Ultrasonography and Postmortem Magnetic Resonance Imaging of Bilateral Ocular Disease in a Heifer
<p>Macroscopic appearances of the left eye (<b>a</b>) and right eye (<b>b</b>). (<b>a</b>) Severe strabismus is evident in the slightly protruded left eye. (<b>b</b>) Moderate strabismus is evident in the right eye with a whole, white-colored lens, indicating a cataract.</p> "> Figure 2
<p>Ultrasonographic appearances of the left eyeball (<b>a</b>,<b>b</b>) and right eyeball (<b>c</b>). (<b>a</b>) The lens is anechoic and surrounded by echogenic lines of the anterior and posterior lens capsules within the left eyeball. (<b>b</b>) The corn-like structure is heterogeneously echogenic and present between the posterior lens capsule and the deepest scleroretinal rim within the vitreous body of the left eyeball. (<b>c</b>) A V-shaped membranous structure is present and accompanied by two cystic structures within the vitreous body of the right eyeball. The enlarged lens is heterogeneously anechoic to hypoechoic and is lined by the thickened and irregular anterior and posterior lens capsules. Scale = 10 mm.</p> "> Figure 3
<p>Dorsal T1-weighted (<b>a</b>–<b>c</b>) and T2-weighted (<b>d</b>–<b>f</b>) views of the skull demonstrating the left and right eyeballs. (<b>a</b>) A V-shaped structure (empty and filled arrowheads) is seen within the vitreous body of the right eyeball. The tip of the V-shaped structure ends in the area of the optic nerve (arrow). (<b>b</b>) Two cystic structures are slightly evident in the center of one line of the V-shaped structure (empty arrowhead), despite no cystic structure being evident in another line (filled arrowhead) within the vitreous body of the right eyeball. A corn-like structure is not evident within the vitreous body of the left eyeball. (<b>c</b>) The right lens (filled arrow) is a spherical structure appearing entirely by a high signal intensity. The left lens (empty arrow) is normally visualized as a low signal intensity’s center surrounded by a high signal intensity’s line of the anterior and posterior lens structures. (<b>d</b>–<b>f</b>) Abnormal membranous structures are not evident within the vitreous bodies of the left and right eyeballs. The right lens is enlarged in the anteroposterior direction. Scale = 10 mm.</p> "> Figure 4
<p>Macroscopic view (<b>a</b>) and histopathology (<b>b</b>) of the lens within the right eyeball. (<b>a</b>) The lens is spherical, and diffusely clouded and white-colored. (<b>b</b>) In the cortex of the lens, mineralization (right upper area) and aggregated globular bodies (Morganian globules; inset) are scattered. The subcapsular region (left area) contains a mild proliferation of fibrous cells with an eosinophilic collagenous fibers deposition on the entire circumference of the lens structure (HE). Bar = 100 µm.</p> "> Figure 5
<p>Histopathology of the membranous substances within the left eyeball (<b>a</b>) and right eyeball (<b>b</b>). (<b>a</b>) Membranous structures within the left eyeball consist of the retina. The retina is detached from the pigment layer (left upper area). The optic disc is located in the left lower area. (<b>b</b>) Distorted membranous structures consist of the retina within the right eyeball. The retinae of both sides are atrophic; however, the layered construction is recognizable including a photoreceptor layer to the optic nerve layer as shown in the inset (HE). Bar = 500 µm.</p> "> Figure 6
<p>Forward (<b>a</b>) and reverse (<b>b</b>) sequences of the bovine <span class="html-italic">WFDC1</span> gene exon 2. Underlines show the wild-type nucleotide sequences at the position of g.10567100_10567101 in the bovine genome database (ARS-UCD1.2).</p> ">
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshimura, N.; Tsuka, T.; Sunden, Y.; Morita, T.; Islam, M.S.; Yamato, O.; Yoshimura, T. Ophthalmic findings in a septic calf with the concurrent exhibition of meningitis and endophthalmitis. J. Vet. Med. Sci. 2021, 83, 1648–1652. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Khalaj, M.; Tsuji, T.; Tanahara, M.; Uchida, K.; Sugimoto, Y.; Kunieda, T. A mutation of the WFDC1 gene is responsible for multiple ocular defects in cattle. Genomics 2009, 94, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Kunieda, T.; Abbasi, A.R.; Ogawa, H.; Murakami, T.; Tateyama, S. Congenital multiple ocular defects with falciform retinal folds among Japanese black cattle. Vet. Pathol. 2006, 43, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Tsuka, T.; Okamoto, Y.; Sunden, Y.; Morita, T.; Amaha, T.; Ito, N.; Murahata, Y.; Yamashita, M.; Osaki, T.; Imagawa, T. Case report: Ultrasonography and magnetic resonance imaging of anterior segment dysgenesis in a calf. Front. Vet. Sci. 2022, 9, 794255. [Google Scholar] [CrossRef] [PubMed]
- Gladden, N.; Rodríguez, V.G.; Marchesi, F.; Orr, J.; Murdoch, F. Multiple congenital ocular abnormalities including microphthalmia, microphakia and aphakia in a Simmental cross bull. Vet. Rec. Case Rep. 2019, 7, e000702. [Google Scholar] [CrossRef]
- Braun, M.; Struck, A.K.; Reinartz, S.; Heppelmann, M.; Rehage, J.; Eule, J.C.; Ciurkiewicz, M.; Beineke, A.; Metzger, J.; Distl, O. Study of congenital Morgagnian cataracts in Holstein calves. PLoS ONE 2019, 14, e0226823. [Google Scholar] [CrossRef]
- Gelatt, K.N. Cataracts in cattle. J. Am. Vet. Med. Assoc. 1971, 159, 195–200. [Google Scholar] [PubMed]
- Osinchuk, S.; Petrie, L.; Leis, M.; Schumann, F.; Bauer, B.; Sandmeyer, L.; Madder, K.; Buchanan, F.; Grahn, B. Congenital nuclear cataracts in a Holstein dairy herd. Can. Vet. J. 2017, 58, 488–492. [Google Scholar]
- Krump, L.; O’Grady, L.; Lorenz, I.; Grimes, T. Congenital cataracts in an Ayrshire herd: A herd case report. Ir. Vet. J. 2014, 67, 2. [Google Scholar] [CrossRef]
- Philipp, U.; Lupp, B.; Mömke, S.; Stein, V.; Tipold, A.; Eule, J.C.; Rehage, J.; Distl, O. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle. PLoS ONE 2011, 6, e28857. [Google Scholar] [CrossRef]
- Wiedemar, N.; Drögemüller, C. A 19-Mb de novo deletion on BTA 22 including MITF leads to microphthalmia and the absence of pigmentation in a Holstein calf. Anim. Genet. 2014, 45, 868–870. [Google Scholar] [CrossRef]
- Millemann, Y.; Benoit-Valiergue, J.P.; Bonnin, J.; Fontain, J.J.; Maillard, R. Ocular and cardiac malformations associated with maternal hypovitaminosis A in cattle. Vet. Rec. 2007, 160, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Bistner, S.; Rubin, L.; Saunders, L. The ocular lesions of bovine viral diarrhea-mucosal disease. Pathol. Vet. 1970, 7, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.I.; Watson, R.E., Jr.; Witte, R.J.; McCannel, C.A. Retinal detachment: Imaging of surgical treatments and complications. Radiographics 2003, 23, 983–994. [Google Scholar] [CrossRef]
- Gonzalez, E.M.; Rodriguez, A.; Garcia, I. Review of ocular ultrasonography. Vet. Radiol. Ultrasound 2001, 42, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, A.M.J.; Boroffka, S.A.E.B.; Boevé, M.H.; Stades, F.C. Persistent hyperplastic tunica vasculosa lentis and persistent hyaloid artery in a 2-year-old basset hound. Vet. Q. 1999, 21, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Penninck, D.; Daniel, G.B.; Brawer, R.; Tidwell, A.S. Cross-sectional imaging techniques in veterinary ophthalmology. Clin. Tech. Small Anim. Pract. 2001, 16, 22–39. [Google Scholar] [CrossRef] [PubMed]
- El-Tookhy, O.; Tharwat, M. Clinical and ultrasonographic findings of some ocular affections in dromedary camels. J. Camel Pract. Res. 2012, 19, 183–191. [Google Scholar]
- El-Tookhy, O.; Tharwat, M. Clinical and ultrasonographic findings of some ocular conditions in sheep and goats. Open Vet. J. 2013, 3, 11–16. [Google Scholar] [CrossRef]
- Somma, A.T.; Moura, C.M.; Lange, R.R.; Medeiros, R.S.; Montiani-Ferreira, F. Congenital cataract associated with persistent hyperplastic primary vitreous and persistent tunica vasculosa lentis in a sambar deer (Rusa unicolor)—Clinical, ultrasonographic, and histological findings. Clin. Case Rep. 2016, 4, 636–642. [Google Scholar] [CrossRef]
- Potter, T.J.; Hallowell, G.D.; Bowen, I.M. Ultrasonographic anatomy of the bovine eye. Vet. Radiol. Ultrasound 2008, 49, 172–175. [Google Scholar] [CrossRef]
- Di Pietro, S.; Nacri, F.; Piccionello, A.P.; Ragusa, M.; de Majo, M.; Pugliese, M. Doppler ultrasonographic estimation of ocular resistive and pulsatility indices in normal unsedated cows. Large Anim. Rev. 2015, 21, 235–237. [Google Scholar]
- Barakat, E.; Ginat, D.T. Magnetic resonance imaging (MRI) features of cataracts in pediatric and young adult patients. Quant. Imaging Med. Surg. 2020, 10, 428–431. [Google Scholar] [CrossRef]
- Jacob, S.I.; Drees, R.; Pinkerton, M.E.; Bentley, E.M.; Peek, S.F. Cavernous sinus syndrome in a Holstein bull. Vet. Ophthalmol. 2015, 18, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Boroffka, S.A.E.B.; Saunders, J.H. Eye and Orbit. In Diagnostic MRI in Dogs and Cats; Mai, W., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 362–379. [Google Scholar]
- Radeke, M.J.; Peterson, K.E.; Johnson, L.V.; Anderson, D.H. Disease susceptibility of the human macula: Differential gene transcription in the retinal pigmented epithelium/choroid. Exp. Eye Res. 2007, 85, 366–380. [Google Scholar] [CrossRef]
- Valkenburg, D.; van Cauwenbergh, C.; Lorenz, B.; van Genderen, M.M.; Bertelsen, M.; Pott, J.W.R.; Coppieters, F.; de Zaeytijd, J.; Thiadens, A.A.H.J.; Klaver, C.C.W.; et al. Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4384–4391. [Google Scholar] [CrossRef] [PubMed]
- Shelmerdine, S.C.; Hutchinson, J.C.; Sebire, N.J.; Jacques, T.S.; Arthurs, O.J. Post-mortem magnetic resonance (PMMR) imaging of the brain in fetuses and children with histopathological correlation. Clin. Radiol. 2017, 72, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Tsuka, T.; Taura, Y. Abscess of bovine brain stem diagnosed by contrast MRI examinations. J. Vet. Med. Sci. 1999, 61, 425–427. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuka, T.; Sunden, Y.; Morita, T.; Islam, M.S.; Yamato, O. Ultrasonography and Postmortem Magnetic Resonance Imaging of Bilateral Ocular Disease in a Heifer. Ruminants 2024, 4, 125-135. https://doi.org/10.3390/ruminants4010008
Tsuka T, Sunden Y, Morita T, Islam MS, Yamato O. Ultrasonography and Postmortem Magnetic Resonance Imaging of Bilateral Ocular Disease in a Heifer. Ruminants. 2024; 4(1):125-135. https://doi.org/10.3390/ruminants4010008
Chicago/Turabian StyleTsuka, Takeshi, Yuji Sunden, Takehito Morita, Md Shafiqul Islam, and Osamu Yamato. 2024. "Ultrasonography and Postmortem Magnetic Resonance Imaging of Bilateral Ocular Disease in a Heifer" Ruminants 4, no. 1: 125-135. https://doi.org/10.3390/ruminants4010008
APA StyleTsuka, T., Sunden, Y., Morita, T., Islam, M. S., & Yamato, O. (2024). Ultrasonography and Postmortem Magnetic Resonance Imaging of Bilateral Ocular Disease in a Heifer. Ruminants, 4(1), 125-135. https://doi.org/10.3390/ruminants4010008