Role of Anisotropy on the Tidal Deformability of Compact Stellar Objects †
<p>Physical features are plotted against the radial parameter for the compact star 4U 1608-52.</p> "> Figure 2
<p><math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math> is plotted against <math display="inline"><semantics> <mi>α</mi> </semantics></math> for different compact objects with compactness <math display="inline"><semantics> <mi mathvariant="script">C</mi> </semantics></math> only for the allowed values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Physical Features and Tidal Love Number
3. Results
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Cahillane, C. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, R.F. Condensed π- phase in neutron-star matter. Phys. Rev. Lett. 1972, 29, 382–385. [Google Scholar] [CrossRef]
- Takatsuka, T.; Tamagaki, R. Nucleon superfluidity in kaon-condensed neutron stars. Prog. Theor. Phys. 1995, 94, 457–461. [Google Scholar] [CrossRef]
- Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer: Berlin, Germany, 1990. [Google Scholar]
- Ruderman, R. Pulsars: Structures and dynamics. Ann. Rev. Astron. Astrophys. 1972, 10, 427–476. [Google Scholar] [CrossRef]
- Weber, F. Pulsars as Astrophysical Observatories for Nuclear and Particle Physics; IOP Publishing: Bristol, UK, 1999. [Google Scholar]
- Sokolov, A.I. Phase transformations in a superfluid neutron liquid. J. Exp. Theor. Phys. 1980, 79, 1137–1140. [Google Scholar]
- Mak, M.K.; Harko, T. An exact anisotropic quark star model. Chin. J. Astron. Astrophys. 2002, 2, 248–269. [Google Scholar] [CrossRef]
- Mak, M.K.; Harko, T. Anisotropic stars in general relativity. Proc. R. Soc. Lond. Ser. A 2003, 459, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, B.V. Maximum bounds on the surface redshift of anisotropic stars. Phys. Rev. D 2002, 65, 104011. [Google Scholar] [CrossRef] [Green Version]
- Gleiser, M.; Dev, K. Anistropic stars: Exact solutions and stability. Int. J. Mod. Phys. D 2004, 13, 1389–1397. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Harko, T. Bounds on the basic physical parameters for anisotropic compact general relativistic objects. Class. Quantum Gravit. 2006, 23, 6479–6491. [Google Scholar] [CrossRef] [Green Version]
- Bayin, S.S. Anisotropic fluid spheres in general relativity. Phys. Rev. D 1982, 26, 1262–1274. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O. Local anisotropy in self-gravitating systems. Phys. Rep. 1997, 286, 53–130. [Google Scholar] [CrossRef]
- Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 2010, 81, 123016. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, E.E.; Hinderer, T. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D 2008, 77, 021502. [Google Scholar] [CrossRef] [Green Version]
- Hinderer, T. Tidal Love Numbers of neutron stars. Astrophys. J. 2008, 677, 1216–1220. [Google Scholar] [CrossRef]
- Thirukkanesh, S.; Ragel, F.C.; Sharma, R.; Das, S. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems: An algorithm. Eur. Phys. J. C 2018, 78, 31. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 1939, 55, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Regge, T.; Wheeler, J.A. Stability of a Schwarzschild Singularity. Phys. Rev. D 1957, 108, 1063–1069. [Google Scholar] [CrossRef]
- Biswas, B.; Bose, S. Tidal deformability of an anisotropic compact star: Implications of GW170817. Phys. Rev. D 2019, 99, 104002. [Google Scholar] [CrossRef] [Green Version]
- Rahmansyah, A.; Sulaksono, A.; Wahidin, A.B.; Setiawan, A.M. Anisotropic neutron stars with hyperons: Implication of the recent nuclear matter data and observations of neutron stars. Eur. Phys. J. C 2020, 80, 769. [Google Scholar] [CrossRef]
- Roupas, Z.; Nashed, G.G. Anisotropic neutron stars modelling: Constraints in Krori–Barua spacetime. Eur. Phys. J. C 2020, 80, 905. [Google Scholar] [CrossRef]
- Özel, F.; Psaltis, D.; Güver, T.; Baym, G.; Heinke, C.; Guillot, S. The dense matter equation of state from neutron star radius and mass measurements. ApJ 2016, 820, 28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Parida, B.K.; Ray, S.; Pal, S.K. Role of Anisotropy on the Tidal Deformability of Compact Stellar Objects. Phys. Sci. Forum 2021, 2, 29. https://doi.org/10.3390/ECU2021-09311
Das S, Parida BK, Ray S, Pal SK. Role of Anisotropy on the Tidal Deformability of Compact Stellar Objects. Physical Sciences Forum. 2021; 2(1):29. https://doi.org/10.3390/ECU2021-09311
Chicago/Turabian StyleDas, Shyam, Bikram Keshari Parida, Saibal Ray, and Shyamal Kumar Pal. 2021. "Role of Anisotropy on the Tidal Deformability of Compact Stellar Objects" Physical Sciences Forum 2, no. 1: 29. https://doi.org/10.3390/ECU2021-09311
APA StyleDas, S., Parida, B. K., Ray, S., & Pal, S. K. (2021). Role of Anisotropy on the Tidal Deformability of Compact Stellar Objects. Physical Sciences Forum, 2(1), 29. https://doi.org/10.3390/ECU2021-09311