Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT)
<p>An in-place butterfly diagram of the radix-<math display="inline"><semantics> <msup> <mn>2</mn> <mn>2</mn> </msup> </semantics></math> ONMNT algorithm; solid lines and dashed lines represent addition and subtraction operations, respectively.</p> "> Figure 2
<p>A signal flow graph of radix-<math display="inline"><semantics> <msup> <mn>2</mn> <mn>2</mn> </msup> </semantics></math> ONMNT for the transform length <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>; solid lines and dashed lines represent addition and subtraction operations, respectively.</p> "> Figure 3
<p>An in-place butterfly diagram of the radix-<math display="inline"><semantics> <msup> <mn>2</mn> <mn>2</mn> </msup> </semantics></math> IONMNT algorithm; solid lines and dashed lines represent addition and subtraction operations, respectively.</p> "> Figure 4
<p>Signal flow graph of radix-<math display="inline"><semantics> <msup> <mn>2</mn> <mn>2</mn> </msup> </semantics></math> IONMNT for the transform length N = 16; solid lines and dashed lines represent addition and subtraction operations, respectively.</p> "> Figure 5
<p>Comparison of total calculations for direct calculations, radix-2 and radix-<math display="inline"><semantics> <msup> <mn>2</mn> <mn>2</mn> </msup> </semantics></math>.</p> ">
Abstract
:1. Introduction
- A novel mathematical derivation of a radix- algorithm for ONMNT and the inverse ONMNT (IONMNT) using the radix- bit-unscrambling technique.
- A detailed derivation of the transform kernel relationships incorporating retrograde points.
- Butterfly diagrams and signal flow graphs of the Radix- algorithm for ONMNT and IONMNT.
2. Odd New Mersenne Number Transform
3. Derivation of Radix- Algorithm for ONMNT
4. Derivation of Radix- Algorithm for IONMNT
5. Arithmetic Complexity of Radix- Algorithm
6. An Example of the Proposed Fast Algorithm
6.1. Forward ONMNT Transform
x[n]: | 69 | 110 | 99 | 114 | 121 | 112 | 116 | 105 | 111 | 110 | 32 | 115 | 116 | 111 | 114 | 121 |
X[k]: | 56 | 52 | 33 | 52 | 53 | 35 | 83 | 80 | 85 | 82 | 14 | 63 | 21 | 113 | 79 | 76 |
6.2. IONMNT Transform
X[k]: | 56 | 52 | 43 | 52 | 53 | 35 | 83 | 80 | 85 | 82 | 14 | 63 | 21 | 113 | 79 | 76 |
x[n]: | 69 | 110 | 99 | 114 | 121 | 112 | 116 | 105 | 111 | 110 | 32 | 115 | 116 | 111 | 114 | 121 |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASIC | Application-Specific Integrated Circuit |
GNMNT | Generalized New Mersenne Number Transform |
IONMNT | Inverse Odd New Mersenne Number Transform |
WHT | Walsh–Hadamard Transform |
FFT | Fast Fourier Transform |
FPGA | Field-Programmable Gate Array |
NMNT | New Mersenne Number Transform |
NTT | Number Theoretic Transform |
ONMNT | Odd New Mersenne Number Transform |
O2NMNT | Odd Squared New Mersenne Number Transform |
Appendix A
Appendix A.1. Beta Relationships
Appendix A.2. Proof of (A1)–(A6)
References
- Nussbaumer, H.J. Number Theoretic Transforms, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 211–240. [Google Scholar] [CrossRef]
- Yan, K. A Review of the Development and Applications of Number Theory. J. Phys. Conf. Ser. 2019, 1325, 012128. [Google Scholar] [CrossRef]
- Rader, C.M. Discrete convolutions via Mersenne transforms. IEEE Trans. Comput. 1972, C-21, 1269–1273. [Google Scholar] [CrossRef]
- Kehil, D.; Ferdi, Y. Signal encryption using new Mersenne number transform. In Proceedings of the 2010 7th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP 2010), Newcastle Upon Tyne, UK, 21–23 July 2010; pp. 736–740. [Google Scholar] [CrossRef]
- Křížek, M.; Luca, F.; Somer, L. Fermat number transform and other applications. In 17 Lectures on Fermat Numbers: From Number Theory to Geometry; Springer: New York, NY, USA, 2001; pp. 165–186. [Google Scholar] [CrossRef]
- Agarwal, R.C.; Burrus, C.S. Fast convolution using Fermat number transforms with applications to digital filtering. IEEE Trans. Acoust. 1974, 22, 87–97. [Google Scholar] [CrossRef]
- Boussakta, S.; Holt, A.G.J. New number theoretic transform. Electron. Lett. 1992, 28, 1683–1684. [Google Scholar] [CrossRef]
- Boussakta, S.; Hamood, M.T.; Rutter, N. Generalized new Mersenne number transforms. IEEE Trans. Signal Process. 2012, 60, 2640–2647. [Google Scholar] [CrossRef]
- Rutter, N. Implementation and Analysis of the Generalised New Mersenne Number Transforms for Encryption. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2015. Available online: http://theses.ncl.ac.uk/jspui/handle/10443/3236 (accessed on 25 July 2023).
- Hamood, M.T. Development of Efficient Algorithms for Fast Compution of Discrete Transforms. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2012. [Google Scholar]
- Hua, J.; Liu, F.; Xu, Z.; Li, F.; Wang, D. A fast realization of new Mersenne number transformation and its applications. Int. J. Circuit Theory Appl. 2019, 47, 738–752. [Google Scholar] [CrossRef]
- He, S.; Torkelson, M. New approach to pipeline FFT processor. In Proceedings of the International Conference on Parallel Processing, Honolulu, HI, USA, 15–19 April 1996; pp. 766–770. [Google Scholar] [CrossRef]
- Pollard, J.M. The Fast Fourier Transform in a Finite Field. Math. Compulation 1971, 25, 365–374. [Google Scholar] [CrossRef]
- Cortés, A.; Vélez, I.; Sevillano, J.F. Radix rk FFTs: Matricial representation and SDC/SDF pipeline implementation. IEEE Trans. Signal Process. 2009, 57, 2824–2839. [Google Scholar] [CrossRef]
- Anguraj, P.; Krishnan, T.; Natesan, K. Design of an area-efficient various N-point support radix-2/22 FFT using modified butterfly units. Int. J. Recent Tech. Eng. 2019, 8, 10189–10198. [Google Scholar] [CrossRef]
- Samir Algnabi, Y.; Teymourzadeh, R.; Othman, M.; Shabiul Islam, M. FPGA implementation of pipeline digit-slicing multiplier-less radix 22 DIF SDF butterfly for fast Fourier transform structure. arXiv 2018, arXiv:1806.04570. [Google Scholar]
- Santhosh, L.; Thomas, A. Implementation of radix 2 and radix 22 FFT algorithms on Spartan6 FPGA. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Li, N.; Van Der Meijs, N.P. A radix 22 based parallel pipeline FFT processor for MB-OFDM UWB system. In Proceedings of the 2009 IEEE International SOC Conference (SOCC), Belfast, UK, 9–11 September 2009; pp. 383–385. [Google Scholar] [CrossRef]
- Eisenbarth, T.; Kumar, S.; Paar, C.; Poschmann, A.; Uhsadel, L. A Survey of Lightweight-Cryptography Implementations. IEEE Des. Test Comput. 2007, 24, 522–533. [Google Scholar] [CrossRef]
- Philip, M.A.; Vaithiyanathan. A survey on lightweight ciphers for IoT devices. In Proceedings of the 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Fragkos, G.; Minwalla, C.; Plusquellic, J.; Tsiropoulou, E.E. Artificially Intelligent Electronic Money. IEEE Consum. Electron. Mag. 2021, 10, 81–89. [Google Scholar] [CrossRef]
- Parvatham, N.; Professor, A. LEA-SIoT: Hardware Architecture of Lightweight Encryption Algorithm for Secure IoT on FPGA Platform. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2020, 11, 720–725. [Google Scholar] [CrossRef]
- Nabeel, N.; Habaebi, M.H.; Rafiqul Islam, M. LNMNT—New Mersenne number based lightweight crypto hash function for IoT. In Proceedings of the 8th International Conference on Computer and Communication Engineering, ICCCE 2021, Kuala Lumpur, Malaysia, 22–23 June 2021; pp. 68–71. [Google Scholar] [CrossRef]
- Maetouq, A.; Daud, S.M. HMNT: Hash function based on new Mersenne number transform. IEEE Access 2020, 8, 80395–80407. [Google Scholar] [CrossRef]
- Nabeel, N.; Habaebi, M.H.; Islam, M.D.R. Security analysis of LNMNT-lightweight crypto hash function for IoT. IEEE Access 2021, 9, 165754–165765. [Google Scholar] [CrossRef]
- Burrus, C. Index mappings for multidimensional formulation of the DFT and convolution. IEEE Trans. Acoust. Speech Signal Process. 1977, 25, 239–242. [Google Scholar] [CrossRef]
- Burrus, C. Bit reverse unscrambling for a radix-2M FFT. In Proceedings of the ICASSP ’87, IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, TX, USA, 6–9 April 1987; Volume 12, pp. 1809–1810. [Google Scholar] [CrossRef]
- Burrus, C.S. Unscrambling for fast DFT algorithms. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1086–1087. [Google Scholar] [CrossRef]
- Papamichalis, P.E.; Burrus, C.S. Conversion of digit-reversed to bit-reversed order in FFT algorithms. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 23–26 May 1989; Volume 2, pp. 984–987. [Google Scholar] [CrossRef]
- Hamood, M.T.; Boussakta, S. Efficient algorithms for computing the new Mersenne number transform. Digit. Signal Process. 2014, 25, 280–288. [Google Scholar] [CrossRef]
- Agarwal, R.C.; Burrus, C.S. Number theoretic transforms to implement fast digital convolution. Proc. IEEE Inst. Electr. Electron. Eng. 1975, 63, 550–560. [Google Scholar] [CrossRef]
- Chu, E.; George, A. Inside the FFT Black Box—Serial and Parallel Fast the Serial and Parallel Fast Algorithms; CRC Press: Boca Raton, FL, USA, 2000; pp. 109–117. [Google Scholar]
- Selvakumar, S.; Stephy Jasmine Rani, L.; Vijayalakshmi, G.; Vishnudevi, N.; Janakiraman, N. Radix 25 Fft Architecture Implementation In Xilinx Fpga. In Proceedings of the 2014 International Conference on Innovations in Engineering and Technology, Tamil Nadu, India, 21–22 March 2014; pp. 1507–1511. [Google Scholar]
Direct | Radix-2 | Radix-22 | |||||||
---|---|---|---|---|---|---|---|---|---|
Add. | Multi. | Total | Add. | Multi. | Total | Add. | Multi. | Total | |
8 | 56 | 64 | 120 | 36 | 24 | 60 | 33 | 18 | 51 |
16 | 240 | 256 | 496 | 96 | 64 | 160 | 88 | 48 | 136 |
32 | 992 | 1024 | 2016 | 240 | 160 | 400 | 220 | 120 | 340 |
64 | 4032 | 4096 | 8128 | 576 | 384 | 960 | 528 | 288 | 816 |
128 | 16,256 | 16,384 | 32,640 | 1344 | 896 | 2240 | 1232 | 672 | 1904 |
256 | 65,280 | 65,536 | 130,816 | 3072 | 2048 | 5120 | 2816 | 1536 | 4352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Aali, Y.; Hamood, M.T.; Boussakta, S. Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT). Signals 2023, 4, 746-767. https://doi.org/10.3390/signals4040041
Al-Aali Y, Hamood MT, Boussakta S. Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT). Signals. 2023; 4(4):746-767. https://doi.org/10.3390/signals4040041
Chicago/Turabian StyleAl-Aali, Yousuf, Mounir T. Hamood, and Said Boussakta. 2023. "Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT)" Signals 4, no. 4: 746-767. https://doi.org/10.3390/signals4040041
APA StyleAl-Aali, Y., Hamood, M. T., & Boussakta, S. (2023). Radix-22 Algorithm for the Odd New Mersenne Number Transform (ONMNT). Signals, 4(4), 746-767. https://doi.org/10.3390/signals4040041