Accelerating Deep Learning-Based Morphological Biometric Recognition with Field-Programmable Gate Arrays
<p>AT & T dataset (downloaded from <a href="https://www.kaggle.com/datasets/kasikrit/att-database-of-faces" target="_blank">https://www.kaggle.com/datasets/kasikrit/att-database-of-faces</a>; accessed on 13 October 2024).</p> "> Figure 2
<p>PYNQ-Z2.</p> "> Figure 3
<p>Zybo Z7-20 Zynq-7000 SoC development board.</p> "> Figure 4
<p>Raspberry Pi 3 Model B.</p> "> Figure 5
<p>OV7670 camera module.</p> "> Figure 6
<p>A flowchart of the proposed model.</p> "> Figure 7
<p>Top level block diagram. The light blue block (3) is a regular IP, while blue blocks (1, 2, and 4) are hierarchy blocks, grouping IP blocks together. Block no. 1, named camera_in, is the original data producer. It groups together the IP blocks needed to decode image data coming from the camera and to format it to suit our needs. Block no. 2, named video_out, is the ultimate data consumer. It groups IP blocks doing DVI encoding, so that the image data can be displayed on a monitor. We are going to look at these two hierarchy blocks later. Block no. 3 is an actual IP, named axi_vdma. It is a Xilinx IP with the full name AXI Video Direct Memory Access. VDMA sits in the middle of the video data flow, and its central role makes it an interesting addition. It is needed to decouple two incompatible video interfaces, the image sensor’s MIPI CSI-2 and the monitor’s DVI.</p> "> Figure 8
<p>The hierarchy of the control block, which illustrates, the input, output, and control interfaces modelled in C/C++.</p> "> Figure 9
<p>AlexNet accuracy.</p> "> Figure 10
<p>AlexNet loss.</p> "> Figure 11
<p>ResNet18 accuracy.</p> "> Figure 12
<p>ResNet18 loss.</p> "> Figure 13
<p>Accuracy of the VGG16 network.</p> "> Figure 14
<p>Loss curve of the VGG16 network.</p> "> Figure 15
<p>GoogLeNet accuracy.</p> "> Figure 16
<p>GoogLeNet loss curve.</p> ">
Abstract
:1. Introduction
- Develop a Building Management System (BMS) implemented on an FPGA to control access and prevent unauthorized entries.
- Optimize a deep learning model for FPGA hardware, achieving high-speed and accurate face recognition.
- Explore hardware acceleration techniques to significantly improve the system’s processing speed.
- Conduct extensive simulations and experiments using Matlab (R2021b 9.11) and various deep learning architectures (such as GoogLeNet, SqueezeNet, AlexNet, ResNet, and VGG-16) on the AT&T Face Database to assess performance.
- Deploy the system on three different platforms (Raspberry Pi, ZYBO Z7, and PYNQ Z2) to evaluate feasibility and performance.
2. Related Works
3. Materials
3.1. AT&T Database of Faces
3.2. PYNQ-Z2
3.3. Zybo Z7-20 Zynq-7000 SoC Development Board
3.4. Raspberry Pi 3B Board
3.5. Camera Module (OV7670 Camera Module)
4. Methodology
4.1. The Suggested System
4.2. Software and Hardware Implementation
4.2.1. Convolution Layer
4.2.2. Activation Function Layer
4.2.3. Digit Recognition Using Deep Learning
4.2.4. System Integration
5. Comparison and Discussion of Results
5.1. CNN Models for Image Classification
5.2. A Comparison with the Literature
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Li, H.; Hu, W.; He, Y. Review of neural network model acceleration techniques based on FPGA platforms. Neurocomputing 2024, 610, 128511. [Google Scholar] [CrossRef]
- Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An Updated Survey of Efficient Hardware Architectures for Accelerating Deep Convolutional Neural Networks. Future Internet 2020, 12, 113. [Google Scholar] [CrossRef]
- Blaiech, A.G.; Khalifa, K.B.; Valderrama, C.; Fernandes, M.A.C.; Bedoui, M.H. A Survey and Taxonomy of FPGA-based Deep Learning Accelerators. J. Syst. Archit. 2019, 98, 331–345. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Z.; Yang, W.; Han, M. Design of deep convolutional neural network cascade for face detection. In Proceedings of the Third International Conference on Electronics Technology and Artificial Intelligence (ETAI 2024), Guangzhou, China, 17–19 May 2024; Volume 13286, pp. 228–233. [Google Scholar] [CrossRef]
- Khalil, K.; Khan, M.R.; Bayoumi, M.; Sherif, A. Efficient Hardware Design of Convolutional Neural Networks for Accelerated Deep Learning. In Proceedings of the 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 11–14 August 2024; pp. 1075–1079. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, A.; Mo, R.; Wang, D. End-to-end acceleration of the YOLO object detection framework on FPGA-only devices. Neural. Comput. Appl. 2024, 36, 1067–1089. [Google Scholar] [CrossRef]
- Yu, B.S.; Tsao, Y.; Yang, S.W.; Chen, Y.K.; Chien, S.Y. Architecture Design of Convolutional Neural Networks for Face Detection on an FPGA Platform. In Proceedings of the IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation 2018 IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, South Africa, 21–24 October 2018; pp. 88–93. [Google Scholar] [CrossRef]
- Said, Y.; Barr, M.; Ahmed, H.E. Design of a Face Recognition System based on Convolutional Neural Network (CNN). Eng. Technol. Appl. Sci. Res. 2020, 10, 5608–5612. Available online: www.etasr.com (accessed on 1 October 2024). [CrossRef]
- Hangaragi, S.; Singh, T.; Neelima, N. Face Detection and Recognition Using Face Mesh and Deep Neural Network. Procedia Comput. Sci. 2022, 218, 741–749. [Google Scholar] [CrossRef]
- Teoh, K.H.; Ismail, R.C.; Naziri, S.Z.M.; Hussin, R.; Isa, M.N.M.; Basir, M.S.S.M. Face Recognition and Identification using Deep Learning Approach. J. Phys. Conf. Ser. 2021, 1755, 012006. [Google Scholar] [CrossRef]
- Albdairi, A.J.A.; Xiao, Z.; Alkhayyat, A.; Humaidi, A.J.; Fadhel, M.A.; Taher, B.H.; Alzubaidi, L.; Santamaría, J.; Al-shamma, O. Face Recognition Based on Deep Learning and FPGA for Ethnicity Identification. Appl. Sci. 2022, 12, 2605. [Google Scholar] [CrossRef]
- Valenzuela, W.; Soto, J.E.; Zarkesh-Ha, P.; Figueroa, M. Face recognition on a smart image sensor using local gradients. Sensors 2021, 21, 2901. [Google Scholar] [CrossRef]
- Kulesza, Z. Face recognition system based on a single-board computer, in: International Conference Mechatronic Systems and Materials (MSM). In Proceedings of the 2020 International Conference Mechatronic Systems and Materials (MSM), Bialystok, Poland, 1–3 July 2020. [Google Scholar]
- Melzi, P.; Tolosana, R.; Vera-Rodriguez, R.; Kim, M.; Rathgeb, C.; Liu, X.; DeAndres-Tame, I.; Morales, A.; Fierrez, J.; Ortega-Garcia, J.; et al. Benchmarking and comprehensive evaluation of real and synthetic data to improve face recognition systems. Inf. Fusion 2024, 107, 102322. [Google Scholar] [CrossRef]
- Hammouche, R.; Attia, A.; Akhrouf, S.; Akhtar, Z. Gabor filter bank with deep autoencoder based face recognition system. Expert Syst. Appl. 2022, 197, 116743. [Google Scholar] [CrossRef]
- Moon, Y.; Ryoo, I.; Kim, S. Face Antispoofing Method Using Color Texture Segmentation on FPGA. Secur. Commun. Netw. 2021, 2021, 9939232. [Google Scholar] [CrossRef]
- Dang, T.V. Smart Attendance System based on Improved Facial Recognition. J. Robot. Control 2023, 4, 46–53. [Google Scholar] [CrossRef]
- Tsai, T.H.; Hsu, C.W.; Chi, P.T. Hardware Design on Face Recognition System by Deep Neural Network for Access Control System. In Proceedings of the 2024 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2024. [Google Scholar] [CrossRef]
- Wang, J.; Lin, J.; Wang, Z. Efficient hardware architectures for deep convolutional neural network. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1941–1953. [Google Scholar] [CrossRef]
- Al Amin, R.; Hasan, M.; Wiese, V.; Obermaisser, R. FPGA-Based Real-Time Object Detection and Classification System Using YOLO for Edge Computing. IEEE Access 2024, 12, 73268–73278. [Google Scholar] [CrossRef]
- Kabir, M.A. ReMoDeL-FPGA: Reconfigurable Memory-Centric Array Processor Architecture for Deep-Learning Acceleration on FPGA, Graduate Theses and Dissertations. 2024. Available online: https://scholarworks.uark.edu/etd/5483 (accessed on 23 October 2024).
- Wu, J.; Han, P. Design of an FPGA-Accelerated Real-Time Gaze Estimation System. J. Phys. Conf. Ser. 2024, 2897, 012015. [Google Scholar] [CrossRef]
- Teboulbi, S.; Messaoud, S.; Hajjaji, M.A.; Mtibaa, A.; Atri, M. Fpga-Based SoC Design for Real-Time Facial Point Detection Using Deep Convolutional Neural Networks with Dynamic Partial Reconfiguration. Signal Image Video Process. 2024, 18, 599–615. [Google Scholar] [CrossRef]
- AT&T Database of Faces, (n.d.). Available online: https://www.kaggle.com/datasets/kasikrit/att-database-of-faces (accessed on 13 June 2024).
- Huynh, T.V. FPGA-based Acceleration for Convolutional Neural Networks on PYNQ-Z2. Int. J. Comput. Digit. Syst. 2022, 11, 441–449. [Google Scholar] [CrossRef]
- Xilinx Zynq-7000 SoC Development Board—Digilent Zybo Z7, (n.d.). Available online: https://digilent.com/shop/zybo-z7-zynq-7000-arm-fpga-soc-development-board/ (accessed on 13 June 2024).
- Karthikeyan, S.; Raj, R.A.; Cruz, M.V.; Chen, L.; Vishal, J.L.A.; Rohith, V.S. A Systematic Analysis on Raspberry Pi Prototyping: Uses, Challenges, Benefits, and Drawbacks. IEEE Internet Things J. 2023, 10, 14397–14417. [Google Scholar] [CrossRef]
- CMOS OV7670 Camera Module, (n.d.). Available online: www.ArduCAM.com (accessed on 13 June 2024).
- Fredj, H.B.; Sghaier, S.; Souani, C. An Efficient Face Recognition Method Using CNN. In Proceedings of the 2021 International Conference of Women in Data Science at Taif University (WiDSTaif), Taif, Saudi Arabia, 30–31 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Pranav, K.B.; Manikandan, J. Design and Evaluation of a Real-Time Face Recognition System using Convolutional Neural Networks. Procedia Comput. Sci. 2020, 171, 1651–1659. [Google Scholar] [CrossRef]
- Alsayaydeh, J.; Aziz, A.; Hossain, A.Z.; Alsayaydeh, J.A.J.; Xin, C.K.; Hossain, A.K.M.Z.; Herawan, S.G. Face Recognition System Design and Implementation using Neural Networks. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 519–526. [Google Scholar] [CrossRef]
- AbdELminaam, D.S.; Almansori, A.M.; Taha, M.; Badr, E. A deep facial recognition system using computational intelligent algorithms. PLoS ONE 2020, 15, e0242269. [Google Scholar] [CrossRef] [PubMed]
Resources | Utilization | Available | Utilization, % |
---|---|---|---|
LUT | 58 | 17,600 | 0.33 |
FF | 66 | 35,200 | 0.19 |
DSP | 2 | 80 | 2.50 |
IO | 36 | 100 | 36.00 |
BUFG | 1 | 32 | 3.13 |
Resources | Utilization | Available | Utilization, % |
---|---|---|---|
LUT | 47 | 17,600 | 0.27 |
FF | 52 | 35,200 | 0.15 |
BRAM | 0.50 | 60 | 0.83 |
DSP | 2 | 80 | 2.50 |
IO | 36 | 100 | 36.00 |
BUFG | 1 | 32 | 3.13 |
Resources | Utilization | Available | Utilization, % |
---|---|---|---|
LUT | 55 | 17,600 | 0.31 |
FF | 56 | 35,200 | 0.16 |
DSP | 2 | 80 | 2.50 |
IO | 36 | 100 | 36.00 |
BUFG | 1 | 32 | 3.13 |
Model | Accuracy |
---|---|
AlexNet | 98.33% |
ResNet18 | 99.17% |
VGG16 | 96.67% |
GoogLeNet | 98.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, N.; Tawfik, N.; Mahmoud, M.M.A.; Fawzy, A.; Cho, Y.-I.; Abdallah, M.S. Accelerating Deep Learning-Based Morphological Biometric Recognition with Field-Programmable Gate Arrays. AI 2025, 6, 8. https://doi.org/10.3390/ai6010008
Zayed N, Tawfik N, Mahmoud MMA, Fawzy A, Cho Y-I, Abdallah MS. Accelerating Deep Learning-Based Morphological Biometric Recognition with Field-Programmable Gate Arrays. AI. 2025; 6(1):8. https://doi.org/10.3390/ai6010008
Chicago/Turabian StyleZayed, Nourhan, Nahed Tawfik, Mervat M. A. Mahmoud, Ahmed Fawzy, Young-Im Cho, and Mohamed S. Abdallah. 2025. "Accelerating Deep Learning-Based Morphological Biometric Recognition with Field-Programmable Gate Arrays" AI 6, no. 1: 8. https://doi.org/10.3390/ai6010008
APA StyleZayed, N., Tawfik, N., Mahmoud, M. M. A., Fawzy, A., Cho, Y.-I., & Abdallah, M. S. (2025). Accelerating Deep Learning-Based Morphological Biometric Recognition with Field-Programmable Gate Arrays. AI, 6(1), 8. https://doi.org/10.3390/ai6010008