity for photothermal conversion and metastasis control. | [36] |
Silver Selenide Nanodots on UCNPs | Tetra-Modal Imaging | High X-ray attenuation and excellent biocompatibility. | [58] |
Zinc Sulfide and Cuprous Oxide Encapsulated in MOF | PA Imaging and PTT | Activation under an acidic tumor environment for imaging and ablation. | [19] |
Manganese Ferrite Nanoparticles (MnFe2O4) | MRI | Magnetic targeting and ROS-induced cytotoxicity for synergistic therapy. | [11] |
Gold-Decorated Silicon Nanorods (Au@SiNRs) | Infrared Imaging | Stable over repeated laser cycles, enabling tumor targeting and imaging. | [9] |
Gold Nanostars (Au nanostars-1 and Au nanostars-2) | NIR Imaging | High NIR absorption with a strong surface-enhanced Raman spectroscopy signal for effective cancer imaging. | [59] |
Copper Sulfide Nanoparticles on Silica | Tetramodal Imaging | Enables synergistic photothermal and photodynamic therapy, leading to complete tumor elimination. | [45] |
Materials Used | Therapy/Therapies Applied | Key Features | Ref. |
---|---|---|---|
BSA, Gd2O3, IrO2 | Photothermal Therapy (PTT), Photodynamic Therapy (PDT) | Combination therapy | [1] |
Conjugated polymer, thermosensitive NO Donor | Photothermal Therapy (PTT), Nitric Oxide (NO) Release | NO enhances therapy | [2] |
Gold nanorods, PD-L1 aptamer | Photothermal Immunotherapy | Targets PD-L1 | [3] |
Polyprodrug-modified iron oxide nanoparticles | Photodynamic Therapy (PDT), Chemotherapy | Size-changeable, stimuli-responsive | [5] |
Polydopamine-doxorubicin conjugate nanoparticles | Chemotherapy, Photothermal Therapy (PTT) | Triple-mode imaging | [21] |
Ag2Se nanodots on upconversion nanoparticles | Photothermal Therapy (PTT) | Under 808 nm laser | [58] |
Dual-activatable self-assembled nanotheranostics | Photodynamic Therapy (PDT) | pH/redox-sensitive activation | [13] |
Gold nanostars | Photothermal Therapy (PTT) | Size-tuned for therapy and imaging | [59] |
Gd-chelated conjugated polymer nanoparticles | Photothermal Therapy (PTT) | Imaging-guided therapy | [77] |
Gd and CuS nanoparticles with BSA | Photothermal Therapy (PTT) | Biodegradable, immune activation | [78] |
Gold nanocages with hyaluronic acid | Photodynamic Therapy (PDT), PTT, Radiosensitizer | Synergistic therapy | [74] |
Manganese oxide nanosheets with PDA and ICG | Photodynamic Therapy (PDT), Photothermal Therapy (PTT) | Oxygen release to enhance PDT | [79] |
Materials Used | Stimulus Responsiveness or Targeting Strategy | Key Features | Ref. |
---|---|---|---|
Thermosensitive NO donor (BNN6) | Heat-responsive decomposition under NIR-II laser | Controlled NO release | [2] |
Gold nanodandelions with gelatin | Acidic tumor conditions, MMP-triggered aggregation | Precise PTT control | [37] |
Polypeptide-encapsulated BODIPY | pH-sensitive fluorescence activation in acidic lysosomes | Enhanced targeting | [10] |
Polydopamine-doxorubicin conjugate nanoparticles | pH-sensitive drug release in tumor microenvironment | Selective tumor accumulation | [21] |
Chlorin e6 (Ce6)-linked pH and redox-sensitive polymer ligand | pH/redox-sensitive charge switch enhances cellular uptake | Targeted PDT within tumor cells | [13] |
Ferrous ion-doped layered double hydroxide with doxorubicin | pH-responsive degradation in acidic tumor environments | MRI-guided chemo/PTT | [64] |
iRGD-coated maleimide-poly(ethylene glycol)-poly(lactic acid/glycolic acid)-encapsulated gold nanocages | Active targeting with iRGD peptide, mild PTT triggers drug release | Time-dependent cell death | [86] |
Diradicaloid small molecule nanotheranostic | High NIR absorbance enhances PAI and PTT | Strong light-harvesting ability | [87] |
Graphene oxide-iron oxide nanotheranostic | Lymphatic mapping via lymphatic vessel travel | Intraoperative guidance | [88] |
Gold nanocages with hyaluronic acid | Targets CD44 receptor via hyaluronic acid | Synergistic therapy under PA guidance | [74] |
Gd and CuS nanoparticles with BSA | Biodegradable with hepatic clearance, immune response activation under NIR | High photostability | [78] |
Materials Used | Physicochemical Properties | Ref. |
---|---|---|
BSA, Gd2O3, IrO2 | High longitudinal relaxivity (5.2 mM⁻1s⁻1), high photothermal efficiency (66.7%), and catalase-like activity | [1] |
Conjugated polymer, thermosensitive NO donor (BNN6) | Hyperthermia and NO release under single NIR-II laser irradiation | [2] |
Gold nanorods, PD-L1 aptamer | Targeted PA imaging, immune checkpoint inhibition, activation of cytotoxic T cells, and tumor suppression | [3] |
Gd@graphene carbon nanoparticles | High T₁ relaxivity (16.0 × 10⁻3 m⁻1s⁻1), fluorescence, effective renal clearance, and minimal toxicity | [8] |
Gold nanodandelions with gelatin | Tumor acidity and MMP-activated, high photothermal efficiency, enhanced PA/PTT imaging, and metastasis control | [37] |
Polypeptide-encapsulated BODIPY | pH-sensitive fluorescence enhancement, high singlet oxygen quantum yield (81.8%), and lysosome targeting | [10] |
Prussian blue nanoparticles, gold Nanoparticles | Synergistic PTT-RT effects, complete tumor suppression, and high biocompatibility | [14] |
Polydopamine-doxorubicin conjugate nanoparticles | High photothermal conversion efficiency, dual stimuli-triggered drug release, and 12.4-fold extended circulation time | [21] |
Gd-chelated conjugated polymer nanoparticles | Tri-modal imaging (PA, NIR-II, MR), high stability, and effective PTT | [77] |
Gold-palladium cluster nanotheranostic with BSA | Oxygen-independent ROS generation, strong NIR-II fluorescence and PAI, and enhanced tumor targeting | [89] |
Diradicaloid small molecule nanotheranostic (DRM) | High NIR absorbance, excellent photostability, and effective PAI-guided PTT | [87] |
Gold nanocages with hyaluronic acid | Strong NIR absorbance, effective radiosensitization, PA imaging, and enhanced combination therapy (RT, PDT, PTT) | [74] |
Materials Used | Therapeutic Outcomes | Ref. |
---|---|---|
Gold nanorods, PD-L1 aptamer | Tumor suppression, activation of cytotoxic T cells, enhanced immunotherapy, and a blockade of immune checkpoints through PD-L1 inhibition | [3] |
Polyprodrug-modified iron oxide nanoparticles | Improved tumor retention, efficient ROS production, and reduced long-term toxicity | [5] |
Gold nanodandelions with gelatin | Precise PTT control, metastasis control at moderate temperatures, and enhanced imaging | [37] |
Prussian blue nanoparticles, gold nanoparticles | Complete tumor suppression, synergistic PTT-RT effects, and minimal toxicity | [14] |
Polydopamine-doxorubicin conjugate nanoparticles | Effective chemotherapy and PTT, selective tumor accumulation, and reduced side effects | [21] |
Gd-chelated conjugated polymer nanoparticles | Significant tumor suppression under NIR light, and imaging-guided therapy | [77] |
Gold-palladium cluster nanotheranostic with BSA | Enhanced therapeutic monitoring and effective PDT and catalytic therapy in hypoxic tumors | [89] |
Diradicaloid small molecule nanotheranostic (DRM) | Effective cancer imaging, significant tumor suppression, and strong light-harvesting ability | [87] |
Ultrasmall SPIO nanoparticles with Sialyl Lewis X | Amplified immune response through PTT, enhanced T cell infiltration, and significant tumor inhibition | [15] |
Gold nanocages with hyaluronic ccid | Improved tumor suppression under imaging guidance and synergistic RT and PDT/PTT | [74] |
Materials Used | Biocompatibility and Clearance Profiles | Ref. |
---|---|---|
Gd@graphene carbon nanoparticles | Effective renal clearance, minimal toxicity, and suitability for clinical applications | [8] |
Polyprodrug-modified iron oxide nanoparticles | Fast elimination post-treatment, high biocompatibility, and reduced long-term toxicity | [5] |
Gold nanodandelions with gelatin | Activated only in the tumor microenvironment, reducing off-target effects, and high biocompatibility | [37] |
Polypeptide-encapsulated BODIPY | Minimal impact on healthy tissues due to pH-sensitive activation, and low background toxicity | [10] |
Prussian blue nanoparticles, gold nanoparticles | High biocompatibility, minimal systemic toxicity, and safe for in vivo applications | [14] |
Gold-palladium cluster nanotheranostic with BSA | Safe for clinical applications; oxygen-independent ROS generation minimizes hypoxia-related issues | [89] |
Ultrasmall SPIO nanoparticles with Sialyl Lewis X | Rapid systemic clearance, low long-term toxicity, and safe immune activation | [15] |
Gold nanocages with hyaluronic Acid | Biodegradable, minimal toxicity, and suitability for clinical translation | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidian, H.; Dey Chowdhury, S. Advances in Photothermal and Photodynamic Nanotheranostics for Precision Cancer Treatment. J. Nanotheranostics 2024, 5, 228-252. https://doi.org/10.3390/jnt5040014
Omidian H, Dey Chowdhury S. Advances in Photothermal and Photodynamic Nanotheranostics for Precision Cancer Treatment. Journal of Nanotheranostics. 2024; 5(4):228-252. https://doi.org/10.3390/jnt5040014
Chicago/Turabian StyleOmidian, Hossein, and Sumana Dey Chowdhury. 2024. "Advances in Photothermal and Photodynamic Nanotheranostics for Precision Cancer Treatment" Journal of Nanotheranostics 5, no. 4: 228-252. https://doi.org/10.3390/jnt5040014
APA StyleOmidian, H., & Dey Chowdhury, S. (2024). Advances in Photothermal and Photodynamic Nanotheranostics for Precision Cancer Treatment. Journal of Nanotheranostics, 5(4), 228-252. https://doi.org/10.3390/jnt5040014