Estimating Switchgrass Biomass Yield and Lignocellulose Composition from UAV-Based Indices
<p>Seasonal trajectories of the normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), normalized difference red-edge index (NDRE), green ratio vegetation index (GRVI), and simple ratio (SR) index as influenced by cultivar and N treatments. The indices were calculated from multispectral images taken over large-scale switchgrass plots at the Urbana Energy Farm, IL, during the 2021, 2022, and 2023 growing seasons. Error bars represent the mean standard errors of three replicates.</p> "> Figure 2
<p>Pearson correlation coefficients between vegetation indices measured at different times (June, July, August, and September) and biomass yield and lignocellulose components. NDVI, normalized difference vegetation index; GNDVI, green normalized difference vegetation index; NDRE, normalized difference red-edge index; GRVI, green ratio vegetation index; SR, simple ratio index. Significance levels *, **, *** indicate <span class="html-italic">p</span> < 0.05, <span class="html-italic">p</span> < 0.01, <span class="html-italic">p</span> < 0.001, respectively.</p> "> Figure 3
<p>Scatter plots of predicted and actual switchgrass biomass yields based on linear, exponential, partial least square, and random forest regression models for the training and validation sets using the univariate GNDVI from mid-August imagery. The shaded areas indicate the 95% confidence intervals associated with model fit. The dots (blue points) represent the actual data points from the dataset, while the red lines indicate how well the model fits or predicts the data.</p> "> Figure 4
<p>Scatter plots of predicted and actual switchgrass biomass yields based on linear, exponential, partial least square, and random forest regression models for the training and validation sets using a multivariate combination of the GNDVI and NDRE from mid-August imagery. The shaded areas indicate the 95% confidence intervals associated with model fit. The dots (blue points) represent the actual data points from the dataset, while the red lines indicate how well the model fits or predicts the data.</p> "> Figure 5
<p>Scatter plots of predicted and actual cellulose concentration based on linear, exponential, partial least square (PLSR), and random forest (RF) regression models for the training and validation sets using the normalized difference red-edge index (NDRE) from mid-August imagery. The shaded areas indicate the 95% confidence intervals associated with model fit. The dots (blue points) represent the actual data points from the dataset, while the red lines indicate how well the model fits or predicts the data.</p> "> Figure 6
<p>Scatter plots of predicted and actual hemicellulose concentration based on linear, exponential, partial least square (PLSR), and random forest (RF) regression models for the training and validation sets using a multivariate combination of the GNDVI, NDRE, NDVI, and GRVI from mid-July imagery. The shaded areas indicate the 95% confidence intervals associated with model fit. The dots (blue points) represent the actual data points from the dataset, while the red lines indicate how well the model fits or predicts the data.</p> "> Figure 7
<p>Scatter plots of predicted and actual acid detergent lignin (ADL) based on linear, exponential, partial least square (PLSR), and random forest (RF) regression models for the training and validation sets using a combination of the GNDVI, NDVI, and GRVI from mid-July imagery. The shaded areas indicate the 95% confidence intervals associated with model fit. The dots (blue points) represent the actual data points from the dataset, while the red lines indicate how well the model fits or predicts the data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. UAV Imaging and Processing
2.3. Vegetation Indices
2.4. Model Training and Validation
2.5. Biomass Yield Collection and Compositional Analysis
2.6. Data Analysis
3. Results
3.1. Precipitation and Temperature Changes over the Growing Years
3.2. Trends in Biomass Yield and Lignocellulose Concentrations
3.3. Seasonal Trajectory of the Vegetation Indices
3.4. Correlation Between Biomass Yield, Lignocellulose Concentrations, and VIs
3.5. Biomass Yield Estimation
3.6. Lignocellulose Estimation
4. Discussion
4.1. Performance of VIs in Predicting Biomass Yields and Lignocellulose Concentrations
4.2. Model Performance for Biomass Yield and Lignocellulose Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, K.P. Energy Production from Forages. J. Soil Water Conserv. 1996, 51, 137–139. [Google Scholar]
- Lee, D.K.; Aberle, E.; Anderson, E.K.; Anderson, W.; Baldwin, B.S.; Baltensperger, D.; Barrett, M.; Blumenthal, J.; Bonos, S.; Bouton, J.; et al. Biomass Production of Herbaceous Energy Crops in the United States: Field Trial Results and Yield Potential Maps from the Multiyear Regional Feedstock Partnership. GCB Bioenergy 2018, 10, 698–716. [Google Scholar] [CrossRef]
- Varvel, G.E.; Vogel, K.P.; Mitchell, R.B.; Follett, R.F.; Kimble, J.M. Comparison of Corn and Switchgrass on Marginal Soils for Bioenergy. Biomass Bioenergy 2008, 32, 18–21. [Google Scholar] [CrossRef]
- LaGory, K.E.; Cacho, J.F.; Zumpf, C.R.; Lee, D.; Feinstein, J.; Dematties, D.; Walston, L.J.; Namoi, N.; Negri, M.C. Bird Species Use of Bioenergy Croplands in Illinois, USA—Can Advanced Switchgrass Cultivars Provide Suitable Habitats for Breeding Grassland Birds? Sustainability 2024, 16, 4807. [Google Scholar] [CrossRef]
- U.S. Department of Energy; U.S. Department of Transportation; U.S. Department of Agriculture; U.S. Environmental Protection Agency. SAF Grand Challenge Roadmap: Flight Plan for Sustainable Aviation Fuel; U.S. Department of Energy: Washington, DC, USA, 2022; p. 128. [Google Scholar]
- U.S. Department of Energy. 2023 Billion-Ton Report: An Assessment of U.S. In Renewable Carbon Resources; Langholtz, M.H., Lead; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2024; ORNL/SPR-2024/3103. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; De La Torre Ugarte, D.G.; Garten, C.T.; Lynd, L.R.; Sanderson, M.A.; Tolbert, V.R.; Wolf, D.D. High-Value Renewable Energy from Prairie Grasses. Environ. Sci. Technol. 2002, 36, 2122–2129. [Google Scholar] [CrossRef]
- Schmer, M.R.; Mitchell, R.B.; Vogel, K.P.; Schacht, W.H.; Marx, D.B. Spatial and Temporal Effects on Switchgrass Stands and Yield in the Great Plains. Bioenergy Res. 2010, 3, 159–171. [Google Scholar] [CrossRef]
- Vogel, K.P.; Mitchell, R.B.; Casler, M.D.; Sarath, G. Registration of ‘Liberty’ Switchgrass. J. Plant. Regist. 2014, 8, 242–247. [Google Scholar] [CrossRef]
- Casler, M.D. Biomass Yield Evaluation for Switchgrass Breeding: Seeded Swards vs. Transplanted Plots Yield Different Results. Bioenergy Res. 2021, 14, 1093–1105. [Google Scholar] [CrossRef]
- Anderson, E.K.; Parrish, A.S.; Voigt, T.B.; Owens, V.N.; Hong, C.-H.; Lee, D.K. Nitrogen Fertility and Harvest Management of Switchgrass for Sustainable Bioenergy Feedstock Production in Illinois. Energies 2020, 13, 1234. [Google Scholar] [CrossRef]
- Lemus, R.; Brummer, E.C.; Moore, K.J.; Molstad, N.E.; Burras, C.L.; Barker, M.F. Biomass Yield and Quality of 20 Switchgrass Populations in Southern Iowa, USA. Biomass Bioenergy 2002, 23, 433–442. [Google Scholar] [CrossRef]
- Lee, D.; Owens, V.N.; Boe, A.; Jeranyama, P. Composition of Herbaceous Biomass Feedstocks; South Dakota State University Publication, SGINC1-07: Brookings, SD, USA, 2007. [Google Scholar]
- Labbé, N.; Ye, X.P.; Franklin, J.A.; Womac, A.R.; Tyler, D.D.; Rials, T.G. Analysis of Switchgrass Characteristics Using Near Infrared Spectroscopy. Bioenergy Res. 2008, 3, 1329–1348. [Google Scholar] [CrossRef]
- Monono, E.M.; Nyren, P.E.; Berti, M.T.; Pryor, S.W. Variability in Biomass Yield, Chemical Composition, and Ethanol Potential of Individual and Mixed Herbaceous Biomass Species Grown in North Dakota. Ind. Crops Prod. 2013, 41, 331–339. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, C. Using Remote Sensing to Estimate Forage Biomass and Nutrient Contents at Different Growth Stages. Biomass Bioenergy 2018, 115, 74–81. [Google Scholar] [CrossRef]
- Makepa, D.C.; Chihobo, C.H. Barriers to Commercial Deployment of Biorefineries: A Multi-Faceted Review of Obstacles Across the Innovation Chain. Heliyon 2024, 10, e32649. [Google Scholar] [CrossRef]
- Ayankojo, I.T.; Thorp, K.R.; Thompson, A.L. Advances in the Application of Small Unoccupied Aircraft Systems (sUAS) for High-Throughput Plant Phenotyping. Remote Sens. 2023, 15, 2623. [Google Scholar] [CrossRef]
- Li, F.; Piasecki, C.; Millwood, R.J.; Wolfe, B.; Mazarei, M.; Stewart, C.N., Jr. High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV. Front. Plant Sci. 2020, 11, 574073. [Google Scholar] [CrossRef]
- Impollonia, G.; Croci, M.; Ferrarini, A.; Brook, J.; Martani, E.; Blandinières, H.; Marcone, A.; Awty-Carroll, D.; Ashman, C.; Kam, J.; et al. UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques. Remote Sens. 2022, 14, 2927. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Wang, M.; Fan, Q.; Tian, H.; Qiao, X.; Li, Y. Applications of UAS in Crop Biomass Monitoring: A Review. Front. Plant Sci. 2021, 12, 616689. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Schachtman, D.P.; Creech, C.F.; Wang, L.; Ge, Y.; Shi, Y. Evaluation of UAV-Derived Multimodal Remote Sensing Data for Biomass Prediction and Drought Tolerance Assessment in Bioenergy Sorghum. Crop J. 2022, 10, 1016–1023. [Google Scholar] [CrossRef]
- Impollonia, G.; Croci, M.; Martani, E.; Ferrarini, A.; Kam, J.; Trindade, L.M.; Clifton-Brown, J.; Amaducci, S. Moisture Content Estimation and Senescence Phenotyping of Novel Miscanthus Hybrids Combining UAV-Based Remote Sensing and Machine Learning. GCB Bioenergy 2022, 14, 639–656. [Google Scholar] [CrossRef]
- Galli, G.; Horne, D.W.; Collins, S.D.; Jung, J.; Chang, A.; Fritsche-Neto, R.; Rooney, W.L. Optimization of UAS-Based High-Throughput Phenotyping to Estimate Plant Health and Grain Yield in Sorghum. Plant Phenome J. 2020, 3, e20010. [Google Scholar] [CrossRef]
- Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K. A Review of Remote Sensing Methods for Biomass Feedstock Production. Biomass Bioenergy 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Dutta, G.; Goswami, P. Application of Drone in Agriculture: A Review. Int. J. Chem. Stud. 2020, 8, 181–187. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Sanches, G.M.; de Carvalho, C.J.R.; Pereira, G.T.; Ribeiro, M.; de Souza, A.F.; dos Santos, J.C.; Silva, A.A. The Potential for RGB Images Obtained Using Unmanned Aerial Vehicle to Assess and Predict Yield in Sugarcane Fields. Int. J. Remote Sens. 2018, 39, 5402–5414. [Google Scholar] [CrossRef]
- Cholula, U.; da Silva, J.A.; Marconi, T.; Thomasson, J.A.; Solorzano, J.; Enciso, J. Forecasting Yield and Lignocellulosic Composition of Energy Cane Using Unmanned Aerial Systems. Agronomy 2020, 10, 718. [Google Scholar] [CrossRef]
- Namoi, N.; Jang, C.; Robins, Z.; Lin, C.-H.; Lim, S.-H.; Voigt, T.; Lee, D. Aerial Imagery Can Detect Nitrogen Fertilizer Effects on Biomass and Stand Health of Miscanthus × giganteus. Remote Sens. 2022, 14, 1435. [Google Scholar] [CrossRef]
- Jang, C.; Namoi, N.; Wolske, E.; Wasonga, D.; Behnke, G.; Bowman, N.D.; Lee, D.K. Integrating Plant Morphological Traits with Remote-Sensed Multispectral Imageries for Accurate Corn Grain Yield Prediction. PLoS ONE 2024, 19, e0297027. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Zumpf, C.R.; Cacho, J.F.; Lee, D.; Lin, C.-H.; Boe, A.; Heaton, E.; Mitchell, R.; Negri, M.C. Remote Sensing-Based Estimation of Advanced Perennial Grass Biomass Yields for Bioenergy. Land 2021, 10, 1221. [Google Scholar] [CrossRef]
- Cacho, J.F.; Feinstein, J.; Zumpf, C.R.; Hamada, Y.; Lee, D.J.; Namoi, N.L.; Lee, D.; Boersma, N.N.; Heaton, E.A.; Quinn, J.J.; et al. Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning. Energies 2023, 16, 4168. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Jansen, M.; Pinto, F.; Nagel, K.A.; van Dusschoten, D.; Fiorani, F.; Rascher, U.; Schneider, H.U.; Walter, A.; Schurr, U. Non-Invasive Phenotyping Methodologies Enable the Accurate Characterization of Growth and Performance of Shoots and Roots. In Genomics of Plant Genetic Resources; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 173–203. [Google Scholar]
- Lee, D.K.; Boe, A. Biomass Production of Switchgrass in Central South Dakota. Crop Sci. 2005, 45, 2583–2590. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Agblevor, F.; Collins, M.; Johnson, D.K. Compositional Analysis of Biomass Feedstocks by Near Infrared Reflectance Spectroscopy. Biomass Bioenergy 1996, 11, 365–370. [Google Scholar] [CrossRef]
- Park, J.I.; Liu, L.; Ye, X.P.; Jeong, M.K.; Jeong, Y.-S. Improved Prediction of Biomass Composition for Switchgrass Using Reproducing Kernel Methods with Wavelet Compressed FT-NIR Spectra. Expert Syst. Appl. 2011, 38, 8649–8655. [Google Scholar] [CrossRef]
- Feng, X.; Yu, C.; Liu, X.; Chen, Y.; Zhen, H.; Sheng, K.; He, Y. Nondestructive and Rapid Determination of Lignocellulose Components of Biofuel Pellet Using Online Hyperspectral Imaging System. Biotechnol. Biofuels 2018, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shrestha, V.; Piasecki, C.; Wolfe, B.; Hamilton, L.; Millwood, R.J.; Mazarei, M.; Stewart, C.N. Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery. Plants 2021, 10, 2726. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Ruhe, H.; Wold, H.; Dunn, W.J. The Collinearity Problem in Linear Regression: The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J. Sci. Stat. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Su, X.; Yan, X.; Tsai, C. Linear Regression. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 275–294. [Google Scholar] [CrossRef]
- Lee, M.-S.; Casler, M.D.; Lee, D.K. Registration of ‘Independence’ Switchgrass. Plant Regist. 2024, 14, e20384. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Visible and Near-Infrared Reflectance Techniques for Diagnosing Plant Physiological Status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–649. [Google Scholar] [CrossRef]
- Afolabi, I.C.; Epelle, E.I.; Gunes, B.; Güleç, F.; Okolie, J.A. Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes. Clean Technol. 2022, 4, 1227–1241. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. The Chemical Composition of Feeds in Relation to Digestion. J. Dairy Sci. 1991, 74, 3563–3578. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2023. Available online: https://www.R-project.org/ (accessed on 2 February 2024).
- Tejera-Nieves, M.; Abraha, M.; Chen, J.; Hamilton, S.K.; Robertson, G.P.; Walker, J.B. Seasonal Decline in Leaf Photosynthesis in Perennial Switchgrass Explained by Sink Limitations and Water Deficit. Front. Plant Sci. 2023, 13, 1023571, Erratum in Front. Plant Sci. 2023, 14, 1204150. [Google Scholar] [CrossRef]
- Fike, J.H.; Pease, J.A.; Owens, V.N.; Farris, R.L.; Hansen, J.L.; Heaton, E.A.; Hong, C.O.; Mayton, H.S.; Mitchell, R.B.; Viands, D.R. Switchgrass Nitrogen Response and Estimated Production Costs on Diverse Sites. GCB Bioenergy 2017, 9, 1526–1542. [Google Scholar] [CrossRef]
- Mitchell, R.; Schmer, M. Switchgrass Harvest and Storage. In Switchgrass. Green Energy and Technology; Monti, A., Ed.; Springer: London, UK, 2012; pp. 73–100. [Google Scholar] [CrossRef]
- Catania, P.; Ferro, M.V.; Orlando, S.; Vallone, M. Grapevine and Cover Crop Spectral Response to Evaluate Vineyard Spatio-Temporal Variability. Sci. Hortic. 2024, 202, 113844. [Google Scholar] [CrossRef]
- Amaral, L.R.; Molin, J.P.; Portz, G.; Finazzi, F.B.; Cortinove, L. Comparison of Crop Canopy Reflectance Sensors Used to Identify Sugarcane Biomass and Nitrogen Status. Precis. Agric. 2015, 16, 15–28. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Veeranampalayam-Sivakumar, A.N.; Schachtman, D.P. Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents with Spectral and Morphological Traits Derived from Unmanned Aircraft System. Front. Plant Sci. 2018, 9, 1406. [Google Scholar] [CrossRef] [PubMed]
- Mkhabela, M.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Okolie, J.A. Can Biomass Structural Composition Be Predicted from a Small Dataset Using a Hybrid Deep Learning Approach? Ind. Crops Prod. 2023, 203, 117191. [Google Scholar] [CrossRef]
- Loqué, D.; Scheller, H.V.; Pauly, M. Engineering of Plant Cell Walls for Enhanced Biofuel Production. Front. Plant Sci. 2015, 6, 288. [Google Scholar] [CrossRef]
- Azadi, P.; Khan, S.; Strobel, F.; Azadi, F.; Farnood, R. Hydrogen Production from Cellulose, Lignin, Bark, and Model Carbohydrates in Supercritical Water Using Nickel and Ruthenium Catalysts. Appl. Catal. B Environ. Energy 2012, 117–118, 330–338. [Google Scholar] [CrossRef]
- Jin, X.; Chen, X.; Shi, C.; Li, M.; Guan, Y.; Yu, C.Y.; Yamada, T.; Sacks, E.J.; Peng, J. Determination of Hemicellulose, Cellulose and Lignin Content Using Visible and Near Infrared Spectroscopy in Miscanthus sinensis. Bioresour. Technol. 2017, 241, 603–609. [Google Scholar] [CrossRef] [PubMed]
Activity | 2021 | 2022 | 2023 | Phenological Stages |
---|---|---|---|---|
Date, Month | ||||
Multispectral imagery | 16-Jun | 17-Jun | 14-Jun | Stem elongation |
19-Jul | 14-Jul | 19-Jul | Boot/heading stage | |
17-Aug | 18-Aug | 14-Aug | Anthesis | |
17-Sep | 19-Sep | 13-Sep | Seed development | |
Biomass yield harvest | 3-Dec | 14-Dec | 14-Dec | Senescence |
Index | Index Name | Formula | Source |
---|---|---|---|
NDVI | Normalized difference vegetation index | [(NIR − R)/(NIR + R)] | Rouse et al. [49] |
GNDVI | Green normalized difference vegetation index | [(NIR − G)/(NIR + G)] | Gitelson et al. [50] |
NDRE | Normalized difference red-edge index | [(NIR − RE)/(NIR + RE)] | Gitelson et al. [50] |
GRVI | Green ratio vegetation index | (NIR/G) | Sripada et al. [51] |
SR | Simple ratio index | (NIR/R) | Birth and McVey [52] |
Total Precipitation, mm | Average Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|
Year | 2021 | 2022 | 2023 | 30-Year Avg | 2021 | 2022 | 2023 | 30-Year Avg |
Jan | 45 | 11.2 | 45 | 52.1 | −1.1 | −5 | 1.6 | −4 |
Feb | 35.1 | 30.2 | 54.4 | 51.3 | −5.6 | −2.1 | 2.9 | −1.7 |
Mar | 109 | 113.5 | 86.4 | 69.9 | 7.5 | 5.7 | 5.2 | 4.4 |
Apr | 48.8 | 69.1 | 27.2 | 96.3 | 11.6 | 10.4 | 11.8 | 11.1 |
May | 89.7 | 95.5 | 55.1 | 115.6 | 15.5 | 19.2 | 18.8 | 16.9 |
Jun | 166.6 | 32 | 29.5 | 105.9 | 23.5 | 24 | 22.2 | 22.3 |
Jul | 105.9 | 63 | 72.9 | 110.2 | 22.9 | 24.1 | 23.7 | 23.9 |
Aug | 50.5 | 88.4 | 98.3 | 91.7 | 23.5 | 22.3 | 22.6 | 23 |
Sep | 78.2 | 57.4 | 68.8 | 83.3 | 20.8 | 18.8 | 19.9 | 19 |
Oct | 136.9 | 57.9 | 121.2 | 79.8 | 15.5 | 12 | 13.4 | 12.2 |
Nov | 30.5 | 45.7 | 18.5 | 88.9 | 4.4 | 5.6 | 6.2 | 5.2 |
Dec | 55.9 | 65.5 | 85.9 | 64 | 4.7 | −0.2 | 4.1 | −1.7 |
Total | 952.1 | 729.4 | 763 | 1009 | 11.9 | 11.2 | 12.7 | 10.9 |
GS Total | 539.7 | 405.4 | 351.8 | 603 | 19.6 | 19.8 | 19.8 | 19.4 |
Year | Cultivar | N Rate (kg ha−1) | Biomass Yield (Mg ha−1) | Cellulose (g kg−1) | Hemicellulose (g kg−1) | Lignin (g kg−1) |
---|---|---|---|---|---|---|
2021 | Independence | 28 | 5.6a | 407a | 335ab | 71.6a |
Independence | 56 | 8.1b | 419ab | 322a | 78.6a | |
Liberty | 28 | 6.4a | 424ab | 339b | 75.2a | |
Liberty | 56 | 7.5b | 430ab | 331ab | 76.7a | |
2022 | Independence | 28 | 3.5a | 397a | 365a | 61.7a |
Independence | 56 | 5.5b | 413ab | 351a | 68.4a | |
Liberty | 28 | 6.0b | 404a | 373a | 62.8a | |
Liberty | 56 | 7.1c | 404a | 357a | 69.4a | |
2023 | Independence | 28 | 6.6c | 381a | 366b | 63.4a |
Independence | 56 | 9.8ab | 401a | 347a | 72.3a | |
Liberty | 28 | 8.9b | 391a | 370b | 64.5a | |
Liberty | 56 | 11.7a | 410ab | 360ab | 74.8ab | |
p-values (<0.05) | Year | <0.001 | <0.001 | <0.001 | <0.001 | |
Cultivar | <0.001 | 0.069 | 0.003 | 0.458 | ||
N rate | <0.001 | 0.004 | <0.001 | <0.001 | ||
Year × cultivar | 0.002 | 0.282 | 0.907 | 0.968 | ||
Year × N rate | 0.022 | 0.364 | 0.616 | 0.409 | ||
Cultivar × N rate | 0.066 | 0.279 | 0.345 | 0.666 | ||
Year × cultivar × N rate | 0.881 | 0.732 | 0.657 | 0.657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasonga, D.; Jang, C.; Lee, J.W.; Vittore, K.; Arshad, M.U.; Namoi, N.; Zumpf, C.; Lee, D. Estimating Switchgrass Biomass Yield and Lignocellulose Composition from UAV-Based Indices. Crops 2025, 5, 3. https://doi.org/10.3390/crops5010003
Wasonga D, Jang C, Lee JW, Vittore K, Arshad MU, Namoi N, Zumpf C, Lee D. Estimating Switchgrass Biomass Yield and Lignocellulose Composition from UAV-Based Indices. Crops. 2025; 5(1):3. https://doi.org/10.3390/crops5010003
Chicago/Turabian StyleWasonga, Daniel, Chunhwa Jang, Jung Woo Lee, Kayla Vittore, Muhammad Umer Arshad, Nictor Namoi, Colleen Zumpf, and DoKyoung Lee. 2025. "Estimating Switchgrass Biomass Yield and Lignocellulose Composition from UAV-Based Indices" Crops 5, no. 1: 3. https://doi.org/10.3390/crops5010003
APA StyleWasonga, D., Jang, C., Lee, J. W., Vittore, K., Arshad, M. U., Namoi, N., Zumpf, C., & Lee, D. (2025). Estimating Switchgrass Biomass Yield and Lignocellulose Composition from UAV-Based Indices. Crops, 5(1), 3. https://doi.org/10.3390/crops5010003