Multi-Phase Adaptive Recoding: An Analogue of Partial Retransmission in Batched Network Coding †
<p>An example of three-phase recoding. Each arrow corresponds to the flow of a packet. The crosses represent the lost packets.</p> "> Figure 2
<p>The flowchart highlighting the flow of this research.</p> "> Figure 3
<p>An example of two-phase variation of systematic recoding. Each arrow corresponds to the flow of a packet. The crosses represent the lost packets.</p> "> Figure 4
<p>An example flow of the protocol without adopting multi-phase systematic recoding. The hyphen in the feedback BID–phase–rank triple means that the value will not be used by the previous node.</p> "> Figure 5
<p>An example flow of the protocol with two-phase systematic recoding. The hyphen in the feedback BID–phase–rank triple means that the value will not be used by the previous node.</p> "> Figure 6
<p>The throughput of BNC when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>avg</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> with various <span class="html-italic">p</span>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>The throughput of BNC when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>avg</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> with various <span class="html-italic">p</span>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>The decoding time when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>avg</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> with various <span class="html-italic">p</span>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>The decoding time when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msub> <mi>t</mi> <mi>avg</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> with various <span class="html-italic">p</span>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
1.1. Network Coding Approaches
1.2. Recoding of Batched Network Coding
1.3. Aims and Objectives
1.4. Paper Organization and Our Contributions
2. Preliminary
2.1. Batched Network Coding
2.2. Expected Rank Functions
- is concave and monotonically increasing with respect to t;
- for any non-negative integer t.
- A newly received recoded packet of a batch at the next node is either linearly independent or not of the already received recoded packets of the same batch. The chance of being linearly independent is smaller when there are more received recoded packets at the node, i.e., is concave with respect to t.
- Receiving a new recoded packet will not decrease the rank of the batch, as spanning a vector space with one more vector will not decrease the dimension of the vector space—that is, is monotonically increasing with respect to t.
- The recoded packets are random vectors in an r-dimensional vector space, and the dimension of their span cannot exceed r, i.e., is upper-bounded by r.
- When no recoded packet is sent, the rank of the batch at the next node must be 0, i.e., .
2.3. Traditional Adaptive Recoding Problem (TAP)
Algorithm 1: Greedy Algorithm for Solving TAP. |
3. Multi-Phase Adaptive Recoding
3.1. Multi-Phase General Adaptive Recoding Problem (GAP)
3.2. Multi-Phase Relaxed Adaptive Recoding Problem (RAP)
Algorithm 2: Heuristic for two-phase RAP. |
3.3. Multi-Phase Systematic Adaptive Recoding Problem (SAP)
3.4. Protocol Design
4. Numerical Evaluations
4.1. Throughput
4.2. Decoding Time
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BNC | Batched network coding |
RLNC | Random linear network coding |
LDPC | Low-density parity-check code |
BATS code | Batched sparse code |
TCP | Transmission control protocol |
ATCP | Ad-hoc TCP |
TAP | Traditional adaptive recoding problem |
GAP | Multi-phase general adaptive recoding problem |
RAP | Multi-phase relaxed adaptive recoding problem |
SAP | Multi-phase systematic adaptive recoding problem |
BID | Batch ID |
UDP | User datagram protocol |
IPv4 | Internet protocol version 4 |
SIMD | Single instruction/multiple data |
Appendix A. Proof of Theorem 2
Appendix B. Proof of Theorem 4
References
- Yin, H.H.F.; Tahernia, M. Multi-Phase Recoding for Batched Network Coding. In Proceedings of the 2022 IEEE Information Theory Workshop (ITW), Mumbai, India, 1–9 November 2022; pp. 25–30. [Google Scholar]
- Kavre, M.; Gadekar, A.; Gadhade, Y. Internet of Things (IoT): A Survey. In Proceedings of the 2019 IEEE Pune Section International Conference (PuneCon), Pune, India, 18–20 December 2019; pp. 1–6. [Google Scholar]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Jino Ramson, S.R.; Moni, D.J. Applications of wireless sensor networks—A survey. In Proceedings of the 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), Coimbatore, India, 3–4 February 2017; pp. 325–329. [Google Scholar]
- Bariah, L.; Shehada, D.; Salahat, E.; Yeun, C.Y. Recent Advances in VANET Security: A Survey. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, MA, USA, 6–9 September 2015. [Google Scholar]
- Mahi, M.J.N.; Chaki, S.; Ahmed, S.; Biswas, M.; Kaiser, M.S.; Islam, M.S.; Sookhak, M.; Barros, A.; Whaiduzzaman, M. A Review on VANET Research: Perspective of Recent Emerging Technologies. IEEE Access 2022, 10, 65760–65783. [Google Scholar] [CrossRef]
- Song, Y.S.; Lee, S.K.; Min, K.W. Analysis of Smart Street Lighting Mesh Network Using I2I Communication Technology. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; pp. 981–983. [Google Scholar]
- BATS: Network Coding Technology Enabling Multi-Functional Smart Lampposts. Available online: https://inno.emsd.gov.hk/en/it-solutions/index_id_236.html (accessed on 1 October 2024).
- Tang, X.; Wang, Z.; Xu, Z.; Ghassemlooy, Z. Multihop Free-Space Optical Communications Over Turbulence Channels with Pointing Errors using Heterodyne Detection. J. Light. Technol. 2014, 32, 2597–2604. [Google Scholar] [CrossRef]
- Mochizuki, K.; Obata, K.; Mizutani, K.; Harada, H. Development and field experiment of wide area Wi-SUN system based on IEEE 802.15.4g. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 76–81. [Google Scholar]
- Bhardwaj, P.; Zafaruddin, S.M. On the Performance of Multihop THz Wireless System Over Mixed Channel Fading with Shadowing and Antenna Misalignment. IEEE Trans. Commun. 2022, 70, 7748–7763. [Google Scholar] [CrossRef]
- Liu, J.; Singh, S. ATCP: TCP for Mobile Ad Hoc Networks. IEEE J. Sel. Areas Commun. (JSAC) 2001, 19, 1300–1315. [Google Scholar] [CrossRef]
- Xu, Y.; Munson, M.C.; Simu, S. Method and System for Aggregate Bandwidth Control. U.S. Patent 9,667,545; filed 4 September 2007, and issued 30 May 2017,
- Ho, T.; Koetter, R.; Médard, M.; Karger, D.R.; Effros, M. The Benefits of Coding over Routing in a Randomized Setting. In Proceedings of the 2003 IEEE International Symposium on Information Theory (ISIT), Yokohama, Japan, 29 June–4 July 2003; p. 442. [Google Scholar]
- Ahlswede, R.; Cai, N.; Li, S.Y.R.; Yeung, R.W. Network Information Flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [Google Scholar] [CrossRef]
- Li, S.Y.R.; Yeung, R.W.; Cai, N. Linear Network Coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [Google Scholar] [CrossRef]
- Jaggi, S.; Chou, P.A.; Jain, K. Low Complexity Optimal Algebraic Multicast Codes. In Proceedings of the 2003 IEEE International Symposium on Information Theory (ISIT), Yokohama, Japan, 29 June–4 July 2003; p. 368. [Google Scholar]
- Sanders, P.; Egner, S.; Tolhuizen, L. Polynomial Time Algorithms for Network Information Flow. In Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and Architectures, San Diego, CA, USA, 7–9 June 2003; pp. 286–294. [Google Scholar]
- Lun, D.S.; Médard, M.; Koetter, R.; Effros, M. On coding for reliable communication over packet networks. Phys. Commun. 2008, 1, 3–20. [Google Scholar] [CrossRef]
- Wu, Y. A Trellis Connectivity Analysis of Random Linear Network Coding with Buffering. In Proceedings of the 2006 IEEE International Symposium on Information Theory (ISIT), Seattle, WA, USA, 9–14 July 2006; pp. 768–772. [Google Scholar]
- Dana, A.F.; Gowaikar, R.; Palanki, R.; Hassibi, B.; Effros, M. Capacity of Wireless Erasure Networks. IEEE Trans. Inf. Theory 2006, 52, 789–804. [Google Scholar] [CrossRef]
- Na, L.; Guanghui, S.; Yanbo, Y.; Jiawei, Z.; Teng, L. Review on the Research Progress of Machine Learning in Network Coding. In Proceedings of the 2024 International Conference on Networking and Network Applications (NaNA), Yinchuan City, China, 9–12 August 2024; pp. 510–515. [Google Scholar]
- Li, T.; Chen, W.; Tang, Y.; Yan, H. A Homomorphic Network Coding Signature Scheme for Multiple Sources and Its Application in IoT. Secur. Commun. Netw. 2018, 2018, 9641273. [Google Scholar] [CrossRef]
- Brahimi, M.A.; Merazka, F. Data Confidentiality-Preserving Schemes for Random Linear Network Coding-Capable Networks. J. Inf. Secur. Appl. 2022, 66, 103136. [Google Scholar] [CrossRef]
- Chao, C.C.; Chou, C.C.; Wei, H.Y. Pseudo Random Network Coding Design for IEEE 802.16m Enhanced Multicast and Broadcast Service. In Proceedings of the 2010 IEEE 71st Vehicular Technology Conference (VTC Spring), Taipei, Taiwan, 16–19 May 2010. [Google Scholar]
- Shojania, H.; Li, B. Parallelized Progressive Network Coding with Hardware Acceleration. In Proceedings of the 2007 IEEE International Workshop on Quality of Service (IWQoS), Evanston, IL, USA, 21–22 June 2007; pp. 47–55. [Google Scholar]
- Goncalves, D.; Signorello, S.; Ramos, F.V.; Medard, M. Random Linear Network Coding on Programmable Switches. In Proceedings of the 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Cambridge, UK, 24–25 September 2019. [Google Scholar]
- Xu, X.; Gao, Y.; Guan, Y.L. Applications of Temporal Network Coding in V2X Communications. In Proceedings of the 3rd EAI International Conference on Smart Grid and Innovative Frontiers in Telecommunications (SmartGIFT), Auckland, New Zealand, 23–24 April 2018; pp. 53–63. [Google Scholar]
- Gao, Y.; Xu, X.; Zeng, Y.; Guan, Y.L. Optimal Scheduling for Multi-Hop Video Streaming with Network Coding in Vehicular Networks. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Papanikos, N.; Papapetrou, E. Deterministic Broadcasting and Random Linear Network Coding in Mobile Ad Hoc Networks. IEEE/ACM Trans. Netw. 2017, 25, 1540–1554. [Google Scholar] [CrossRef]
- Vukobratovic, D.; Tassi, A.; Delic, S.; Khirallah, C. Random Linear Network Coding for 5G Mobile Video Delivery. Information 2018, 9, 72. [Google Scholar] [CrossRef]
- Sundararajan, J.K.; Shah, D.; Médard, M.; Jakubczak, S.; Mitzenmacher, M.; Barros, J. Network Coding Meets TCP: Theory and Implementation. Proc. IEEE 2011, 99, 490–512. [Google Scholar] [CrossRef]
- Enenche, P.; Kim, D.H.; You, D. Network Coding as Enabler for Achieving URLLC Under TCP and UDP Environments: A Survey. IEEE Access 2023, 11, 76647–76674. [Google Scholar] [CrossRef]
- Javan, N.T.; Yaghoubi, Z. To Code or Not to Code: When and How to Use Network Coding in Energy Harvesting Wireless Multi-Hop Networks. IEEE Access 2024, 12, 22608–22623. [Google Scholar] [CrossRef]
- Dilanchian, R.; Bohlooli, A.; Jamshidi, K. Adjustable Random Linear Network Coding (ARLNC): A Solution for Data Transmission in Dynamic IoT Computational Environments. Digit. Commun. Netw. 2024. [Google Scholar] [CrossRef]
- Mak, H.W.L. Improved Remote Sensing Algorithms and Data Assimilation Approaches in Solving Environmental Retrieval Problems; The Hong Kong University of Science and Technology: Hong Kong, China, 2019. [Google Scholar]
- Chou, P.A.; Wu, Y.; Jain, K. Practical Network Coding. In Proceedings of the Annual Allerton Conference on Communication Control and Computing (Allerton), Monticello, IL, USA, 1–3 October 2003; Volume 41, pp. 40–49. [Google Scholar]
- Wunderlich, S.; Fitzek, F.H.P.; Reisslein, M. Progressive Multicore RLNC Decoding with Online DAG Scheduling. IEEE Access 2019, 7, 161184–161200. [Google Scholar] [CrossRef]
- Benamira, E.; Merazka, F. Maximizing Throughput in RLNC-based Multi-Source Multi-Relay with Guaranteed Decoding. Digit. Signal Process. 2021, 117, 103164. [Google Scholar] [CrossRef]
- Pandi, S.; Gabriel, F.; Cabrera, J.A.; Wunderlich, S.; Reisslein, M.; Fitzek, F.H.P. PACE: Redundancy Engineering in RLNC for Low-Latency Communication. IEEE Access 2017, 5, 20477–20493. [Google Scholar] [CrossRef]
- Wunderlich, S.; Gabriel, F.; Pandi, S.; Fitzek, F.H.P.; Reisslein, M. Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window RLNC Approach. IEEE Access 2017, 5, 20183–20197. [Google Scholar] [CrossRef]
- Lucani, D.E.; Pedersen, M.V.; Ruano, D.; Sørensen, C.W.; Fitzek, F.H.P.; Heide, J.; Geil, O.; Nguyen, V.; Reisslein, M. Fulcrum: Flexible Network Coding for Heterogeneous Devices. IEEE Access 2018, 6, 77890–77910. [Google Scholar] [CrossRef]
- Nguyen, V.; Tasdemir, E.; Nguyen, G.T.; Lucani, D.E.; Fitzek, F.H.P.; Reisslein, M. DSEP Fulcrum: Dynamic Sparsity and Expansion Packets for Fulcrum Network Coding. IEEE Access 2020, 8, 78293–78314. [Google Scholar] [CrossRef]
- Tasdemir, E.; Tömösközi, M.; Cabrera, J.A.; Gabriel, F.; You, D.; Fitzek, F.H.P.; Reisslein, M. SpaRec: Sparse Systematic RLNC Recoding in Multi-Hop Networks. IEEE Access 2021, 9, 168567–168586. [Google Scholar] [CrossRef]
- Tasdemir, E.; Nguyen, V.; Nguyen, G.T.; Fitzek, F.H.P.; Reisslein, M. FSW: Fulcrum Sliding Window Coding for Low-Latency Communication. IEEE Access 2022, 10, 54276–54290. [Google Scholar] [CrossRef]
- Torres Compta, P.; Fitzek, F.H.P.; Lucani, D.E. Network Coding is the 5G Key Enabling Technology: Effects and Strategies to Manage Heterogeneous Packet Lengths. Trans. Emerg. Telecommun. Technol. 2015, 6, 46–55. [Google Scholar] [CrossRef]
- Torres Compta, P.; Fitzek, F.H.P.; Lucani, D.E. On the Effects of Heterogeneous Packet Lengths on Network Coding. In Proceedings of the European Wireless 2014 (EW), Barcelona, Spain, 14–16 May 2014; pp. 385–390. [Google Scholar]
- Taghouti, M.; Lucani, D.E.; Cabrera, J.A.; Reisslein, M.; Pedersen, M.V.; Fitzek, F.H.P. Reduction of Padding Overhead for RLNC Media Distribution with Variable Size Packets. IEEE Trans. Broadcast. 2019, 65, 558–576. [Google Scholar] [CrossRef]
- Taghouti, M.; Taghouti, M.; Tömösközi, M.; Howeler, M.; Lucani, D.E.; Fitzek, F.H.P.; Bouallegue, A.; Ekler, P. Implementation of Network Coding with Recoding for Unequal-Sized and Header Compressed Traffic. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Schütz, B.; Aschenbruck, N. Packet-Preserving Network Coding Schemes for Padding Overhead Reduction. In Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October 2019; pp. 447–454. [Google Scholar]
- de Alwis, C.; Kodikara Arachchi, H.; Fernando, A.; Kondoz, A. Towards Minimising the Coefficient Vector Overhead in Random Linear Network Coding. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 5127–5131. [Google Scholar]
- Silva, D. Minimum-Overhead Network Coding in the Short Packet Regime. In Proceedings of the 2012 International Symposium on Network Coding (NetCod), Cambridge, MA, USA, 29–30 June 2012; pp. 173–178. [Google Scholar]
- Gligoroski, D.; Kralevska, K.; Øverby, H. Minimal Header Overhead for Random Linear Network Coding. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 680–685. [Google Scholar]
- Silva, D.; Zeng, W.; Kschischang, F.R. Sparse Network Coding with Overlapping Classes. In Proceedings of the 2009 Workshop on Network Coding, Theory, and Applications (NetCod), Lausanne, Switzerland, 15–16 June 2009; pp. 74–79. [Google Scholar]
- Heidarzadeh, A.; Banihashemi, A.H. Overlapped Chunked Network Coding. In Proceedings of the 2010 IEEE Information Theory Workshop (ITW), Cairo, Egypt, 6–8 January 2010; pp. 1–5. [Google Scholar]
- Li, Y.; Soljanin, E.; Spasojevic, P. Effects of the Generation Size and Overlap on Throughput and Complexity in Randomized Linear Network Coding. IEEE Trans. Inf. Theory 2011, 57, 1111–1123. [Google Scholar] [CrossRef]
- Tang, B.; Yang, S.; Yin, Y.; Ye, B.; Lu, S. Expander Graph based Overlapped Chunked Codes. In Proceedings of the 2012 IEEE International Symposium on Information Theory (ISIT), Cambridge, MA, USA, 1–6 July 2012; pp. 2451–2455. [Google Scholar]
- Mahdaviani, K.; Ardakani, M.; Bagheri, H.; Tellambura, C. Gamma Codes: A Low-Overhead Linear-Complexity Network Coding Solution. In Proceedings of the 2012 International Symposium on Network Coding (NetCod), Cambridge, MA, USA, 1–6 July 2012; pp. 125–130. [Google Scholar]
- Mahdaviani, K.; Yazdani, R.; Ardakani, M. Linear-Complexity Overhead-Optimized Random Linear Network Codes. arXiv 2013, arXiv:1311.2123. [Google Scholar]
- Yang, S.; Tang, B. From LDPC to Chunked Network Codes. In Proceedings of the 2014 IEEE Information Theory Workshop (ITW), Hobart, TAS, Australia, 2–5 November 2014; pp. 406–410. [Google Scholar]
- Tang, B.; Yang, S. An LDPC Approach for Chunked Network Codes. IEEE/ACM Trans. Netw. 2018, 26, 605–617. [Google Scholar] [CrossRef]
- Yang, S.; Yeung, R.W. Coding for a network coded fountain. In Proceedings of the 2011 IEEE International Symposium on Information Theory (ISIT), St. Petersburg, Russia, 31 July–5 August 2011; pp. 2647–2651. [Google Scholar]
- Yang, S.; Yeung, R.W. Batched Sparse Codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [Google Scholar] [CrossRef]
- Tang, B.; Yang, S.; Ye, B.; Guo, S.; Lu, S. Near-Optimal One-Sided Scheduling for Coded Segmented Network Coding. IEEE Trans. Comput. 2016, 65, 929–939. [Google Scholar] [CrossRef]
- Qing, J.; Cai, X.; Fan, Y.; Zhu, M.; Yeung, R.W. Dependence Analysis and Structured Construction for Batched Sparse Code. IEEE Trans. Commun. 2024. [Google Scholar] [CrossRef]
- Qing, J.; Leong, P.H.W.; Yeung, R.W. Performance Analysis and Optimal Design of BATS Code: A Hardware Perspective. IEEE Trans. Veh. Technol. 2023, 72, 9733–9745. [Google Scholar] [CrossRef]
- Yang, S.; Yeung, W.H.; Chao, T.I.; Lee, K.H.; Ho, C.I. Hardware Acceleration for Batched Sparse Codes. U.S. Patent 10,237,782; filed 30 December 2016, and issued 19 March 2019,
- Yang, S.; Ho, S.W.; Meng, J.; Yang, E.H. Capacity Analysis of Linear Operator Channels Over Finite Fields. IEEE Trans. Inf. Theory 2014, 60, 4880–4901. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, K.; Li, X.; Wu, D.O. Just FUN: A Joint Fountain Coding and Network Coding Approach to Loss-Tolerant Information Spreading. In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Philadelphia, PA, USA, 18–21 August 2014; pp. 83–92. [Google Scholar]
- Zhou, Z.; Li, C.; Yang, S.; Guang, X. Practical Inner Codes for BATS Codes in Multi-Hop Wireless Networks. IEEE Trans. Veh. Technol. 2019, 68, 2751–2762. [Google Scholar] [CrossRef]
- Zhou, Z.; Kang, J.; Zhou, L. Joint BATS Code and Periodic Scheduling in Multihop Wireless Networks. IEEE Access 2020, 8, 29690–29701. [Google Scholar] [CrossRef]
- Yang, S.; Yeung, R.W.; Cheung, J.H.F.; Yin, H.H.F. BATS: Network Coding in Action. In Proceedings of the Annual Allerton Conference on Communication Control and Computing (Allerton), Monticello, IL, USA, 30 September–3 October 2014; pp. 1204–1211. [Google Scholar]
- Yin, H.H.F.; Tang, B.; Ng, K.H.; Yang, S.; Wang, X.; Zhou, Q. A Unified Adaptive Recoding Framework for Batched Network Coding. IEEE J. Sel. Areas Inf. Theory (JSAIT) 2021, 2, 1150–1164. [Google Scholar] [CrossRef]
- Yin, H.H.F.; Yang, S.; Zhou, Q.; Yung, L.M.L.; Ng, K.H. BAR: Blockwise Adaptive Recoding for Batched Network Coding. Entropy 2023, 25, 1054. [Google Scholar] [CrossRef]
- Xu, X.; Guan, Y.L.; Zeng, Y. Batched Network Coding with Adaptive Recoding for Multi-Hop Erasure Channels with Memory. IEEE Trans. Commun. 2018, 66, 1042–1052. [Google Scholar] [CrossRef]
- Wang, J.; Bozkus, T.; Xie, Y.; Mitra, U. Reliable Adaptive Recoding for Batched Network Coding with Burst-Noise Channels. In Proceedings of the 2023 57th Asilomar Conference on Signals, Systems, and Computers (ACSSC), Pacific Grove, CA, USA, 29 October–1 November 2023; pp. 220–224. [Google Scholar]
- Yang, S.; Yeung, R.W. BATS Codes: Theory and Practice; Synthesis Lectures on Communication Networks; Morgan & Claypool Publishers: Denver, CO, USA, 2017. [Google Scholar]
- Breidenthal, J.C. The Merits of Multi-Hop Communication in Deep Space. In Proceedings of the 2000 IEEE Aerospace Conference (AeroConf), Big Sky, MT, USA, 25 March 2000; Volume 1, pp. 211–222. [Google Scholar]
- Zhao, H.; Dong, G.; Li, H. Simplified BATS Codes for Deep Space Multihop Networks. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 20–22 May 2016; pp. 311–314. [Google Scholar]
- Yeung, R.W.; Dong, G.; Zhu, J.; Li, H.; Yang, S.; Chen, C. Space Communication and BATS Codes: A Marriage Made in Heaven. J. Deep Space Explor. 2018, 5, 129–139. [Google Scholar]
- Sozer, E.M.; Stojanovic, M.; Proakis, J.G. Underwater Acoustic Networks. IEEE J. Ocean. Eng. 2000, 25, 72–83. [Google Scholar] [CrossRef]
- Yang, S.; Ma, J.; Huang, X. Multi-Hop Underwater Acoustic Networks Based on BATS Codes. In Proceedings of the 13th ACM International Conference on Underwater Networks & Systems (WUWNet), Shenzhen, China, 3–5 December 2018; pp. 30:1–30:5. [Google Scholar]
- Sprea, N.; Bashir, M.; Truhachev, D.; Srinivas, K.V.; Schlegel, C.; Sacchi, C. BATS Coding for Underwater Acoustic Communication Networks. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–10. [Google Scholar]
- Wang, S.; Zhou, Q.; Yang, S.; Bai, C.; Liu, H. Wireless Communication Strategy with BATS Codes for Butterfly Network. J. Physics Conf. Ser. 2022, 2218, 012003. [Google Scholar] [CrossRef]
- Yin, H.H.F.; Yeung, R.W.; Yang, S. A Protocol Design Paradigm for Batched Sparse Codes. Entropy 2020, 22, 790. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yeung, R.W. Network Communication Protocol Design from the Perspective of Batched Network Coding. IEEE Commun. Mag. 2022, 60, 89–93. [Google Scholar] [CrossRef]
- Tang, L.; Liu, H.; Yang, L.; Ma, Z.; Xiao, M. Analysis for Rank Distribution of BATS Codes under Time-Variant Channels. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC Spring), Antwerp, Belgium, 25–28 May 2020. [Google Scholar]
- Wang, S.; Liu, H.; Ma, Z.; Xiao, M. Chunked BATS Codes under Time-invariant and Time-variant Channels. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC Spring), Helsinki, Finland, 19–22 June 2022. [Google Scholar]
- Zhang, C.; Tang, B.; Ye, B.; Lu, S. An Efficient Chunked Network Code based Transmission Scheme in Wireless Networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Taghouti, M.; Lucani, D.E.; Pedersen, M.V.; Bouallegue, A. On the Impact of Zero-Padding in Network Coding Efficiency with Internet Traffic and Video Traces. In Proceedings of the European Wireless 2016 (EW), Oulu, Finland, 18–20 May 2016; pp. 72–77. [Google Scholar]
- Yin, H.H.F.; Wong, H.W.H.; Tahernia, M.; Qing, J. Packet Size Optimization for Batched Network Coding. In Proceedings of the 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 1584–1589. [Google Scholar]
- Ye, F.; Roy, S.; Wang, H. Efficient Data Dissemination in Vehicular Ad Hoc Networks. IEEE J. Sel. Areas Commun. (JSAC) 2012, 30, 769–779. [Google Scholar] [CrossRef]
- Lucani, D.E.; Médard, M.; Stojanovic, M. Random Linear Network Coding for Time-Division Duplexing: Field Size Considerations. In Proceedings of the 2009 IEEE Global Telecommunications Conference (GLOBECOM), Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar]
- Luby, M. LT Codes. In Proceedings of the 2002 IEEE Symposium on Foundations of Computer Science (FOCS), Vancouver, BC, Canada, 19 November 2002; pp. 271–282. [Google Scholar]
- Shokrollahi, A. Raptor Codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [Google Scholar] [CrossRef]
- Shokrollahi, A.; Luby, M. Raptor Codes. Found. Trends Commun. Inf. Theory 2011, 6, 213–322. [Google Scholar] [CrossRef]
- Maymounkov, P. Online Codes; Technical report; New York University: New York, NY, USA, 2002. [Google Scholar]
- Yang, S.; Zhou, Q. Tree Analysis of BATS Codes. IEEE Commun. Lett. 2016, 20, 37–40. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Z.; Wang, C.; Ji, J. Design of Optimized Sliding-Window BATS Codes. IEEE Commun. Lett. 2019, 23, 410–413. [Google Scholar] [CrossRef]
- Jayasooriya, S.; Yuan, J.; Xie, Y. An Improved Sliding Window BATS Code. In Proceedings of the 2021 11th International Symposium on Topics in Coding (ISTC), Montreal, QC, Canada, 30 August–3 September 2021. [Google Scholar]
- Xu, X.; Zeng, Y.; Guan, Y.L.; Yuan, L. Expanding-Window BATS Code for Scalable Video Multicasting Over Erasure Networks. IEEE Trans. Multimed. 2018, 20, 271–281. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Z.; Ji, J. Design of Improved Expanding-Window BATS Codes. IEEE Trans. Veh. Technol. 2022, 71, 2874–2886. [Google Scholar] [CrossRef]
- Yang, S.; Ng, T.C.; Yeung, R.W. Finite-Length Analysis of BATS Codes. IEEE Trans. Inf. Theory 2018, 64, 322–348. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, Y.; Guan, Y.L.; Yuan, L. BATS Code with Unequal Error Protection. In Proceedings of the 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, China, 14–16 December 2016. [Google Scholar]
- Xu, X.; Guan, Y.L.; Zeng, Y.; Chui, C.C. Quasi-Universal BATS Code. IEEE Trans. Veh. Technol. 2017, 66, 3497–3501. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, K.; Huang, Q.; Wen, Y.; Wu, D. FUN Coding: Design and Analysis. IEEE/ACM Trans. Netw. 2016, 24, 3340–3353. [Google Scholar] [CrossRef]
- Yin, H.H.F.; Wang, J.; Chow, S.M. Distributionally Robust Degree Optimization for BATS Codes. In Proceedings of the 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 7–12 July 2024; pp. 1315–1320. [Google Scholar]
- Shokrollahi, A.; Lassen, S.; Karp, R. Systems and Processes for Decoding Chain Reaction Codes through Inactivation. U.S. Patent 6,856,263, 15 February 2005. [Google Scholar]
- Yang, J.; Shi, Z.P.; Xiong, J.; Wang, C.X. An Improved BP Decoding of BATS Codes with Iterated Incremental Gaussian Elimination. IEEE Commun. Lett. 2020, 24, 321–324. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Z.; Yang, D.D.; Wang, C.X. An Improved Belief Propagation Decoding of BATS Codes. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 11–15. [Google Scholar]
- Mao, L.; Yang, S.; Huang, X.; Dong, Y. Design and Analysis of Systematic Batched Network Codes. Entropy 2023, 25, 1055. [Google Scholar] [CrossRef]
- Mao, L.; Yang, S. Efficient Binary Batched Network Coding employing Partial Recovery. In Proceedings of the 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 7–12 July 2024; pp. 1321–1326. [Google Scholar]
- Zhu, M.; Jiang, M.; Zhao, C. Protograph-Based Batched Network Codes. arXiv 2024, arXiv:2408.16365. [Google Scholar]
- Xiang, M.; Yi, B.; Qiu, K.; Huang, T. Expanding-Window BATS Code with Intermediate Feedback. IEEE Commun. Lett. 2018, 22, 1750–1753. [Google Scholar] [CrossRef]
- Ma, J.; Shang, B.; Khan, Z.; Yu, Y.; Fan, P. Redesign of BATS Code with Improved Decoding Rate Based on Coupled Batch Size and Degree Distribution. IEEE Commun. Lett. 2024, 28, 1196–1200. [Google Scholar] [CrossRef]
- Xu, X.; Praveen Kumar, M.S.G.; Guan, Y.L.; Joo Chong, P.H. Two-Phase Cooperative Broadcasting Based on Batched Network Code. IEEE Trans. Commun. 2016, 64, 706–714. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, X.; Guan, Y.L.; Chong, P.H.J. V2X Content Distribution Based on Batched Network Coding with Distributed Scheduling. IEEE Access 2018, 6, 59449–59461. [Google Scholar] [CrossRef]
- Xu, X.; Guan, Y.L.; Zeng, Y.; Chui, C.C. Spatial-Temporal Network Coding Based on BATS Code. IEEE Commun. Lett. 2017, 21, 620–623. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, M.; Jiang, M.; Hu, N. Design and Optimization of LDPC Precoded Finite-Length BATS Codes Under BP Decoding. IEEE Commun. Lett. 2023, 27, 3151–3155. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, M. Weighted BATS Codes with LDPC Precoding. Entropy 2023, 25, 686. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Ma, Z.; Xiao, M. Precoded Batched Sparse Codes Transmission Based on Low-Density Parity-Check Codes. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC Spring), Helsinki, Finland, 19–22 June 2022. [Google Scholar]
- Yin, H.H.F.; Xu, X.; Ng, K.H.; Guan, Y.L.; Yeung, R.W. Packet Efficiency of BATS Coding on Wireless Relay Network with Overhearing. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1967–1971. [Google Scholar]
- Yin, H.H.F.; Yang, S.; Zhou, Q.; Yung, L.M.L. Adaptive Recoding for BATS Codes. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2349–2353. [Google Scholar]
- Yang, S.; Huang, X.; Yeung, R.; Zao, J. BATched Sparse (BATS) Coding Scheme for Multi-Hop Data Transport; RFC 9426; IETF Trust: Los Angeles, CA, USA, 2023. [Google Scholar]
- Li, M.; Sutter, T.; Kuhn, D. Distributionally robust optimization with Markovian data. In Proceedings of the 38th International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 6493–6503. [Google Scholar]
- Mak, H.W.L.; Han, R.; Yin, H.H.F. Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design. Sensors 2023, 23, 3457. [Google Scholar] [CrossRef]
- Yin, H.F.H.; Tahernia, M. Systems And Methods for Multi-Phase Recoding for Batched Network Coding. U.S. Patent 17/941921; filed 9 September 2022,
- Roch, S. Modern Discrete Probability: An Essential Toolkit; Department of Mathematics, University of Wisconsin-Madison: Madison, WI, USA, 2020. [Google Scholar]
- Levy, H. Stochastic Dominance: Investment Decision Making Under Uncertainty, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.H.F.; Tahernia, M.; Mak, H.W.L. Multi-Phase Adaptive Recoding: An Analogue of Partial Retransmission in Batched Network Coding. Network 2024, 4, 468-497. https://doi.org/10.3390/network4040024
Yin HHF, Tahernia M, Mak HWL. Multi-Phase Adaptive Recoding: An Analogue of Partial Retransmission in Batched Network Coding. Network. 2024; 4(4):468-497. https://doi.org/10.3390/network4040024
Chicago/Turabian StyleYin, Hoover H. F., Mehrdad Tahernia, and Hugo Wai Leung Mak. 2024. "Multi-Phase Adaptive Recoding: An Analogue of Partial Retransmission in Batched Network Coding" Network 4, no. 4: 468-497. https://doi.org/10.3390/network4040024
APA StyleYin, H. H. F., Tahernia, M., & Mak, H. W. L. (2024). Multi-Phase Adaptive Recoding: An Analogue of Partial Retransmission in Batched Network Coding. Network, 4(4), 468-497. https://doi.org/10.3390/network4040024