The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography
<p>Example of the high compression obtained by subtracting a reference beat from all complexes (including extrasystoles), filtering and sample decimation of the non-protected areas, and second difference calculations [<a href="#B42-hearts-02-00031" class="html-bibr">42</a>]. These types of lossy compression schemes, e.g., filtering, sample decimation, and beat subtraction, are no longer allowed in SCP-ECG V3.0 (See Chapter 4 and [<a href="#B39-hearts-02-00031" class="html-bibr">39</a>]). Figure adapted from EN 1064:2020 [<a href="#B39-hearts-02-00031" class="html-bibr">39</a>].</p> "> Figure 2
<p>Snapshot of the conceptual ECG data acquisition reference model developed during the AIM A1015 SCP-ECG project and fully implemented during the OEDIPE project [<a href="#B40-hearts-02-00031" class="html-bibr">40</a>,<a href="#B43-hearts-02-00031" class="html-bibr">43</a>,<a href="#B48-hearts-02-00031" class="html-bibr">48</a>,<a href="#B49-hearts-02-00031" class="html-bibr">49</a>,<a href="#B50-hearts-02-00031" class="html-bibr">50</a>,<a href="#B51-hearts-02-00031" class="html-bibr">51</a>].</p> "> Figure 3
<p>Generic bi-directional SCP-ECG message to database interface schema. This is an updated version of the original “File to Database” schema developed by the OEDIPE project [<a href="#B49-hearts-02-00031" class="html-bibr">49</a>], where eXtensible Markup Language (XML) and eXtensible Stylesheet Language Transformations (XSLT) tools were based on Abstract Syntax Notation 1 (ASN.1) [<a href="#B50-hearts-02-00031" class="html-bibr">50</a>,<a href="#B51-hearts-02-00031" class="html-bibr">51</a>]. The interface updates the database with electrocardiographic information coming from the messages and gives the message handler data retrieved from the database. The solution contains generic software modules independent of the database and SCP-ECG protocol layout. It accesses a descriptive data dictionary containing the database structure, the data format layout, and the mapping between both. The design involves issues related to structure description and standard query language generation and allows automating the development of SCP-ECG Vx.i to Vy.j converters. For more details, see [<a href="#B50-hearts-02-00031" class="html-bibr">50</a>,<a href="#B62-hearts-02-00031" class="html-bibr">62</a>,<a href="#B63-hearts-02-00031" class="html-bibr">63</a>].</p> "> Figure 4
<p>Snapshot of the data part of Section 7 (global measurements), highlighting the structure of the additional global measurements data block and of one of the optional tagged fields, e.g., Tag 8, “QRS Maximum Vector Magnitudes”. SCP-ECG V3.0 defines 17 tagged global ECG measurement data fields, numbered from 0 to 16. The structure and content of tag 8 are detailed in the bottom left (tag, length, value) table. The number of tagged fields actually stored may vary from one SCP-ECG record to another.</p> ">
Abstract
:1. Introduction
2. Main Achievements of the AIM A1015 SCP-ECG Project
2.1. WP1: Standards for Digital ECG Data Interchange
- Definition of the data content and format of the ECG records to be exchanged, including the ECG signal data, demographic and acquisition data, as well as measurement and interpretation results;
- Definition of specific query and control messages, to initiate and control the flow of digital ECG data between different devices or users;
- Selection of the transport communication protocol and application services (A profiles) for the transfer of digital ECG data, such as File Transfer, Access and Management (FTAM), the Message Handling Services of X.400, Electronic Data Interchange For Administration, Commerce and Transport (EDIFACT), or others.
- Section 0: pointers to data areas in the record;
- Section 1: header information—patient data/ECG acquisition data;
- Section 2: Huffman tables used in encoding of ECG data, if used;
- Section 3: ECG lead definition section;
- Section 4: QRS locations, if medians are encoded;
- Section 5: encoded median data, if medians are stored;
- Section 6: encoded rhythm data if no medians are stored, or “error signal” after median subtraction, if medians are stored;
- Section 7: global measurements, wave onsets and offsets as well as global intervals;
- Section 8: textual diagnosis from the “interpretative” device;
- Section 9: manufacturer specific diagnostic and overreading data from the “interpretative” device;
- Section 10: lead measurement results, including the duration and amplitudes of major ECG waves (P+,P-,Q,R,S,R’,S’,J,T+,T-);
- Section 11: universal interpretative statement codes.
2.2. WP2: Standards for Digital ECG Data Encoding
2.3. WP3: Conceptual Reference Model for Digital ECG Data Storage
3. Development of SCP-ECG Versions V1.x and V2.x and Finalization of the First Versions of the Official EN 1064, ANSI EC71, and ISO 11073-91064 Standards
3.1. Objectives and Main Achievements of the AIM A2026 OEDIPE Project
3.2. Objectives and Main Achievements of the CTS-ECG Project
3.3. Outline of prENV 1064:1993 SCP-ECG V1.0
3.4. From SCP-ECG V1.0 to V1.3
- Deprecation of the acquiring device identification encoding scheme, which is now identified by a text string;
- Extension of the language support encoding scheme;
- Amendment of the ECG device capabilities encoding scheme;
- Introduction of two new tags to support electrode configuration and date time zone encoding, and a tagged field to store the patient’s medical history in free text;
- Extension of the number of supported ECG leads from 65 to 85;
- Extension of the content of Section 7 global ECG measurements and provision of means to store the QRS type for each detected QRS, the type and source of each detected pacemaker spike (if any), and some additional global measurements in tagged fields (see example of tagged global ECG measurements data field in Figure 4);
- Extension of the confirmation status encoding possibilities in sections 8 and 11;
- Extension of the number of supported per-lead ST measurements;
- Introduction of a set of state diagrams in Clause 7 “Definition of a minimum set of control and query messages for the interchange of ECG data”, describing the process by which ID messages are exchanged by cart and host devices;
- Amendment and substantial extension of former Annex D “Definition of compliance with the SCP-ECG standard” (normative), which becomes Annex B (normative).
3.5. From ENV 1064:1993 to EN 1064:2005+A1:2007 and ISO 11073-91064:2009
- Extension of the number of supported ECG leads from 85 to 184;
- Amendment of the ECG leads descriptions in order to cross reference the SCP-ECG electrode names and codes with the MDC_ECG_LEAD REFIDs (nomenclature code REFerence IDentifier) from the newly adopted ISO/IEEE 11073-10101:2004 standard;
- Reduction from four to two, concerning the number of data format categories (specified in Annex B “Definition of compliance with the SCP-ECG standard”). The latter are used to encode the type of SCP-ECG related features and information content provided by a specific device.
3.6. Objectives and Main Achievements of the OpenECG Project
4. Development of SCP-ECG V3.0 and EN 1064:2020
4.1. Outline of SCP-ECG V3.0
4.2. Main Updates to Sections 0 to 11 Existing in SCP-ECG V2.3
- Update and harmonization of the description of the various terms, measurements, annotations, diagnosis statements, and metadata to be compliant with the existing health informatics norms (e.g., ISO/IEEE 11073, CDISC, DICOM, HL7, IEC, etc.), the recommendations from cardiology societies (e.g., AHA, ACC, ESC, etc.), and the scientific literature;
- Precise definition of the semantics inherent to the various terms, measurements, annotations, diagnosis statements, and metadata [96];
- Renaming of Section 1: header information—patient data/ECG metadata;
- Update of SCP-ECG drug codes and move of the drug codes lists to new Annex A;
- Update of the medical history codes;
- Amendment of the definitions of the electrode configuration codes;
- Introduction of two new tags to support the description of implanted cardiac devices and the storage of the patient’s drugs, according to the World Health Organization (WHO) Anatomical Therapeutic Chemical (ATC) classification system [97];
- Introduction of a new “Global, virtual lead” in Section 2, to support the coding of per-lead measurements with suffix _LEAD_CONFIG;
- Deprecation of Section 4 (now reserved for legacy SCP-ECG versions);
- Introduction of three new fields in the header of Section 5: a Huffman-encoding specifier (HES), the number of samples per lead, and the location of a fiducial point (QRS trigger point) in the reference beat type 0. These changes are intended to simplify the implementation of the SCP-ECG protocol in case no (or only) default Huffman tables are used;
- Deprecation of the bimodal compression scheme in Sections 5 and 6;
- Substantial amendment and extension of the content of Section 7 “Global ECG measurements” and Section 10 “Per-lead ECG measurements” in order to be compliant with ISO/IEEE 11073-10101 and 11073-10102, and with the latest recommendations of the scientific and medical societies [96];
- Introduction of the possibility to store the local time zone in sections 8 and 11;
4.3. New Sections in SCP-ECG V3.0
4.3.1. Long-Term and Protocol-Based ECG Recordings—Sections 12 to 14
4.3.2. Beat-by-Beat ECG Measurements and Annotations—Section 15
4.3.3. Additional ECG Beat and Spike Measurements, and ECG Annotations—Sections 16–18
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rautaharju, P.M. Eyewitness to history: Landmarks in the development of computerized electrocardiography. J. Electrocardiol. 2016, 49, 1–6. [Google Scholar] [CrossRef]
- Rubel, P.; Bailly, G.; Giard, M.H. Microprocessor based biomedical instrumentation. A modular approach. In Digest of Papers, Proceedings of the 11th International Conference on Medical and Biological Engineering, Ottawa, ON, Canada, 2–6 August 1976; Durie, N.D., Swail, E.I., Eds.; National Research Council: Ottawa, ON, Canada, 1976; pp. 560–561. [Google Scholar]
- Rubel, P.; Varrot, M.; Morlet, D.; Arnaud, P.; Forlini, M.C.; Bailly, G. Architecture and performance of digital ECG acquisition systems. In Optimization of Computer ECG Processing; Wolf, H.K., Macfarlane, P.W., Eds.; North Holland Publ. Comp.: Amsterdam, The Netherlands, 1980; pp. 41–53. [Google Scholar]
- Bailey, J.J.; Horton, M.; Itscoitz, S.B. A Method for Evaluating Computer Programs for Electrocardiographic Interpretation. III. Reproducibility Testing and the Sources of Program Errors. Circulation 1974, 50, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Willems, J.L.; Paerdens, J. Differences in measurement results obtained by four different ECG computer programs. In Proceedings of the Computers in Cardiology, Rotterdam, The Netherlands, 29 September–1 October 1977; Ostrow, H.G., Ripley, K.L., Eds.; IEEE: Long Beach, CA, USA, 1977; pp. 115–121. [Google Scholar]
- Rautaharju, P.M.; Ariet, M.; Pryor, T.A.; Arzbaecher, R.C.; Bailey, J.J.; Bonner, R.; Goetowski, C.R.; Hooper, J.K.; Klein, V.; Millar, C.K.; et al. The quest for optimal electrocardiography. Task Force III: Computers in diagnostic electrocardiography. Am. J. Cardiol. 1978, 41, 158–170. [Google Scholar] [CrossRef]
- Willems, J.L. A plea for common for common standards in computer aided analysis. Comput. Biomed. Res. 1980, 13, 120–131. [Google Scholar] [CrossRef]
- Willems, J.L. A review of computer ECG analysis: Time to evaluate and standardize. CRC Crit. Rev. Med. Inform. 1986, 1, 165–207. [Google Scholar]
- Brohet, C.; Willems, J.L.; Derwael, D.; De Schreye, D.; Fesler, R.; Pardaens, J. Impact of measurement precision on diagnostic ECG computer classification. In Computer ECG Analysis: Towards Standardization; Willems, J.L., van Bemmel, J.H., Zywietz, C., Eds.; North-Holland Publ.: Amsterdam, The Netherlands, 1986; pp. 171–176. [Google Scholar]
- Willems, J.L.; Abreu-Lima, C.; Arnaud, P.; Brohet, C.R.; Denis, B.; Gehring, J.; Graham, I.; van Herpen, G.; Machado, H.; Michaelis, J.; et al. Evaluation of ECG Interpretation Results Obtained by Computer and Cardiologists. Methods Inf. Med. 1990, 4, 308–316. [Google Scholar]
- The CSE European Working Party; Willems, J.L.; Arnaud, P.; van Bemmel, J.H.; Bourdillon, P.J.; Brohet, C.; Dalla Volta, S.; Degani, R.; Denis, B.; Demeester, M.; et al. Common Standards for Quantitative Electrocardiography: The CSE Pilot Study. In Medical Informatics Europe 81. Lecture Notes in Medical Informatics; Grémy, F., Degoulet, P., Barber, B., Salamon, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; Volume 11, pp. 319–326. [Google Scholar] [CrossRef]
- Willems, J.L. Common standards for quantitative electrocardiography. J. Med. Eng. Technol. 1985, 9, 209–217. [Google Scholar] [CrossRef] [PubMed]
- The CSE Working Party. Recommendations for measurement standards in quantitative electrocardiography. Eur. Heart J. 1985, 6, 815–825. [Google Scholar]
- Willems, J.L.; Arnaud, P.; van Bemmel, J.H.; Bourdillon, P.; Degani, R.; Denis, B.; Graham, I.; Harms, F.M.A.; Macfarlane, P.W.; Mazzocca, G.; et al. A reference data base for multi-lead electrocardiographic computer measurement programs. J. Am. Coll. Cardiol. 1987, 10, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Morlet, D.; Rubel, P.; Arnaud, P.; Willems, J.L. An improved method to evaluate the precision of computer ECG measurement programs. Int. J. Bio-Med. Comput. 1988, 22, 199–216. [Google Scholar] [CrossRef]
- Morlet, D.; Rubel, P.; Willems, J.L. Value of Scatter-Graphs for the Assessment of ECG Computer Measurement Results. Methods Inf. Med. 1990, 29, 413–423. [Google Scholar] [CrossRef]
- Willems, J.L.; Abreu-Lima, C.; Arnaud, P.; van Bemmel, J.H.; Brohet, C.; Degani, R.; Denis, B.; Graham, I.; van Herpen, G.; Macfarlane, P.W. Effect of combining electrocardiographic interpretation results on diagnostic accuracy. Eur. Heart J. 1988, 9, 1348–1355. [Google Scholar] [CrossRef]
- Van Bemmel, J.H.; Willems, J.L. Standardization and validation of medical support-systems: The CSE Project. Methods Inf. Med. 1990, 29, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Willems, J.; Arnaud, P.; Van Bemmel, J.; Degani, R.; Macfarlane, P.; Zywietz, C. Common standards for quantitative electrocardiography: Goals and main results. Methods Inf. Med. 1990, 29, 263–271. [Google Scholar]
- Willems, J.L.; Abreu-Lima, C.; Arnaud, P.; van Bemmel, J.H.; Brohet, C.; Degani, R.; Denis, B.; Gehring, J.; Graham, I.; van Herpen, G.; et al. The diagnostic performance of computer programs for the interpretation of the electrocardiogram. N. Engl. J. Med. 1991, 325, 1767–1773. [Google Scholar] [CrossRef]
- Willems, J.L. Assessment of diagnostic ECG results using information and decision theory: Results from the CSE diagnostic study. J. Electrocardiol. 1992, 25, 120–125. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P.; Macfarlane, P.W. Can the lessons learned from the assessment of automated electrocardiogram analysis in the Common Standards for quantitative Electrocardiography study benefit measurement of delayed contrast-enhanced magnetic resonance images? J. Electrocardiol. 2007, 40, 246–250. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 60601-2-25:2011, Medical Electrical Equipment—Part 2-25: Particular Requirements for the Basic Safety and Essential Performance of Electrocardiographs, 2nd ed.; IEC: Geneva, Switzerland, 19 October 2011; pp. 1–196. ISBN 978-2-88912-719-1. [Google Scholar]
- International Electrotechnical Commission. IEC 60601-2-51:2003, Medical Electrical Equipment—Part 2-51: Particular Requirements for Safety, Including Essential Performance, of Recording and Analysing Single Channel and Multichannel Electrocardiographs, 1st ed.; IEC: Geneva, Switzerland, 27 February 2003; pp. 1–175. [Google Scholar]
- Schlant, R.C.; Adolph, R.J.; DiMarco, J.P.; Dreifus, L.S.; Dunn, M.I.; Fisch, C.; Garson, A.; Haywood, L.J.; Levine, H.J.; Murray, J.A.; et al. Guidelines for electrocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Electrocardiography). Circulation 1992, 85, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Kadish, A.H.; Buxton, A.E.; Kennedy, H.L.; Knight, B.P.; Mason, J.W.; Schuger, C.D.; Tracy, C.M.; Winters, W.L.; Boone, A.W.; Elnicki, M.; et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: A report of the ACC/AHA/ACP-ASIM task force on clinical competence (ACC/AHA Committee to develop a clinical competence statement on electrocardiography and ambulatory electrocardiography) endorsed by the International Society for Holter and noninvasive electrocardiology. Circulation 2001, 104, 3169–3178. [Google Scholar]
- Rubel, P.; Willems, J.L.; Zywietz, C.; Fayn, J. Towards open data interchange and processing of serial ECGs. In Proceedings of the Computers in Cardiology, Durham, NC, USA, 11–14 October 1992; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1992; pp. 79–82. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P.; Pahlm, O.; Wagner, G.S. Improvement of the detection of myocardial ischemia thanks to information technologies. Int. J. Cardiol. 2007, 120, 172–180. [Google Scholar] [CrossRef]
- Fayn, J. A Classification Tree Approach for Cardiac Ischemia Detection Using Spatiotemporal Information from Three Standard ECG Leads. IEEE Trans. Biomed. Eng. 2011, 58, 95–102. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P. Toward a personal health society in cardiology. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 401–409. [Google Scholar] [CrossRef]
- Atoui, H.; Fayn, J.; Gueyffier, F.; Rubel, P. Cardiovascular Risk Stratification in Decision Support Systems: A Probabilistic Approach. Application to pHealth. In Proceedings of the Computers in Cardiology, Valencia, Spain, 17–20 September 2006; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2006; pp. 281–284. Available online: https://www.cinc.org/archives/2006/pdf/0281.pdf (accessed on 15 August 2021).
- Willems, J.L.; Zywietz, C.; Rubel, P.; Degani, R.; Macfarlane, P.W.; van Bemmel, J.H. A standard communications protocol for computerized electrocardiography. J. Electrocardiol. 1991, 24, 173–178. [Google Scholar] [CrossRef]
- Willems, J.L.; Zywietz, C.; Rubel, P.; Degani, R.; Macfarlane, P.W.; van Bemmel, J.H. Development of a standard communications protocol for computerized electrocardiography. In Telematics in Medicine; Duisterhout, J.S., Hasman, A., Salamon, R., Eds.; Elsevier Science Publ., North Holland: Amsterdam, The Netherlands, 1991; pp. 299–311. [Google Scholar]
- Rubel, P.; Willems, J.L.; Zywietz, C.; Degani, R.; Macfarlane, P.W.; van Bemmel, J.H. Development of a standard communications protocol for the exchange and the storage of digital ECGs. In Proceedings of the 13th Annual International Conference of the IEEE Eng. Med. Biol. Soc., Orlando, FL, USA, 31 October–3 November 1991; Nagel, J.H., Smith, W.M., Eds.; IEEE Press: New York, NY, USA, 1991; pp. 572–573. [Google Scholar] [CrossRef]
- Willems, J.L.; Zywietz, C.; Rubel, P.; Degani, R.; Macfarlane, P.W.; van Bemmel, J.H. SCP-ECG: A standard communications protocol for computerized electrocardiography. In Advances in Medical Informatics. Results for the AIM Exploratory Action; Noothoven van Goor, J., Christensen, J.P., Eds.; IOS Press: Amsterdam, The Netherlands, 1992; pp. 325–332. [Google Scholar] [CrossRef]
- Willems, J.L.; Rubel, P.; Zywietz, C. Standard Interchange for Computerized Electrocardiography. In Progress in Standardization in Health Care Informatics; De Moor, G.J.E., McDonald, C.L., Noothoven van Goor, J., Eds.; IOS Publisher: Amsterdam, The Netherlands, 1993; pp. 185–194. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 1064:2005+A1:2007, Health Informatics—Standard Communication Protocol—Computer-Assisted Electrocardiography; CEN: Brussels, Belgium, 2007; pp. 1–188. [Google Scholar]
- International Organization for Standardization. ISO 11073 91064:2009, Health Informatics—Standard Communication Protocol—Part 91064: Computer-Assisted Electrocardiography; ISO: Geneva, Switzerland, 2009; pp. 1–159. [Google Scholar]
- European Committee for Standardization. EN 1064:2020, Health Informatics—Standard Communication Protocol—Computer-Assisted Electrocardiography; CEN: Brussels, Belgium, 2020; pp. 1–240. [Google Scholar]
- Willems, J.L. Standard Communications Protocol for Computerized Electrocardiography: Final Specifications and Recommendations; ACCO Publ.: Leuven, Belgium, 1991; ISBN 90-73402-01-7. [Google Scholar]
- Marquette Electronics, Inc. Internal Document: Definition of the Data Contents within a Universal ECG Protocol; GE Healthcare: Milwaukee, WI, USA, 1987; pp. 1–24. [Google Scholar]
- Zywietz, C.; Joseph, G.; Fischer, R.; Degani, R.; Willems, J.L. Compression and encoding of ECG data within the European standard communications protocol. In Proceedings of the Computers in Cardiology, Venice, Italy, 23–26 September 1991; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1991; pp. 105–108. [Google Scholar] [CrossRef]
- Rubel, P.; Fayn, J.; Macfarlane, P.W.; Willems, J.L. Development of a conceptual reference model for digital ECG data storage. In Proceedings of the Computers in Cardiology, Venice, Italy, 23–26 September 1991; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1992; pp. 109–112. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P.; Girard, P.; Ravel, C.; Forlini, M.C.; Boissel, J.P. CAVIAR, a Serial ECG Processing and Management System for Pharmacological Drug Trials. In Proceedings of the Computers in Cardiology, Venice, Italy, 23–26 September 1991; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1992; pp. 301–304. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P.; Willems, J.L. Management of serial ECGs and control strategies for the comparison process. Meth. Inform. Med. 1994, 33, 148–152. [Google Scholar] [PubMed]
- Rubel, P.; Willems, J.L.; Zywietz, C.; Fayn, J.; Assanelli, D.; Malossi, C.; Todd, S. OEDIPE: Open European Data Interchange and Processing for Electrocardiography. In Health in the New Communications Age; Laires, M.F., Ladeira, M.J., Christensen, J.P., Eds.; IOS Press: Amsterdam, The Netherlands, 1995; pp. 313–321. [Google Scholar]
- Rubel, P.; Fayn, J.; Zywietz, C.; Willems, J.L.; Assanelli, D.; Malossi, C.; Florin, C. Open European electrocardiological data interchange. In Health in the Information Society, Proceedings of the Health Telematics ’95, Laco Ameno Ischia, Naples, Italy, 2–6 July 1995; Bracale, M., Denoth, F., Eds.; CNR: Pisa, Italy, 1995; pp. 381–386. ISBN 88-7958-003-5. [Google Scholar]
- Fayn, J.; Rubel, P.; Willems, J.L.; Conti, L.; Reniers, R. Design and implementation strategies of a core database model for the storage and retrieval of serial ECG data. In Proceedings of the Computers in Cardiology, Bethesda, MD, USA, 25–28 September 1994; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1994; pp. 109–112. [Google Scholar] [CrossRef]
- Rubel, P.; Fayn, J.; Willems, J.L.; Zywietz, C. New trends in serial ECG analysis. J. Electrocardiol. 1993, 26, 122–128. [Google Scholar]
- Pfirsch, F.; Reniers, R.; Rubel, P.; Willems, J.L. A Generic Interface between Communication Protocols and Relational Databases. In Communication and Integration in Healthcare Informatics, Proceedings of the Medical Informatics Conference M.I.C. ’93, Gent, Belgium, 11–12 November 1993; De Moor, G.J.E., Ed.; Acco Publ.: Leuven, Belgium, 1993; pp. 23–32. [Google Scholar]
- Al-Ahmad, W.; Rubel, P.; Willems, J.L. OSI standards for ECG data interchange: Use of ASN.1 in the OEDIPE project. In Communication and Integration in Healthcare Informatics, Proceedings of the Medical Informatics Conference M.I.C. ’93, Gent, Belgium, 11–12 November 1993; De Moor, G.J.E., Ed.; Acco Publ.: Leuven, Belgium, 1993; pp. 115–122. [Google Scholar]
- Mertins, V.; Fischer, R.; Joseph, G.; Zywietz, C.; Malossi, C.; Wack, K. Implementation of the SCP-ECG Protocol into stand-alone Electrocardiographs. In Proceedings of the Computers in Cardiology, Durham, NC, USA, 11–14 October 1992; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1992; pp. 83–86. [Google Scholar] [CrossRef]
- Zywietz, C.; Mertins, V.; Assanelli, D.; Malossi, C. Digital ECG Transmission from Ambulance Cars with Application of the European Standard Communications Protocol SCP-ECG. In Proceedings of the Computers in Cardiology, Bethesda, MD, USA, 25–28 September 1994; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1994; pp. 341–344. [Google Scholar] [CrossRef]
- Al-Ahmad, W.; Willems, J.L.; Rubel, P. ECG Data Interchange within the Framework of the SCP-ECG and the OEDIPE Projects. In Proceedings of the Computers in Cardiology, Bethesda, MD, USA, 25–28 September 1994; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1994; pp. 337–340. [Google Scholar] [CrossRef]
- Badr, A.; Al-Ahmad, W.; Rubel, P.; Willems, J.L. Protection of Data Privacy for Open ECG Data Interchange. In Trends in Medical Informatics, Proceedings of the Medical Informatics Conference M.I.C. ’94, Velthoven, The Netherlands, 25–26 November 1994; De Moor, G.J.E., Ed.; Acco Publ.: Leuven, Belgium, 1994; pp. 145–153. [Google Scholar]
- Ron, J.L.; Fayn, J.; Rubel, P. Towards a generic domain information model in cardiology. Experiences from OEDIPE. In Proceedings of the Computers in Cardiology, Indianapolis, IN, USA, 8–11 September 1996; Murray, A., Arzbaecher, R., Eds.; IEEE: Piscataway, NJ, USA, 1996; pp. 301–304. [Google Scholar] [CrossRef]
- Fayn, J.; Conti, L.; Fareh, S.; Maison-Blanche, P.; Nony, P.; Rubel, P. Interactive and Dynamic ECG Analysis. Is it Just an IDEA or a clinically relevant approach? J. Electrocardiol. 1996, 29 (Suppl. S1), 21–25. [Google Scholar] [CrossRef]
- Ferrari, G.; Zywietz, C.; Willems, J.L.; Fayn, J.; Poeta, M.; Assanelli, D. User interface database for digital SCP-ECG and epidemiological information. In Proceedings of the Computers in Cardiology, Bethesda, MD, USA, 25–28 September 1994; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1994; pp. 177–180. [Google Scholar] [CrossRef]
- Loukil, A.; Fayn, J.; Conti, L.; Bortone, S.; Fioretti, S.; Bedini, R.; Nentidis, G.; Leo, T.; Rubel, P.; Talbot, A. A system for accessing and handling heterogeneous sources of patient data. Application to the rehabilitation domain. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, 31 October–3 November 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 18, pp. 1240–1241. [Google Scholar] [CrossRef]
- Willems, J.L.; Zywietz, C. Conformance Testing for Computerized Electrocardiography. In Proceedings of the European Conference on Conformance Testing and Certification in Information Technology and Telecommunications, Brussels, Belgium, 13–15 June 1990; CEN/CENELEC&ETSI, Ed.; IOS Press: Amsterdam, The Netherlands, 1991; pp. 307–319. ISBN 9051990383. [Google Scholar]
- Chronaki, C.E.; Chiarugi, F.; Lees, P.J.; Bruun-Rasmussen, M.; Conforti, F.; Ruiz Fernandez, R.; Zywietz, C. Open ECG: A European Project to Promote the SCP-ECG Standard, a Further Step Towards Interoperability in Electrocardiography. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2002; pp. 285–288. [Google Scholar] [CrossRef]
- Jumaa, H.; Fayn, J.; Rubel, P. XML based mediation for automating the storage of SCP-ECG data into relational databases. In Proceedings of the Computers in Cardiology, Bologna, Italy, 14–17 September 2008; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2008; pp. 445–448. [Google Scholar] [CrossRef]
- Jumaa, H.A. XML and Relational Databases Mediation Automation. Ph.D. Thesis, National Institute of Applied Sciences of Lyon (INSA-Lyon), Lyon, France, 16 December 2010. Available online: http://theses.insa-lyon.fr/publication/2010ISAL0120/these.pdf (accessed on 12 July 2021).
- Zywietz, C.; Willems, J.L. European Conformance Testing Services for computerized electrocardiography. New procedures and standards. J. Electrocardiol. 1993, 26, 137–146. [Google Scholar]
- Zywietz, C.; Alraun, W.; Mertins, V. Quality Assurance in Electrocardiography: Inappropriate Performance Standards, ECG Characteristics and a New Test Database. In Proceedings of the Computers in Cardiology, Bethesda, MD, USA, 25–28 September 1994; Murray, A., Arzbaecher, R., Eds.; IEEE Computer Society Press: Los Alamitos, CA, USA, 1994; pp. 333–336. [Google Scholar] [CrossRef]
- Zywietz, C.; Alraun, W.; Fischer, R. Quality assurance in biosignal processing—Procedures and recommendations for evaluation for electrocardiological analysis systems. In Proceedings of the Computers in Cardiology, Rotterdam, The Netherlands, 23–26 September 2001; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2001; pp. 201–204. [Google Scholar] [CrossRef]
- Chronaki, C.E.; Chiarugi, F.; Lees, P.J.; Macerata, A.; Conforti, F.; Bruun-Rasmussen, M.; Ruiz Fernandez, R.; Zywietz, C. A Year in the Life of the OpenECG Network. In Proceedings of the Computers in Cardiology, Thessaloniki, Greece, 21–24 September 2003; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2003; pp. 17–20. [Google Scholar] [CrossRef] [Green Version]
- Lees, P.J.; Chronaki, C.E.; Chiarugi, F.; The OpenECG Consortium. Standards and Interoperability in Digital Electrocardiography. The OpenECG Project. Hell. J. Cardiol. 2004, 45, 364–369. [Google Scholar]
- Chronaki, C.E.; Chiarugi, F.; Macerata, A.; Conforti, F.; Voss, H.; Johansen, I.; Ruiz-Fernandez, R.; Zywietz, C. Interoperability in digital electrocardiography after the OpenECG project. In Proceedings of the Computers in Cardiology, Chicago, IL, USA, 19–22 September 2004; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2004; pp. 49–52. [Google Scholar] [CrossRef]
- Chronaki, C.E.; Chiarugi, F.; Sfakianakis, S.; Zywietz, C. A Web Service for Conformance Testing of ECG Records to the SCP-ECG Standard. In Proceedings of the Computers in Cardiology, Lyon, France, 25–28 September 2005; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2005; pp. 961–964. [Google Scholar] [CrossRef]
- Chronaki, C.E.; Chiarugi, F.; Fischer, R. OpenECG: Medical Device Interoperability as a Quality Label for eHealth Services. In Proceedings of the Computers in Cardiology, Valencia, Spain, 17–20 September 2006; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2006; pp. 465–468. [Google Scholar]
- Chiarugi, F.; Spanakis, M.; Lees, P.J.; Chronaki, C.E.; Tsiknakis, M.; Orphanoudakis, S.C. ECG in Your Hands: A Multi-Vendor ECG Viewer for Personal Digital Assistants. In Proceedings of the Computers in Cardiology, Thessaloniki, Greece, 21–24 September 2003; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2003; pp. 359–362. [Google Scholar] [CrossRef] [Green Version]
- Schloegl, A.; Chiarugi, F.; Cervesato, E.; Apostolopoulos, E.; Chronaki, C.E. Two-way converter between the HL7 aECG and SCP-ECG data formats using BioSig. In Proceedings of the Computers in Cardiology, Durham, NC, USA, 30 September–3 October 2007; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2007; pp. 253–256. [Google Scholar] [CrossRef] [Green Version]
- Sakkalis, V.; Chiarugi, F.; Kostomanolakis, S.; Chronaki, C.E.; Tsiknakis, M.; Orphanoudakis, S.C. A gateway between the SCP-ECG and the DICOM supplement 30 waveform standard. In Proceedings of the Computers in Cardiology, Thessaloniki, Greece, 21–24 September 2003; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2003; pp. 25–28. [Google Scholar] [CrossRef] [Green Version]
- Schlögl, A. An overview on data formats for biomedical signals. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Dössel, O., Schlegel, W.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 25/4, pp. 1557–1560. [Google Scholar] [CrossRef]
- Mandellos, G.J.; Koukias, M.N.; Styliadis, I.S.; Lymberopoulos, D.K. e-SCP-ECG+ Protocol: An Expansion on SCP-ECG Protocol for Health Telemonitoring—Pilot Implementation. Int. J. Telemed. Appl. 2010, 2010, 137201. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Guizzardi, G.; Pereira Filho, J.G. Using an ECG reference ontology for semantic interoperability of ECG data. J. Biomed. Inf. 2011, 44, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, R.R.; Finlay, D.D.; Nugent, C.D.; Moore, G. A review of ECG storage formats. Int. J. Med. Inform. 2011, 80, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Trigo, J.D.; Alesanco, A.; Martinez, I.; Garcia, J. A Review on Digital ECG Formats and the Relationships Between Them. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 432–444. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO/IEEE 11073-10102:2014, Health Informatics—Point-of-Care Medical Device Communication—Part 10102: Nomenclature—Annotated ECG, 1st ed.; ISO: Geneva, Switzerland, 2014; pp. 1–177. [Google Scholar]
- International Organization for Standardization. ISO/IEEE 11073-10101:2020, Health informatics—Point-of-Care Medical Device Communication—Part 10101: Nomenclature, 2nd ed.; ISO: Geneva, Switzerland, 2020; pp. 1–1040. [Google Scholar]
- Healh Level Seven. ANSI/HL7 V3 ECG, R1-2004 (R2019), HL7 Version 3 Standard: Regulated Studies—Annotated ECG, Release 1; HL7 International: Ann Arbor, MI, USA; Available online: https://www.hl7.org/implement/standards/product_brief.cfm?product_id=70 (accessed on 15 August 2021).
- Healh Level Seven. HL7 V3 IG ECGR1 R2, HL7 Version 3 Implementation Guide: Regulated Studies; Annotated ECG R1, Release 2; HL7 International: Ann Arbor, MI, USA, 2015; pp. 1–111. Available online: https://www.hl7.org/implement/standards/product_brief.cfm?product_id=102 (accessed on 15 August 2021).
- Healh Level Seven. HL7 Annotated ECG Implementation Guide. Continuous Waveforms Supplement; Brown, B., Ed.; HL7 International: Ann Arbor, MI, USA, 2014; pp. 1–25. Available online: https://www.hl7.org/documentcenter/public/wg/healthcaredevices/HL7_aECG_Continuous_ECG_Update%20-%20Brown.zip (accessed on 15 August 2021).
- DICOM Standards Committee, Working Group 1-Cardiac and Vascular Information. Digital Imaging and Communications in Medicine (DICOM) Supplement 30: Waveform Interchange; DICOM Standard Committee: Arlington, VA, USA, 2000; pp. 1–77. Available online: https://www.dicomstandard.org/News-dir/ftsup/docs/sups/sup30.pdf (accessed on 15 August 2021).
- International Organization for Standardization. ISO 22077-1:2015, Health Informatics—Medical Waveform Format—Part 1: Encoding Rules, 1st ed.; ISO: Geneva, Switzerland, 2015; pp. 1–42. [Google Scholar]
- International Organization for Standardization. ISO 22077-2:2015, Health Informatics—Medical Waveform Format—Part 2: Electrocardiography, 1st ed.; ISO: Geneva, Switzerland, 2015; pp. 1–38. [Google Scholar]
- International Organization for Standardization. ISO/TS 22077-3:2015, Health Informatics—Medical Waveform Format—Part 3: Long Term Electrocardiography, 1st ed.; ISO: Geneva, Switzerland, 2015; pp. 1–29. [Google Scholar]
- International Organization for Standardization. ISO/TS 22077-4:2019, Health Informatics—Medical Waveform Format—Part 4: Stress Test Electrocardiography, 1st ed.; ISO: Geneva, Switzerland, 2019; pp. 1–30. [Google Scholar]
- Bailey, J.J.; Berson, A.S.; Garson, A.; Horan, L.G.; Macfarlane, P.W.; Mortara, D.W.; Zywietz, C. Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council on Clinical Cardiology, American Heart Association. Circulation 1990, 81, 730–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Deal, B.J.; Hancock, E.W.; van Herpen, G.; Kors, J.A.; Macfarlane, P.; Mirvis, D.M.; et al. Recommendations for the standardization and interpretation of the electrocardiogram. Part I: The electrocardiogram and its technology. A Scientific Statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology, the American College of Cardiology Foundation, and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2007, 49, 1109–1127. [Google Scholar] [CrossRef] [Green Version]
- Mason, J.W.; Hancock, E.W.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Deal, B.J.; Josephson, M.; Kligfield, P.; Kors, J.A.; Macfarlane, P.; et al. Recommendations for the standardization and interpretation of the electrocardiogram. Part II: Electrocardiography diagnostic statement list. J. Am. Coll. Cardiol. 2007, 49, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Rautaharju, P.M.; Surawicz, B.; Gettes, L.S. AHA/ACCF/HRS Recommendations for the standardization and interpretation of the electrocardiogram. Part IV: The ST segment, T and U waves, and the QT interval. A Scientific Statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 2009, 53, 982–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, G.S.; Macfarlane, P.; Wellens, H.; Josephson, M.; Gorgels, A.; Mirvis, D.M.; Pahlm, O.; Surawicz, B.; Kligfield, P.; Childers, R.; et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram. Part VI: Acute ischemia/infarction: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 2009, 53, 1003–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDISC Controlled Terminology. Available online: http://www.cdisc.org/terminology (accessed on 15 August 2021).
- Rubel, P.; Pani, D.; Schloegl, A.; Fayn, J.; Badilini, F.; Macfarlane, P.W.; Varri, A. SCP-ECG V3.0: An enhanced standard communication protocol for computer-assisted electrocardiography. In Proceedings of the Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; Murray, A., Ed.; IEEE: Piscataway, NJ, USA, 2016; pp. 309–312. [Google Scholar]
- The Anatomical Therapeutic Chemical (ATC) Classification System and the Defined Daily Dose (DDD). WHO Collaborating Centre for Drug Statistics Methodology. Available online: http://www.whocc.no/ (accessed on 11 July 2021).
- Ricke, A.D.; Swiryn, S.; Bauernfeind, R.A.; Conner, J.A.; Young, B.; Rowlandson, G.I. Improved pacemaker pulse detection: Clinical evaluation of a new high-bandwidth electrocardiographic system. J. Electrocardiol. 2011, 44, 265–274. [Google Scholar] [CrossRef]
- Luo, S.; Johnston, P.; Macfarlane, P.W. Implanted cardiac pacemaker pulses as recorded from the body surface. J. Electrocardiol. 2012, 45, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Zareba, W.; Locati, E.H.; Maison Blanche, P. The ISHNE Holter Standard Output File Format: A Step Toward Compatibility of Holter Systems. Ann. Noninvasive Electrocardiol. 1998, 3, 261–262. [Google Scholar] [CrossRef]
- Badilini, F. The ISHNE Holter Standard Output File Format. Ann. Noninvasive Electrocardiol. 1998, 3, 263–266. [Google Scholar] [CrossRef]
- Ibaraki, T.; Muroga, S. Adaptive Linear Classifier by Linear Programming. IEEE Trans. Syst. Sci. Cybern. 1970, 6, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Badilini, F.; Young, B.; Brown, B.; Vaglio, M. Archiving and exchange of digital ECGs: A review of existing data formats. J. Electrocardiol. 2018, 51, S113–S115. [Google Scholar] [CrossRef]
- Badilini, F.; Erdem, T.; Zareba, W.; Moss, A.J. ECGScan: A method for conversion of paper electrocardiographic printouts to digital electrocardiographic files. J. Electrocardiol. 2005, 38, 310–318. [Google Scholar] [CrossRef]
- Li, Y.; Qu, Q.; Wang, M.; Yu, L.; Wang, J.; Shen, L.; He, K. Deep learning for digitizing highly noisy paper-based ECG records. Comput. Biol. Med. 2020, 127, 104077. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Khatwani, G.; Patil, R.; Sapariya, D.; Shah, V.; Parmar, D.; Dinesh, S.; Daphal, P. ECG Paper Record Digitization and Diagnosis Using Deep Learning. J. Med. Biol. Eng. 2021, 41, 422–432. [Google Scholar] [CrossRef]
- Loresco, P.J.M.; Africa, A.D. ECG Print-Out Features Extraction Using Spatial-Oriented Image Processing Techniques. JTEC 2018, 10, 15–20. [Google Scholar]
- Pahlm, U.; Pahlm, O.; Wagner, G.S. The 24-lead ECG display for enhanced recognition of STEMI-equivalent patterns in the 12-lead ECG. J. Electrocardiol. 2014, 47, 425–429. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P. An ECG web services portal for standard and serial ECG analysis with enhanced 3D graphical capabilities. In Proceedings of the Computing in Cardiology, Rennes, France, 24–27 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Husain, K.; Zahid, M.S.M.; Ul Hassan, S.; Hasbullah, S.; Mandala, S. Advances of ECG Sensors from Hardware, Software and Format Interoperability Perspectives. Electronics 2021, 10, 105. [Google Scholar] [CrossRef]
- Zentara, T.; Murawski, K. ECG signal coding methods in digital systems. In Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems FedCSIS, Poznań, Poland, 9–12 September 2018; Ganzha, M., Maciaszek, L., Paprzycki, M., Eds.; ACSIS: New Jersey, NJ, USA, 2018; Volume 17, pp. 95–102. [Google Scholar] [CrossRef] [Green Version]
- Trigo, J.D.; Chiarugi, F.; Alesanco, A.; Martinez-Espronceda, M.; Serrano, L.; Chronaki, C.E.; Escayola, J.; Martinez, I.; Garcia, J. Interoperability in Digital Electrocardiography: Harmonization of ISO/IEEE x73-PHD and SCP-ECG. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Mandellos, G.J.; Papaioannou, M.; Panagiotakopoulos, T.; Lymberopoulos, D.K. e-SCP-ECG+v2 Protocol: Expanding the e-SCP-ECG+ Protocol. In Broadband Communications, Networks, and Systems BROADNETS 2018, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Sucasas, V., Mantas, G., Althunibat, S., Eds.; Springer: Cham, Switzerland, 2019; Volume 263, pp. 125–135. [Google Scholar] [CrossRef]
- Behlouli, H.; Miquel, M.; Fayn, J.; Rubel, P. Towards Self-improving NN based ECG Classifiers. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, 31 October–3 November 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 18, pp. 927–928. [Google Scholar] [CrossRef]
- Fayn, J.; Rubel, P. False Alarm Reduction in Self-Care by Personalized Automatic Detection of ECG Electrode Cable Interchanges. Int. J. Telemed. Appl. 2020, 9175673. [Google Scholar] [CrossRef] [PubMed]
Section Id | Type | Content |
---|---|---|
0 | Required | Pointers to data areas in the record |
1 | Required | Header information—patient data/ECG metadata |
2 | Optional | Huffman tables used in encoding of ECG data (if used) |
3 | Required | ECG leads definition |
4 | Reserved | Reserved for legacy SCP-ECG versions |
5 | Optional | Encoded type 0 reference beat data (if reference beat is stored) |
6 | Optional * | Short-term ECG rhythm data |
7 | Optional | Global ECG measurements |
8 | Optional | Textual diagnosis from the “interpretive” device |
9 | Optional | Manufacturer specific diagnostic and over-reading data from the “interpretive” device |
10 | Optional | Per-lead ECG measurements |
11 | Optional | Universal statement codes resulting from the interpretation |
12 | Optional * | Long-term ECG rhythm data |
13 | Optional * | Stress tests, drug trials and protocol-based ECG recordings metadata |
14 | Optional * | Selected ECG sequences repository |
15 | Optional | Beat-by-beat ECG measurements and annotations |
16 | Optional | Selected ECG beat measurements and annotations |
17 | Optional | Pacemaker spike measurements and annotations |
18 | Optional | Additional ECG annotations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubel, P.; Fayn, J.; Macfarlane, P.W.; Pani, D.; Schlögl, A.; Värri, A. The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography. Hearts 2021, 2, 384-409. https://doi.org/10.3390/hearts2030031
Rubel P, Fayn J, Macfarlane PW, Pani D, Schlögl A, Värri A. The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography. Hearts. 2021; 2(3):384-409. https://doi.org/10.3390/hearts2030031
Chicago/Turabian StyleRubel, Paul, Jocelyne Fayn, Peter W. Macfarlane, Danilo Pani, Alois Schlögl, and Alpo Värri. 2021. "The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography" Hearts 2, no. 3: 384-409. https://doi.org/10.3390/hearts2030031
APA StyleRubel, P., Fayn, J., Macfarlane, P. W., Pani, D., Schlögl, A., & Värri, A. (2021). The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography. Hearts, 2(3), 384-409. https://doi.org/10.3390/hearts2030031