Artificial Intelligence in Cervical Cancer Screening: Opportunities and Challenges
<p>Diagnostic workflow of colposcopy integrated with AI for evaluating biopsy spots. The figure depicts a schematic representation of the role of AI in guiding surgeons during cervical biopsy procedures to target areas with a higher probability of dysplasia. The image of the cervix is given to the AI algorithm. The algorithm analyzes the image with pattern recognition techniques and identifies regions of interest indicative of dysplasia or abnormal cell growth. The final step is a final image that highlights areas of probable dysplasia. This mapping is depicted through a gradient of color that represents a heatmap of a spectrum of probabilities assigned to different regions of the cervix that the surgeon can use as a visual aid for oriented biopsy procedures.</p> "> Figure 2
<p>Study flow diagram: PRISMA flow diagram of identification, screening, and inclusion of articles. Systematic literature reviews were selected with standard methods to be briefly presented in the article.</p> ">
Abstract
:1. Background
2. AI, Machine Learning, and Deep Learning in Medicine: An Overview
3. AI to Fill Gaps in Cervical Cancer Screening
AI and Colposcopy in Cervical Cancer Screening
4. Materials and Methods
5. Results
6. Artificial Intelligence and Histology in Cervical Cancer Screening
7. Progression Risk Calculation and Machine Learning
8. Strengths and Limitations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Glossary
AI (Artificial Intelligence) | A field of computer science focused on creating systems that can perform tasks usually requiring human intelligence, such as learning, problem-solving, and pattern recognition. |
CNN (Convolutional Neural Network) | A type of deep learning model especially effective for image-processing tasks. CNNs use convolutional layers to capture spatial features in images, making them suitable for medical imaging analysis. |
SVM (Support Vector Machine) | A supervised machine learning algorithm that works well for binary classification tasks, particularly when the data have clear boundaries. SVMs are often used for structured data, like patient information, rather than image data. |
Random Forest | An ensemble learning technique that builds multiple decision trees and combines their outputs. Random Forests are known for their accuracy and interpretability, especially in tasks involving tabular data with many variables, like patient histories. |
Gradient Boosting Machines (GBMs) | An ensemble method that builds models sequentially to correct previous errors. GBMs are particularly effective for complex tabular data, where they can capture non-linear relationships among variables. |
3D CNN | A variation of CNNs that extends to three dimensions, allowing for volumetric data processing. Three-dimensional CNNs are commonly used in analyzing MRI and CT scans where the spatial relationships across slices are important. |
RNN (Recurrent Neural Network) | A type of neural network designed to handle sequential data, like time-series information. RNNs can be useful in medical applications where patient data need to be tracked over time. |
Predictive Modeling | The use of machine learning models to predict outcomes based on historical data. Predictive models in cervical cancer can forecast treatment responses and survival rates. |
Personalized Treatment | Tailoring medical treatment to the individual patient’s characteristics, such as their genetic makeup, health history, and specific type of cancer. AI helps personalize treatment by predicting likely outcomes based on these factors. |
Deep Learning | A subset of machine learning that involves neural networks with many layers. Deep learning is particularly powerful for image and speech recognition tasks and is widely used in healthcare for analyzing medical images. |
Feature Extraction | The process of transforming raw data (like images) into a structured format for analysis. In image processing, features might include shapes, colors, or textures that help AI models detect abnormalities. |
Ensemble Learning | A technique where multiple models are combined to improve accuracy. Random Forests and GBMs are examples of ensemble methods, often used in complex medical datasets. |
Supervised Learning | A type of machine learning where models are trained on labeled data, meaning each input is associated with a known output. Supervised learning is widely used in healthcare, where data often include both patient information and diagnoses. |
Unstructured Data | Data that do not have a predefined format, such as images, text, or audio. CNNs are commonly applied to unstructured data, as they can process images without needing structured inputs. |
References
- Kamamoto, S.; Murayama, A.; Hamaki, T.; Kusumi, E.; Kami, M. HPV vaccination and cervical cancer screening. Lancet 2022, 399, 1939–1940. [Google Scholar] [CrossRef]
- Maver, P.; Poljak, M. Primary HPV-based cervical cancer screening in Europe: Implementation status, challenges, and future plans. Clin. Microbiol. Infect. 2020, 26, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Y.; Tan, Y.; Wan, H.; Zheng, N.; He, Z.; Mao, L.; Ren, W.; Chen, K.; Lin, Z.; et al. Artificial intelligence enables precision diagnosis of cervical cytology grades and cervical cancer. Nat. Commun. 2024, 15, 4369. [Google Scholar] [CrossRef] [PubMed]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Jiang, P.; Li, X.; Shen, H.; Chen, Y.; Wang, L.; Chen, H.; Feng, J.; Liu, J. A systematic review of deep learning-based cervical cytology screening: From cell identification to whole slide image analysis. Artif. Intell. Rev. 2023, 56, 2687–2758. [Google Scholar] [CrossRef]
- Shipley, E.; Joddrell, M.; Lip, G.Y.; Zheng, Y. Bridging the Gap Between Artificial Intelligence Research and Clinical Practice in Cardiovascular Science: What the Clinician Needs to Know. Arrhythmia Electrophysiol. Rev. 2022, 11, e03. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Xue, P.; Ng, M.T.A.; Qiao, Y. The challenges of colposcopy for cervical cancer screening in LMICs and solutions by artificial intelligence. BMC Med. 2020, 18, 169. [Google Scholar] [CrossRef]
- Egemen, D.; Perkins, R.B.; Cheung, L.C.; Befano, B.; Rodriguez, A.C.; Desai, K.; Lemay, A.; Ahmed, S.R.; Antani, S.; Jeronimo, J.; et al. Artificial intelligence-based image analysis in clinical testing: Lessons from cervical cancer screening. J. Natl. Cancer Inst. 2024, 116, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Moor, J. The Dartmouth College artificial intelligence conference: The next fifty years. AI Mag. 2006, 27, 87. [Google Scholar]
- Jackson, P.C. Introduction to Artificial Intelligence; Courier Dover Publications: Mineola, NY, USA, 2019. [Google Scholar]
- Cai, Z.; Liu, L.; Chen, B.; Wang, Y. Artificial Intelligence: From Beginning to Date; World Scientific: Singapore, 2021. [Google Scholar]
- Muggleton, S. Alan Turing and the development of Artificial Intelligence. AI Commun. 2014, 27, 3–10. [Google Scholar] [CrossRef]
- Mukherjee, A.; Dutta Choudhury, A.; Datta, S.; Puri, C.; Banerjee, R.; Singh, R.; Ukil, A.; Bandyopadhyay, S.; Pal, A.; Khandelwal, S. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture. Physiol. Meas. 2019, 40, 054006. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, H.; Huang, Y.; Jin, H. ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure. J. Healthc. Eng. 2021, 2021, 5802722. [Google Scholar] [CrossRef] [PubMed]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A. What is machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A survey of deep learning and its applications: A new paradigm to machine learning. Arch. Comput. Methods Eng. 2020, 27, 1071–1092. [Google Scholar] [CrossRef]
- Wu, T.; Lucas, E.; Zhao, F.; Basu, P.; Qiao, Y. Artificial intelligence strengthenes cervical cancer screening—Present and future. Cancer Biol. Med. 2024, 21, 20240198. [Google Scholar] [CrossRef] [PubMed]
- Campilho-Gomes, M.; Tavares, R.; Goes, J. Analog flat-level circuit synthesis with genetic algorithms. IEEE Access 2024, 12, 115532–115545. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, F.; Ling, X.; Liu, Q.; Zhao, P. Intelligent health care: Applications of deep learning in computational medicine. Front. Genet. 2021, 12, 607471. [Google Scholar] [CrossRef]
- De Mauro, A.; Greco, M.; Grimaldi, M. A formal definition of Big Data based on its essential features. Libr. Rev. 2016, 65, 122–135. [Google Scholar] [CrossRef]
- Pence, H.E. What is big data and why is it important? J. Educ. Technol. Syst. 2014, 43, 159–171. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Kim, H.H.; Han, B.K.; Kim, K.H.; Han, K.; Nam, H.; Lee, E.H.; Kim, E.K. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study. Lancet Digit. Health 2020, 2, e138–e148. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Park, I.; Eun Chang, S.; Lim, W.; Kim, M.S.; Park, G.H.; Chae, J.B.; Huh, C.H.; Na, J.I. Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J. Investig. Dermatol. 2020, 140, 1753–1761. [Google Scholar] [CrossRef]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, G.; Massaro, A.; Colagrande, A.; Lettini, T.; Cicco, S.; Parente, P.; Nacchiero, E.; Lospalluti, L.; Cascardi, E.; Giudice, G.; et al. Dermatopathology of Malignant Melanoma in the Era of Artificial Intelligence: A Single Institutional Experience. Diagnostics 2022, 12, 1972. [Google Scholar] [CrossRef]
- Becker, J.; Decker, J.A.; Rommele, C.; Kahn, M.; Messmann, H.; Wehler, M.; Schwarz, F.; Kroencke, T.; Scheurig-Muenkler, C. Artificial Intelligence-Based Detection of Pneumonia in Chest Radiographs. Diagnostics 2022, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022, 39, 120. [Google Scholar] [CrossRef]
- Huang, C.; Clayton, E.A.; Matyunina, L.V.; McDonald, L.D.; Benigno, B.B.; Vannberg, F.; McDonald, J.F. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Sci. Rep. 2018, 8, 16444. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Chang, E.T.; Zulman, D.M.; Rubenstein, L.V.; Kirkland, F.D.; Fihn, S.D. Using Predictive Analytics to Guide Patient Care and Research in a National Health System. J. Gen. Intern. Med. 2019, 34, 1379–1380. [Google Scholar] [CrossRef] [PubMed]
- Dellino, M.; Cascardi, E.; Tomasone, V.; Zaccaro, R.; Maggipinto, K.; Giacomino, M.E.; De Nicolo, M.; De Summa, S.; Cazzato, G.; Scacco, S.; et al. Communications Is Time for Care: An Italian Monocentric Survey on Human Papillomavirus (HPV) Risk Information as Part of Cervical Cancer Screening. J. Pers. Med. 2022, 12, 1387. [Google Scholar] [CrossRef]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.M.; Franco, E.L.; Wheeler, C.; Ferris, D.G.; Jenkins, D.; Schuind, A.; Zahaf, T.; Innis, B.; Naud, P.; De Carvalho, N.S.; et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomised controlled trial. Lancet 2004, 364, 1757–1765. [Google Scholar] [CrossRef]
- Villa, L.L.; Costa, R.L.; Petta, C.A.; Andrade, R.P.; Ault, K.A.; Giuliano, A.R.; Wheeler, C.M.; Koutsky, L.A.; Malm, C.; Lehtinen, M. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Cascardi, E.; Cazzato, G.; Daniele, A.; Silvestris, E.; Cormio, G.; Di Vagno, G.; Malvasi, A.; Loizzi, V.; Scacco, S.; Pinto, V. Association between cervical microbiota and HPV: Could this be the key to complete cervical cancer eradication? Biology 2022, 11, 1114. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, J.; Castle, P.E.; Temin, S.; Denny, L.; Gupta, V.; Kim, J.J.; Luciani, S.; Murokora, D.; Ngoma, T.; Qiao, Y.; et al. Secondary Prevention of Cervical Cancer: ASCO Resource-Stratified Clinical Practice Guideline. J. Glob. Oncol. 2017, 3, 635–657. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. New Recommendations for Screening and Treatment to Prevent Cervical Cancer; WHO: Geneva, Switzerland, 2023.
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef]
- Nayar, R.; Wilbur, D.C. The Pap test and Bethesda 2014. Cancer Cytopathol. 2015, 123, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Giorgi-Rossi, P.; Carozzi, F.; Confortini, M.; Dalla Palma, P.; Del Mistro, A.; Ghiringhello, B.; Girlando, S.; Gillio-Tos, A.; De Marco, L.; et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: A randomised controlled trial. Lancet Oncol. 2010, 11, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Goldie, S.J.; Gaffikin, L.; Goldhaber-Fiebert, J.D.; Gordillo-Tobar, A.; Levin, C.; Mahe, C.; Wright, T.C.; Alliance for Cervical Cancer Prevention Cost Working Group. Cost-effectiveness of cervical-cancer screening in five developing countries. N. Engl. J. Med. 2005, 353, 2158–2168. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Werner, C.L.; Darragh, T.M.; Guido, R.S.; Mathews, C.; Moscicki, A.B.; Mitchell, M.M.; Schiffman, M.; Wentzensen, N.; Massad, L.S.; et al. ASCCP Colposcopy Standards: Role of Colposcopy, Benefits, Potential Harms, and Terminology for Colposcopic Practice. J. Low. Genit. Tract Dis. 2017, 21, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Mayeaux, E.J., Jr.; Novetsky, A.P.; Chelmow, D.; Garcia, F.; Choma, K.; Liu, A.H.; Papasozomenos, T.; Einstein, M.H.; Massad, L.S.; Wentzensen, N.; et al. ASCCP Colposcopy Standards: Colposcopy Quality Improvement Recommendations for the United States. J. Low. Genit. Tract Dis. 2017, 21, 242–248. [Google Scholar] [CrossRef]
- Nam, K. Colposcopy at a turning point. Obstet. Gynecol. Sci. 2018, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Liu, M.; Guo, J.; Zhao, J.; Niu, S.; Li, F. Evaluation of the accuracy of colposcopy in detecting high-grade squamous intraepithelial lesion and cervical cancer. Arch. Gynecol. Obstet. 2020, 302, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Wang, J.; Li, Q.; Seery, S.; Xue, P.; Jiang, Y. Assessing colposcopic accuracy for high-grade squamous intraepithelial lesion detection: A retrospective, cohort study. BMC Women’s Health 2022, 22, 9. [Google Scholar] [CrossRef]
- Müller, K.; Soergel, P.; Hillemanns, P.; Jentschke, M. Accuracy of colposcopically guided diagnostic methods for the detection of cervical intraepithelial neoplasia. Geburtshilfe Frauenheilkd. 2016, 76, 182–187. [Google Scholar] [CrossRef]
- Nam, K.; Chung, S.; Kwak, J.; Cha, S.; Kim, J.; Jeon, S.; Bae, D. Random biopsy after colposcopy-directed biopsy improves the diagnosis of cervical intraepithelial neoplasia grade 2 or worse. J. Low. Genit. Tract Dis. 2010, 14, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Jia, M.; Zhao, S.; Li, H.; Fan, S. Factors correlated with the accuracy of colposcopy-directed biopsy: A systematic review and meta-analysis. J. Investig. Surg. 2022, 35, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Origoni, M.; Cantatore, F.; Sopracordevole, F.; Clemente, N.; Spinillo, A.; Gardella, B.; De Vincenzo, R.; Ricci, C.; Landoni, F.; Di Meo, M.L. Colposcopy Accuracy and Diagnostic Performance: A Quality Control and Quality Assurance Survey in Italian Tertiary-Level Teaching and Academic Institutions—The Italian Society of Colposcopy and Cervico-Vaginal Pathology (SICPCV). Diagnostics 2023, 13, 1906. [Google Scholar] [CrossRef]
- Dorji, N.; Tshering, S.; Choden, S.; Chhetri, M.; Bhujel, D.; Wangden, T.; Pradhan, B.; Bhutia, P.C.; Tshomo, U. Evaluation of the diagnostic performance of colposcopy in the diagnosis of histologic cervical intraepithelial neoplasia 2+(CIN2+). BMC Cancer 2022, 22, 930. [Google Scholar] [CrossRef]
- Song, D.; Kim, E.; Huang, X.; Patruno, J.; Munoz-Avila, H.; Heflin, J.; Long, L.R.; Antani, S. Multimodal entity coreference for cervical dysplasia diagnosis. IEEE Trans. Med. Imaging 2015, 34, 229–245. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Lee, S.; Song, J.Y.; Lee, J.K.; Lee, N.W. Role of Artificial Intelligence Interpretation of Colposcopic Images in Cervical Cancer Screening. Healthcare 2022, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Stafl, A. Cervicography: A new method for cervical cancer detection. Am. J. Obstet. Gynecol. 1981, 139, 815–821. [Google Scholar] [CrossRef]
- Hu, L.; Bell, D.; Antani, S.; Xue, Z.; Yu, K.; Horning, M.P.; Gachuhi, N.; Wilson, B.; Jaiswal, M.S.; Befano, B.; et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. J. Natl. Cancer Inst. 2019, 111, 923–932. [Google Scholar] [CrossRef]
- Miyagi, Y.; Takehara, K.; Nagayasu, Y.; Miyake, T. Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types. Oncol. Lett. 2020, 19, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Asiedu, M.N.; Simhal, A.; Chaudhary, U.; Mueller, J.L.; Lam, C.T.; Schmitt, J.W.; Venegas, G.; Sapiro, G.; Ramanujam, N. Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, pocket colposcope. IEEE Trans. Biomed. Eng. 2018, 66, 2306–2318. [Google Scholar] [CrossRef]
- Simões, P.W.; Izumi, N.B.; Casagrande, R.S.; Venson, R.; Veronezi, C.D.; Moretti, G.P.; da Rocha, E.L.; Cechinel, C.; Ceretta, L.B.; Comunello, E. Classification of images acquired with colposcopy using artificial neural networks. Cancer Inform. 2014, 13, CIN.S17948. [Google Scholar] [CrossRef]
- Chandran, V.; Sumithra, M.G.; Karthick, A.; George, T.; Deivakani, M.; Elakkiya, B.; Subramaniam, U.; Manoharan, S. Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images. Biomed. Res. Int. 2021, 2021, 5584004. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pu, X.; Chen, Z.; Li, L.; Zhao, K.N.; Liu, H.; Zhu, H. Application of EfficientNet-B0 and GRU-based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions. Cancer Med. 2023, 12, 8690–8699. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, J.; Xue, P.; Li, Q.; Jiang, Y.; Qiao, Y. Evaluating the Feasibility of Machine-Learning-Based Predictive Models for Precancerous Cervical Lesions in Patients Referred for Colposcopy. Diagnostics 2022, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.J.; Choi, Y.J.; Lee, M.J.; Kim, J.H.; Son, G.H.; Park, S.H.; Kim, H.B.; Joo, Y.J.; Cho, H.Y.; Kyung, M.S.; et al. Classification of cervical neoplasms on colposcopic photography using deep learning. Sci. Rep. 2020, 10, 13652. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Huang, X. A data driven approach to cervigram image analysis and classification. In Color Medical Image Analysis; Springer: Dordrecht, The Netherlands, 2013; pp. 1–13. [Google Scholar]
- Li, Z.; Zeng, C.M.; Dong, Y.G.; Cao, Y.; Yu, L.Y.; Liu, H.Y.; Tian, X.; Tian, R.; Zhong, C.Y.; Zhao, T.T.; et al. A segmentation model to detect cevical lesions based on machine learning of colposcopic images. Heliyon 2023, 9, e21043. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Dong, H.; Liang, T.; Li, L.; Liu, J. Diagnosis of cervical precancerous lesions based on multimodal feature changes. Comput. Biol. Med. 2021, 130, 104209. [Google Scholar] [CrossRef]
- Wu, A.; Xue, P.; Abulizi, G.; Tuerxun, D.; Rezhake, R.; Qiao, Y. Artificial intelligence in colposcopic examination: A promising tool to assist junior colposcopists. Front. Med. 2023, 10, 1060451. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Tang, C.; Li, Q.; Li, Y.; Shen, Y.; Zhao, Y.; Chen, J.; Wu, J.; Li, L.; Wang, W.; et al. Development and validation of an artificial intelligence system for grading colposcopic impressions and guiding biopsies. BMC Med. 2020, 18, 406. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Yao, Y.; Cheng, B.; Cheng, Y.; Li, Y.; Li, Y.; Liu, X.; Cheng, X.; Xie, X.; Wu, J.; et al. The application of deep learning based diagnostic system to cervical squamous intraepithelial lesions recognition in colposcopy images. Sci. Rep. 2020, 10, 11639. [Google Scholar] [CrossRef]
- Yue, Z.; Ding, S.; Zhao, W.; Wang, H.; Ma, J.; Zhang, Y.; Zhang, Y. Automatic CIN Grades Prediction of Sequential Cervigram Image Using LSTM with Multistate CNN Features. IEEE J. Biomed. Health Inform. 2020, 24, 844–854. [Google Scholar] [CrossRef]
- Zimmer-Stelmach, A.; Zak, J.; Pawlosek, A.; Rosner-Tenerowicz, A.; Budny-Winska, J.; Pomorski, M.; Fuchs, T.; Zimmer, M. The Application of Artificial Intelligence-Assisted Colposcopy in a Tertiary Care Hospital within a Cervical Pathology Diagnostic Unit. Diagnostics 2022, 12, 106. [Google Scholar] [CrossRef]
- Marinakis, Y.; Dounias, G.; Jantzen, J. Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification. Comput. Biol. Med. 2009, 39, 69–78. [Google Scholar] [CrossRef]
- Chen, Y.F.; Huang, P.C.; Lin, K.C.; Lin, H.H.; Wang, L.E.; Cheng, C.C.; Chen, T.P.; Chan, Y.K.; Chiang, J.Y. Semi-automatic segmentation and classification of Pap smear cells. IEEE J. Biomed. Health Inform. 2014, 18, 94–108. [Google Scholar] [CrossRef]
- William, W.; Ware, A.; Basaza-Ejiri, A.H.; Obungoloch, J. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput. Methods Programs Biomed. 2018, 164, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Despot, A.; Fures, R.; Despot, A.M.; Mikus, M.; Zlopasa, G.; D’Amato, A.; Chiantera, V.; Serra, P.; Etrusco, A.; Lagana, A.S. Reactive oxygen species within the vaginal space: An additional promoter of cervical intraepithelial neoplasia and uterine cervical cancer development? Open Med. 2023, 18, 20230826. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, S.; Huisman, A.; Van Diest, P.J. Digital pathology: Current status and future perspectives. Histopathology 2012, 61, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Delga, A.; Goffin, F.; Kridelka, F.; Marée, R.; Lambert, C.; Delvenne, P. Evaluation of CellSolutions BestPrep® automated thin-layer liquid-based cytology Papanicolaou slide preparation and BestCyte® cell sorter imaging system. Acta Cytol. 2014, 58, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Chantziantoniou, N. BestCyte(R) Cell Sorter Imaging System: Primary and adjudicative whole slide image rescreening review times of 500 ThinPrep Pap test thin-layers—An intra-observer, time-surrogate analysis of diagnostic confidence potentialities. J. Pathol. Inform. 2022, 13, 100095. [Google Scholar] [CrossRef]
- Crowell, E.F.; Bazin, C.; Saunier, F.; Brixtel, R.; Caillot, Y.; Lesner, B.; Toutain, M.; Ferreri, C.; Garcia, I.; Mathieu, M.-C. CytoProcessorTM: A new cervical cancer screening system for remote diagnosis. Acta Cytol. 2019, 63, 215–223. [Google Scholar] [CrossRef]
- Ikenberg, H.; Lieder, S.; Ahr, A.; Wilhelm, M.; Schon, C.; Xhaja, A. Comparison of the Hologic Genius Digital Diagnostics System with the ThinPrep Imaging System-A retrospective assessment. Cancer Cytopathol. 2023, 131, 424–432. [Google Scholar] [CrossRef]
- Dellino, M.; Cascardi, E.; Lagana, A.S.; Di Vagno, G.; Malvasi, A.; Zaccaro, R.; Maggipinto, K.; Cazzato, G.; Scacco, S.; Tinelli, R.; et al. Lactobacillus crispatus M247 oral administration: Is it really an effective strategy in the management of papillomavirus-infected women? Infect. Agents Cancer 2022, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Pergialiotis, V.; Papalios, T.; Haidopoulos, D.; Papapanagiotou, A.; Vlachos, A.; Rodolakis, A.; Thomakos, N. Pre-Operative Neutrophil-to-Lymphocyte Ratio as a Predictor of Post-Operative Infectious Morbidity in Gynecologic Oncology Patients. Surg. Infect. 2023, 24, 390–396. [Google Scholar] [CrossRef]
- Avisha, M.; Pelupessy, N.U.; Rahman, A.; Rauf, S.; Rakhmah, N.; Hamid, F. Pre-treatment inflammatory and immune system parameters predicting cervical cancer metastasis. Turk. J. Obstet. Gynecol. 2023, 20, 285–292. [Google Scholar] [CrossRef]
- Afsar, S.; Turan, G.; Guney, G.; Sahin, G.; Talmac, M.A.; Afsar, C.U. The Relationship between Furin and Chronic Inflammation in the Progression of Cervical Intraepithelial Neoplasia to Cancer: A Cross-Sectional Study. Cancers 2023, 15, 4878. [Google Scholar] [CrossRef]
- Chen, J.L.; Huang, C.Y.; Shih, I.L.; Liou, Y.M.; Tai, Y.J.; Chiang, Y.C.; Kuo, C.Y. Prognostic nutritional index and neutrophil-lymphocyte ratio predict toxicities and prognosis in patients with cervical cancer treated with curative radiochemotherapy. J. Formos. Med. Assoc. 2024, 123, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Song, J. Elevated neutrophil-lymphocyte ratio can be a biomarker for predicting the development of cervical intraepithelial neoplasia. Medicine 2021, 100, e26335. [Google Scholar] [CrossRef]
- Ntuli, L.; Mtshali, A.; Mzobe, G.; Liebenberg, L.J.; Ngcapu, S. Role of Immunity and Vaginal Microbiome in Clearance and Persistence of Human Papillomavirus Infection. Front. Cell. Infect. Microbiol. 2022, 12, 927131. [Google Scholar] [CrossRef]
- Wulandari, D.; Meidyandra, R.W.; Andrijono. Genotype profiles of high-risk human papillomavirus in women of reproductive age: A community-based study. PLoS ONE 2023, 18, e0287399. [Google Scholar] [CrossRef]
- Vargas-Cardona, H.D.; Rodriguez-Lopez, M.; Arrivillaga, M.; Vergara-Sanchez, C.; García-Cifuentes, J.P.; Bermúdez, P.C.; Jaramillo-Botero, A. Artificial intelligence for cervical cancer screening: Scoping review, 2009–2022. Int. J. Gynecol. Obstet. 2024, 165, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, J.; Sun, Y.; Li, C.; Wu, W.; Jin, L.; Yang, Z.; Ni, B.; Gao, P.; Wang, P.; et al. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Cancer Res. 2018, 78, 6881–6889. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Asch, S.M. Machine Learning and Prediction in Medicine—Beyond the Peak of Inflated Expectations. N. Engl. J. Med. 2017, 376, 2507–2509. [Google Scholar] [CrossRef]
- Coiera, E.; Baker, M.; Magrabi, F. First compute no harm. BMJ Opin. 2017. [Google Scholar]
Paper ID | Year | Methods | Image Source | Classification | Training Dataset (n. Images) | Test Dataset (n. Images) | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|---|---|---|---|
[60] | 2019 | SVM | DC | Binary * | 62 | 134 | 81.30 | 78.60 | 80.00 | NR |
[62] | 2021 | CNN | OCI | Binary * | 7498 | 1884 | 92.40 | 96.20 | 92.30 | / |
[63] | 2023 | CNN | SC | Binary * | 6002 | 1200 | 93.60 | 87.60 | 90.61 | 0.96 |
[64] | 2022 | SVM | OCI | Binary * | 6564 | 894 | 80.98 | 77.56 | 61.97 | 0.874 |
[65] | 2020 | CNN | OCI | Binary *,** | 675 | 116 | 85.20 | 88.20 | 87.7 | 0.947 |
[58] | 2019 | Faster-CNN | CG | Binary * | 744 | 9406 | NR | NR | NR | 0.91 |
[66] | 2013 | SVM | CG | Binary * | 939 | 2000 | 75.00 | 76.00 | NR | NR |
[55] | 2022 | Cerviray AI® | DC | Normal, CIN1, CIN2, CIN3, cancer | NR | 234 | 74.14 | 83.05 | NR | 0.77 |
[67] | 2023 | DeepLabv3+, Google © | DC | Binary * | 1554 | 777 | 87.20 | 90.10 | 93.20 | NR |
[59] | 2019 | CNN | OCI | Binary * | NR | 253 | 95.60 | NR | 83.30 | 0.963 |
[68] | 2021 | CNNvgg16 | DC | Binary * | 300 | 60 | 84.10 | 89.80 | 86.30 | NR |
[55] | 2015 | Multi-CNN | CG | Binary * | 939 | 280 | 83.21 | 94.79 | 80.00 | NR |
[69] | 2023 | CAIADS | DC | Normal, CIN2, CIN3, cancer | NR | 366 | CIN2 95.10CIN3 85.30CANCER 95.80 | CIN2 48.30CIN3 43.90CANCER 38.30 | NR | CIN2 0.717CIN3 0.70CANCER 0.67 |
[70] | 2020 | CAIADS | DC | Binary * | 13,604 | 3887 | LSIL 90.50 HSIL 71.90 | LSIL 51.80 | HSIL 93.90 | NR |
[71] | 2020 | CNN | DC | Binary * | 8292 | 1036 | 85.38 | 82.62 | 84.10 | 0.93 |
[72] | 2020 | CNN | CG | Normal, CIN1, CIN2 | NR | 4753 | 95.09 | 98.22 | 96.13 | 0.94 |
[73] | 2022 | Visualcheck, EVA © | OCI | Binary * | NR | 48 | 66.70 | 46.7 | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dellino, M.; Cerbone, M.; d’Amati, A.; Bochicchio, M.; Laganà, A.S.; Etrusco, A.; Malvasi, A.; Vitagliano, A.; Pinto, V.; Cicinelli, E.; et al. Artificial Intelligence in Cervical Cancer Screening: Opportunities and Challenges. AI 2024, 5, 2984-3000. https://doi.org/10.3390/ai5040144
Dellino M, Cerbone M, d’Amati A, Bochicchio M, Laganà AS, Etrusco A, Malvasi A, Vitagliano A, Pinto V, Cicinelli E, et al. Artificial Intelligence in Cervical Cancer Screening: Opportunities and Challenges. AI. 2024; 5(4):2984-3000. https://doi.org/10.3390/ai5040144
Chicago/Turabian StyleDellino, Miriam, Marco Cerbone, Antonio d’Amati, Mario Bochicchio, Antonio Simone Laganà, Andrea Etrusco, Antonio Malvasi, Amerigo Vitagliano, Vincenzo Pinto, Ettore Cicinelli, and et al. 2024. "Artificial Intelligence in Cervical Cancer Screening: Opportunities and Challenges" AI 5, no. 4: 2984-3000. https://doi.org/10.3390/ai5040144
APA StyleDellino, M., Cerbone, M., d’Amati, A., Bochicchio, M., Laganà, A. S., Etrusco, A., Malvasi, A., Vitagliano, A., Pinto, V., Cicinelli, E., Cazzato, G., & Cascardi, E. (2024). Artificial Intelligence in Cervical Cancer Screening: Opportunities and Challenges. AI, 5(4), 2984-3000. https://doi.org/10.3390/ai5040144