Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies
<p>Mechanism of siRNA gene silencing via nanoparticle-based systems. Nanoparticles loaded with siRNA are delivered to target cells, utilizing either receptor-mediated or receptor-independent endocytosis for cellular internalization. This process ensures targeted delivery and minimizes off-target effects. Once internalized, nanoparticles are trapped within the endosomal compartment. Efficient endosomal escape, facilitated by nanoparticle design or pH-sensitive components, is critical for releasing free siRNA into the cytoplasm, avoiding degradation within lysosomes. In the cytoplasm, the free siRNA duplex undergoes strand separation, with the antisense (guide) strand incorporated into the RNA-induced silencing complex (RISC). The passenger (sense) strand is degraded during this period. The activated RISC, guided by the antisense strand, identifies complementary target mRNA within the cell. This high specificity ensures that only the intended mRNA sequence is targeted for degradation. Upon binding to the target mRNA, RISC facilitates precise cleavage and degradation, leading to effective gene silencing. This process disrupts the expression of genes implicated in tumorigenesis, drug resistance, or other pathological pathways.</p> "> Figure 2
<p>Primary advantages of siRNA-drug combination therapies in cancer treatment. There are four main advantages of siRNA-drug combination therapies: (1) targeted gene silencing; (2) enhanced therapeutic efficacy; (3) reduced toxicity; and (4) overcoming drug resistance. Each of these advantages contributes to a more effective, personalized, and safer approach to cancer treatment. First, targeted gene silencing is achieved through siRNA, which selectively silences genes that are overexpressed or uniquely expressed in cancer cells, minimizing off-target effects and preserving healthy tissues. This precision reduces side effects while effectively disrupting key oncogenic pathways. Second, the enhanced therapeutic efficacy of the combination is highlighted, as siRNA can sensitize tumors to chemotherapy or targeted therapies, improving overall response rates and overcoming resistance mechanisms. Third, the reduction in toxicity is demonstrated, as siRNA-drug combinations allow for the more precise targeting of cancer cells, reducing the required doses of conventional drugs and subsequently lowering treatment-related side effects. Finally, siRNA can block the expression of genes responsible for drug resistance, restoring the effectiveness of anticancer drugs that tumors may have become resistant to, and improving overall response to therapy.</p> "> Figure 3
<p>Mechanism of action for siRNA-drug combination therapy in cancer treatment. The nanoparticles are engineered to carry both siRNA and chemotherapeutic agents, facilitating targeted delivery to cancer cells. These nanoparticles are taken up by tumor cells through receptor-mediated or receptor-independent endocytosis. Once inside the cell, these systems must escape from the endosomal complex to prevent degradation in the lysosomes. Successful escape releases both siRNA and the chemotherapeutic drug into the cytoplasm. On the one hand, the (free) siRNA silences specific genes involved in tumor survival proliferation or drug resistance by binding to mRNA and preventing protein synthesis. This gene silencing inhibits critical pathways for cancer cell growth and survival, such as genes uniquely expressed in tumor tissues or those involved in resistance mechanisms. On the other hand, the released chemotherapeutic drug exerts its antitumor effect, attacking cancer cells through traditional cytotoxic mechanisms. The combination of siRNA-mediated gene silencing and drug-induced cytotoxicity enhances the overall therapeutic efficacy, helping to overcome drug resistance and improve patient outcomes. This dual approach also targets tumors more precisely while minimizing off-target effects and damage to healthy tissues.</p> ">
1. Introduction
2. Unraveling the Mechanism: How siRNA Silences Gene Expression in Cancer Cells
3. Optimizing Synergistic Combinations: The Science Behind Rational siRNA and Drug Pairings
4. Next-Generation siRNA Therapeutics: Addressing Off-Target Challenges and Immune Responses
4.1. Chemical Modifications to siRNA
4.2. Nanoparticle-Based Delivery Systems for siRNA Therapeutics
4.3. Targeting Strategies to Minimize Off-Target Effects
4.4. Advances in Endosomal Escape Mechanisms for siRNA Delivery
5. Nanoparticle-Assisted Targeting of Oncogenes in Combinatorial Therapy
5.1. Suppressing Cancer Resistance Genes with siRNA: Enhancing Chemotherapy Efficacy
5.2. Enhancing Cancer Cell Death by Silencing Survival Genes with siRNA and Chemotherapy
5.3. Exploiting Tumor-Specific Gene Expression for Targeted Therapy
6. Regulatory Framework for siRNA-Based Combinatory Therapies in Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, K.; Rani, V.; Mishra, M.; Chawla, R. New Paradigm in Combination Therapy of SiRNA with Chemotherapeutic Drugs for Effective Cancer Therapy. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100103. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef]
- Palmer, A.C.; Sorger, P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 2017, 171, 1678. [Google Scholar] [CrossRef]
- Kilgallen, A.B.; Štibler, U.; Printezi, M.I.; Putker, M.; Punt, C.J.A.; Sluijter, J.P.G.; May, A.M.; van Laake, L.W. Comparing Conventional Chemotherapy to Chronomodulated Chemotherapy for Cancer Treatment: Protocol for a Systematic Review. JMIR Res. Protoc. 2020, 9, e18023. [Google Scholar] [CrossRef] [PubMed]
- Kiani Shahvandi, M.; Souri, M.; Tavasoli, S.; Moradi Kashkooli, F.; Kar, S.; Soltani, M. A Comparative Study between Conventional Chemotherapy and Photothermal Activated Nano-Sized Targeted Drug Delivery to Solid Tumor. Comput. Biol. Med. 2023, 166, 107574. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic SiRNA: State of the Art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.A.; Torchilin, V.P. Efficient Nanocarriers of SiRNA Therapeutics for Cancer Treatment. Transl. Res. 2019, 214, 62–91. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.I.; Moazzam, M.; Kato, S.; Cho, K.Y.; Tiwari, R.K. Overcoming Barriers for SiRNA Therapeutics: From Bench to Bedside. Pharmaceuticals 2020, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Isazadeh, H.; Oruji, F.; Shabani, S.; Behroozi, J.; Nasiri, H.; Isazadeh, A.; Akbari, M. Advances in SiRNA Delivery Approaches in Cancer Therapy: Challenges and Opportunities. Mol. Biol. Rep. 2023, 50, 9529–9543. [Google Scholar] [CrossRef]
- Lin, Y.L.; Yuksel Durmaz, Y.; Nör, J.E.; Elsayed, M.E.H. Synergistic Combination of Small Molecule Inhibitor and RNA Interference Against Anti-Apoptotic Bcl-2 Protein in Head and Neck Cancer Cells. Mol. Pharm. 2013, 10, 2730. [Google Scholar] [CrossRef]
- Tunç, C.Ü.; Aydin, O. Co-Delivery of Bcl-2 SiRNA and Doxorubicin through Gold Nanoparticle-Based Delivery System for a Combined Cancer Therapy Approach. J. Drug Deliv. Sci. Technol. 2022, 74, 103603. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, X.; Cui, C.; Li, J.; Wang, Y. Doxorubicin and Anti-VEGF SiRNA Co-Delivery via Nano-Graphene Oxide for Enhanced Cancer Therapy in Vitro and in Vivo. Int. J. Nanomed. 2018, 13, 3713–3728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Y.; Zhang, E.; Jiang, M.; Zhi, D.; Chen, H.; Cui, S.; Zhen, Y.; Cui, J.; Zhang, S. Co-Delivery of Paclitaxel and Anti-VEGF SiRNA by Tripeptide Lipid Nanoparticle to Enhance the Anti-Tumor Activity for Lung Cancer Therapy. Drug Deliv. 2020, 27, 1397–1411. [Google Scholar] [CrossRef]
- Jin, H.; Wang, L.; Bernards, R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2022, 22, 213–234. [Google Scholar] [CrossRef]
- Babu, A.; Munshi, A.; Ramesh, R. Combinatorial Therapeutic Approaches with RNAi and Anticancer Drugs Using Nanodrug Delivery Systems. Drug Dev. Ind. Pharm. 2017, 43, 1391–1401. [Google Scholar] [CrossRef]
- Zhou, Z.; Edil, B.H.; Li, M. Combination Therapies for Cancer: Challenges and Opportunities. BMC Med. 2023, 21, 171. [Google Scholar] [CrossRef]
- Singh, A.; Trivedi, P.; Jain, N.K. Advances in SiRNA Delivery in Cancer Therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 274–283. [Google Scholar] [CrossRef]
- Huang, L.; Guo, S. Nanoparticles Escaping RES and Endosome: Challenges for SiRNA Delivery for Cancer Therapy. J. Nanomater. 2011, 2011, 742895. [Google Scholar] [CrossRef]
- Gupta, N.; Rai, D.B.; Jangid, A.K.; Pooja, D.; Kulhari, H. Nanomaterials-Based SiRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. In Nanotechnology in Modern Animal Biotechnology: Recent Trends and Future Perspectives; Springer: Singapore, 2019; pp. 67–114. [Google Scholar] [CrossRef]
- Mahmoodi Chalbatani, G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rad, M.R.; Marmari, V. Small Interfering RNAs (SiRNAs) in Cancer Therapy: A Nano-Based Approach. Int. J. Nanomed. 2019, 14, 3111–3128. [Google Scholar] [CrossRef] [PubMed]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.; Iyer, A.K.; Weiler, J.; Morrissey, D.V.; Amiji, M.M. Combination of SiRNA-Directed Gene Silencing with Cisplatin Reverses Drug Resistance in Human Non-Small Cell Lung Cancer. Mol. Ther. Nucleic Acids 2013, 2, e110. [Google Scholar] [CrossRef]
- Creixell, M.; Peppas, N.A. Co-Delivery of SiRNA and Therapeutic Agents Using Nanocarriers to Overcome Cancer Resistance. Nano Today 2012, 7, 367–379. [Google Scholar] [CrossRef]
- Li, L.Y.; Guan, Y.D.; Chen, X.S.; Yang, J.M.; Cheng, Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front. Pharmacol. 2020, 11, 629266. [Google Scholar] [CrossRef]
- Jurkovicova, D.; Neophytou, C.M.; Gašparović, A.Č.; Gonçalves, A.C. DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int. J. Mol. Sci. 2022, 23, 14672. [Google Scholar] [CrossRef] [PubMed]
- Pote, M.S.; Gacche, R.N. ATP-Binding Cassette Efflux Transporters and MDR in Cancer. Drug Discov. Today 2023, 28, 103537. [Google Scholar] [CrossRef]
- Wang, D.; Xu, X.; Zhang, K.; Sun, B.; Wang, L.; Meng, L.; Liu, Q.; Zheng, C.; Yang, B.; Sun, H. Codelivery of Doxorubicin and MDR1-SiRNA by Mesoporous Silica Nanoparticles-Polymerpolyethylenimine to Improve Oral Squamous Carcinoma Treatment. Int. J. Nanomed. 2018, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Russell, A.; Beesley, J.; Chen, X.Q.; Healey, S.; Henderson, M.; Wong, M.; Emmanuel, C.; Galletta, L.; Johnatty, S.E.; et al. Paclitaxel Sensitivity in Relation to ABCB1 Expression, Efflux and Single Nucleotide Polymorphisms in Ovarian Cancer. Sci. Rep. 2014, 4, 4669. [Google Scholar] [CrossRef]
- McMullen, M.; Karakasis, K.; Madariaga, A.; Oza, A.M. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers 2020, 12, 1607. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Kong, Z.; Duan, X.; Zhu, H.; Li, S.; Zeng, S.; Liang, Y.; Iliakis, G.; Gui, Z.; Yang, D. Inhibition of PARP1 by Small Interfering RNA Enhances Docetaxel Activity against Human Prostate Cancer PC3 Cells. Biochem. Biophys. Res. Commun. 2013, 442, 127–132. [Google Scholar] [CrossRef]
- Vernooij, L.; Kamili, A.; Ober, K.; van Arkel, J.; Lankhorst, L.; Vermeulen, E.; Al-Khakany, H.; Tax, G.; van den Boogaard, M.L.; Fletcher, J.I.; et al. Preclinical Assessment of Combined BCL-2 and MCL-1 Inhibition in High-Risk Neuroblastoma. EJC Paediatr. Oncol. 2024, 3, 100168. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier Mediated Delivery of SiRNA/MiRNA in Combination with Chemotherapeutic Agents for Cancer Therapy: Current Progress and Advances. J. Control. Release 2014, 194, 238–256. [Google Scholar] [CrossRef]
- Anthiya, S.; Öztürk, S.C.; Yanik, H.; Tavukcuoglu, E.; Şahin, A.; Datta, D.; Charisse, K.; Álvarez, D.M.; Loza, M.I.; Calvo, A.; et al. Targeted SiRNA Lipid Nanoparticles for the Treatment of KRAS-Mutant Tumors. J. Control. Release 2023, 357, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Zarredar, H.; Pashapour, S.; Ansarin, K.; Khalili, M.; Baghban, R.; Farajnia, S. Combination Therapy with KRAS SiRNA and EGFR Inhibitor AZD8931 Suppresses Lung Cancer Cell Growth in Vitro. J. Cell. Physiol. 2019, 234, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-Delivery of Doxorubicin and Bcl-2 SiRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrug-Resistant Cancer Cells. Small 2009, 5, 2673–2677. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; et al. First-in-Humans Trial of an RNA Interference Therapeutic Targeting VEGF and KSP in Cancer Patients with Liver Involvement. Cancer Discov. 2013, 3, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Horimoto, Y.; Ishizuka, Y.; Ueki, Y.; Higuchi, T.; Arakawa, A.; Saito, M. Comparison of Tumors with HER2 Overexpression versus HER2 Amplification in HER2-Positive Breast Cancer Patients. BMC Cancer 2022, 22, 242. [Google Scholar] [CrossRef]
- Ngamcherdtrakul, W.; Bejan, D.S.; Cruz-Muñoz, W.; Reda, M.; Zaidan, H.Y.; Siriwon, N.; Marshall, S.; Wang, R.; Nelson, M.A.; Rehwaldt, J.P.C.; et al. Targeted Nanoparticle for Co-Delivery of HER2 SiRNA and a Taxane to Mirror the Standard Treatment of HER2+ Breast Cancer: Efficacy in Breast Tumor and Brain Metastasis. Small 2022, 18, 2107550. [Google Scholar] [CrossRef]
- Chen, G.; Kronenberger, P.; Teugels, E.; Umelo, I.A.; De Grève, J. Effect of SiRNAs Targeting the EGFR T790M Mutation in a Non-Small Cell Lung Cancer Cell Line Resistant to EGFR Tyrosine Kinase Inhibitors and Combination with Various Agents. Biochem. Biophys. Res. Commun. 2013, 431, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Li, Y.; Wang, H.; Ren, H.; Chen, J.; Nie, G.; Hao, J. Co-Delivery of HIF1α SiRNA and Gemcitabine via Biocompatible Lipid-Polymer Hybrid Nanoparticles for Effective Treatment of Pancreatic Cancer. Biomaterials 2015, 46, 13–25. [Google Scholar] [CrossRef]
- Lonez, C.; Vandenbranden, M.; Ruysschaert, J.M. Cationic Lipids Activate Intracellular Signaling Pathways. Adv. Drug Deliv. Rev. 2012, 64, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.; Von Minckwitz, G.; Seidman, A.D. Combination Versus Sequential Single-Agent Therapy in Metastatic Breast Cancer. Oncologist 2002, 7, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Staskin, D. Study Designs for Evaluation of Combination Treatment: Focus on Individual Patient Benefit. Biomedicines 2022, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, M.; Alvarez-Lorenzo, C.; Concheiro, A.; Figueiras, A.; Santos, A.C.; Veiga, F. RNAi-Based Therapeutics for Lung Cancer: Biomarkers, MicroRNAs, and Nanocarriers. Expert Opin. Drug Deliv. 2018, 15, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Koide, H.; Asai, T. Recent Advances in SiRNA Delivery Mediated by Lipid-Based Nanoparticles. Adv. Drug Deliv. Rev. 2020, 154–155, 64–78. [Google Scholar] [CrossRef]
- El Moukhtari, S.H.; Garbayo, E.; Amundarain, A.; Pascual-Gil, S.; Carrasco-León, A.; Prosper, F.; Agirre, X.; Blanco-Prieto, M.J. Lipid Nanoparticles for SiRNA Delivery in Cancer Treatment. J. Control. Release 2023, 361, 130–146. [Google Scholar] [CrossRef]
- Morgan, E.; Wupperfeld, D.; Morales, D.; Reich, N. Shape Matters: Gold Nanoparticle Shape Impacts the Biological Activity of SiRNA Delivery. Bioconjugate Chem. 2019, 30, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Artiga, Á.; Serrano-Sevilla, I.; De Matteis, L.; Mitchell, S.G.; De La Fuente, J.M. Current Status and Future Perspectives of Gold Nanoparticle Vectors for SiRNA Delivery. J. Mater. Chem. B 2019, 7, 876–896. [Google Scholar] [CrossRef]
- Kanungo, A.; Tripathy, N.S.; Sahoo, L.; Acharya, S.; Dilnawaz, F. Theranostic SiRNA Loaded Mesoporous Silica Nanoplatforms: A Game Changer in Gene Therapy for Cancer Treatment. OpenNano 2024, 15, 100195. [Google Scholar] [CrossRef]
- Xie, X.; Yue, T.; Gu, W.; Cheng, W.Y.; He, L.; Ren, W.Y.; Li, F.; Piao, J.G. Recent Advances in Mesoporous Silica Nanoparticles Delivering SiRNA for Cancer Treatment. Pharmaceutics 2023, 15, 2483. [Google Scholar] [CrossRef] [PubMed]
- Mykhaylyk, O.; Sanchez-Antequera, Y.; Vlaskou, D.; Cerda, M.B.; Bokharaei, M.; Hammerschmid, E.; Anton, M.; Plank, C. Magnetic Nanoparticle and Magnetic Field Assisted SiRNA Delivery In Vitro. In RNA Interference: Challenges and Therapeutic Opportunities; Humana Press: New York, NY, USA, 2015; pp. 53–106. [Google Scholar] [CrossRef]
- Amiri, A.; Bagherifar, R.; Ansari Dezfouli, E.; Kiaie, S.H.; Jafari, R.; Ramezani, R. Exosomes as Bio-Inspired Nanocarriers for RNA Delivery: Preparation and Applications. J. Transl. Med. 2022, 20, 125. [Google Scholar] [CrossRef]
- Ubanako, P.; Mirza, S.; Ruff, P.; Penny, C. Exosome-Mediated Delivery of SiRNA Molecules in Cancer Therapy: Triumphs and Challenges. Front. Mol. Biosci. 2024, 11, 1447953. [Google Scholar] [CrossRef]
- Shi, J.; Xu, Y.; Xu, X.; Zhu, X.; Pridgen, E.; Wu, J.; Votruba, A.R.; Swami, A.; Zetter, B.R.; Farokhzad, O.C. Hybrid Lipid–Polymer Nanoparticles for Sustained SiRNA Delivery and Gene Silencing. Nanomedicine 2014, 10, e897–e900. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, S.; Hu, C.J.; Hong, X.; Shi, J.; Xiao, Y. Stimuli-Responsive Nanotechnology for RNA Delivery. Adv. Sci. 2023, 10, 2303597. [Google Scholar] [CrossRef] [PubMed]
- Eloy, J.O.; Petrilli, R.; Lopez, R.F.V.; Lee, R.J. Stimuli-Responsive Nanoparticles for SiRNA Delivery. Curr. Pharm. Des. 2015, 21, 4131–4144. [Google Scholar] [CrossRef]
- Moazzam, M.; Zhang, M.; Hussain, A.; Yu, X.; Huang, J.; Huang, Y. The Landscape of Nanoparticle-Based SiRNA Delivery and Therapeutic Development. Mol. Ther. 2024, 32, 284–312. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Manavi, M.S.; Nazari, A.; Momayezi, A.; Faghihkhorasani, F.; Rasool Riyadh Abdulwahid, A.H.; Rezaei-Tazangi, F.; Kavei, M.; Rezaei, R.; Mobarak, H.; et al. Nano-Scale Delivery Systems for SiRNA Delivery in Cancer Therapy: New Era of Gene Therapy Empowered by Nanotechnology. Environ. Res. 2023, 239, 117263. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chem. 2019, 30, 263–272. [Google Scholar] [CrossRef]
- Grau, M.; Wagner, E. Strategies and Mechanisms for Endosomal Escape of Therapeutic Nucleic Acids. Curr. Opin. Chem. Biol. 2024, 81, 102506. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Pan, Y.; Xia, L.; Li, J. Non-Viral Vectors Combined Delivery of SiRNA and Anti-Cancer Drugs to Reverse Tumor Multidrug Resistance. Biomed. Pharmacother. 2024, 178, 117119. [Google Scholar] [CrossRef]
- Xue, X.; Liang, X.J. Overcoming Drug Efflux-Based Multidrug Resistance in Cancer with Nanotechnology. Chin. J. Cancer 2012, 31, 100. [Google Scholar] [CrossRef]
- Byeon, Y.; Lee, J.W.; Choi, W.S.; Won, J.E.; Kim, G.H.; Kim, M.G.; Wi, T.I.; Lee, J.M.; Kang, T.H.; Jung, I.D.; et al. CD44-Targeting PLGA Nanoparticles Incorporating Paclitaxel and FAK SiRNA Overcome Chemoresistance in Epithelial Ovarian Cancer. Cancer Res. 2018, 78, 6247–6256. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein SiRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano 2010, 4, 4539–4550. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.K.; Chen, Y.L.; Wang, C.Y.; Chung, W.P.; Fang, J.H.; Lai, M.D.; Hsu, H.P. ABCB1 Regulates Immune Genes in Breast Cancer. Breast Cancer Targets Ther. 2023, 15, 801–811. [Google Scholar] [CrossRef]
- Lei, Z.N.; Teng, Q.X.; Wu, Z.X.; Ping, F.F.; Song, P.; Wurpel, J.N.D.; Chen, Z.S. Overcoming Multidrug Resistance by Knockout of ABCB1 Gene Using CRISPR/Cas9 System in SW620/Ad300 Colorectal Cancer Cells. MedComm 2021, 2, 765. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Chen, S.; Zhang, S.; Cui, C. Cetuximab-Modified Human Serum Albumin Nanoparticles Co-Loaded with Doxorubicin and Mdr1 Sirna for the Treatment of Drug-Resistant Breast Tumors. Int. J. Nanomed. 2021, 16, 7051–7069. [Google Scholar] [CrossRef]
- Kukal, S.; Guin, D.; Rawat, C.; Bora, S.; Mishra, M.K.; Sharma, P.; Paul, P.R.; Kanojia, N.; Grewal, G.K.; Kukreti, S.; et al. Multidrug Efflux Transporter ABCG2: Expression and Regulation. Cell. Mol. Life Sci. 2021, 78, 6887. [Google Scholar] [CrossRef]
- Wu, Z.X.; Mai, Q.; Yang, Y.; Wang, J.Q.; Ma, H.; Zeng, L.; Chen, Z.S.; Pan, Y. Overexpression of Human ATP-Binding Cassette Transporter ABCG2 Contributes to Reducing the Cytotoxicity of GSK1070916 in Cancer Cells. Biomed. Pharmacother. 2021, 136, 111223. [Google Scholar] [CrossRef] [PubMed]
- Omori, M.; Noro, R.; Seike, M.; Matsuda, K.; Hirao, M.; Fukuizumi, A.; Takano, N.; Miyanaga, A.; Gemma, A. Inhibitors of ABCB1 and ABCG2 Overcame Resistance to Topoisomerase Inhibitors in Small Cell Lung Cancer. Thorac. Cancer 2022, 13, 2142. [Google Scholar] [CrossRef]
- Bai, M.; Shen, M.; Teng, Y.; Sun, Y.; Li, F.; Zhang, X.; Xu, Y.; Duan, Y.; Du, L. Enhanced Therapeutic Effect of Adriamycin on Multidrug Resistant Breast Cancer by the ABCG2-SiRNA Loaded Polymeric Nanoparticles Assisted with Ultrasound. Oncotarget 2015, 6, 43779–43790. [Google Scholar] [CrossRef]
- Gilabert, M.; Launay, S.; Ginestier, C.; Bertucci, F.; Audebert, S.; Pophillat, M.; Toiron, Y.; Baudelet, E.; Finetti, P.; Noguchi, T.; et al. Poly(ADP-Ribose) Polymerase 1 (PARP1) Overexpression in Human Breast Cancer Stem Cells and Resistance to Olaparib. PLoS ONE 2014, 9, e104302. [Google Scholar] [CrossRef]
- Michels, J.; Vitale, I.; Galluzzi, L.; Adam, J.; Olaussen, K.A.; Kepp, O.; Senovilla, L.; Talhaoui, I.; Guegan, J.; Enot, D.P.; et al. Cisplatin Resistance Associated with PARP Hyperactivation. Cancer Res. 2013, 73, 2271–2280. [Google Scholar] [CrossRef]
- Jackson, L.M.; Moldovan, G.L. Mechanisms of PARP1 Inhibitor Resistance and Their Implications for Cancer Treatment. NAR Cancer 2022, 4, zcac042. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Kong, Z.; Zeng, T.; Xu, S.; Duan, X.; Li, S.; Cai, C.; Zhao, Z.; Wu, W. PARP1-SiRNA Suppresses Human Prostate Cancer Cell Growth and Progression. Oncol. Rep. 2018, 39, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.; Blee, A.M.; Chazin, W.J. Mechanism of Action of Nucleotide Excision Repair Machinery. Biochem. Soc. Trans. 2022, 50, 375. [Google Scholar] [CrossRef]
- Simon, G.R.; Sharma, S.; Cantor, A.; Smith, P.; Bepler, G. ERCC1 Expression Is a Predictor of Survival in Resected Patients with Non-Small Cell Lung Cancer. Chest 2005, 127, 978–983. [Google Scholar] [CrossRef]
- Postel-Vinay, S.; Soria, J.C. ERCC1 as Predictor of Platinum Benefit in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 35, 384–386. [Google Scholar] [CrossRef]
- Du, P.; Wang, Y.; Chen, L.; Gan, Y.; Wu, Q. High ERCC1 Expression Is Associated with Platinum-Resistance, but Not Survival in Patients with Epithelial Ovarian Cancer. Oncol. Lett. 2016, 12, 857. [Google Scholar] [CrossRef]
- Wan, J.; Chao, L.; Lee, A.C.; Chen, Q. Higher Expression of ERCC1 May Be Associated with Resistance to Adjuvant Platinum-Based Chemotherapy in Gastric Cancer. Cancer Investig. 2017, 35, 85–91. [Google Scholar] [CrossRef]
- Xie, K.; Ni, X.; Lv, S.; Zhou, G.; He, H. Synergistic Effects of Olaparib Combined with ERCC1 on the Sensitivity of Cisplatin in Non-small Cell Lung Cancer. Oncol. Lett. 2021, 21, 365. [Google Scholar] [CrossRef]
- Zhao, T.; Ye, W.; Zhang, R.; Zhu, X.; Shi, Q.; Xu, X.; Chen, W.; Xu, L.; Meng, Y. Dual-regulated Oncolytic Adenovirus Carrying ERCC1-siRNA Gene Possesses Potent Antitumor Effect on Ovarian Cancer Cells. Mol. Med. Rep. 2024, 30, 120. [Google Scholar] [CrossRef]
- Roberts, A.W.; Wei, A.H.; Huang, D.C.S. BCL2 and MCL1 Inhibitors for Hematologic Malignancies. Blood 2021, 138, 1120–1136. [Google Scholar] [CrossRef]
- Widden, H.; Placzek, W.J. The Multiple Mechanisms of MCL1 in the Regulation of Cell Fate. Commun. Biol. 2021, 4, 1029. [Google Scholar] [CrossRef]
- Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 Protein Family: Attractive Targets for Cancer Therapy. Apoptosis 2022, 28, 20–38. [Google Scholar] [CrossRef]
- Beale, P.J.; Rogers, P.; Boxall, F.; Sharp, S.Y.; Kelland, L.R. BCL-2 Family Protein Expression and Platinum Drug Resistance in Ovarian Carcinoma. Br. J. Cancer 1999, 82, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Perini, G.F.; Ribeiro, G.N.; Pinto Neto, J.V.; Campos, L.T.; Hamerschlak, N. BCL-2 as Therapeutic Target for Hematological Malignancies. J. Hematol. Oncol. 2018, 11, 65. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, X.; Xu, X.; Chen, X.; Zhang, X. Doxorubicin@Bcl-2 SiRNA Core@Shell Nanoparticles for Synergistic Anticancer Chemotherapy. ACS Appl. Bio Mater. 2018, 1, 289–297. [Google Scholar] [CrossRef]
- Vu, M.; Kassouf, N.; Ofili, R.; Lund, T.; Bell, C.; Appiah, S. Doxorubicin Selectively Induces Apoptosis through the Inhibition of a Novel Isoform of Bcl-2 in Acute Myeloid Leukaemia MOLM-13 Cells with Reduced Beclin 1 Expression. Int. J. Oncol. 2020, 57, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Cook, R.S. Bcl-2 Family Proteins in Breast Development and Cancer: Could Mcl-1 Targeting Overcome Therapeutic Resistance? Oncotarget 2015, 6, 3519. [Google Scholar] [CrossRef]
- Pengnam, S.; Charoensuksai, P.; Yingyongnarongkul, B.E.; Saeeng, R.; Uludağ, H.; Patrojanasophon, P.; Opanasopit, P.; Plianwong, S. SiRNA Targeting Mcl-1 Potentiates the Anticancer Activity of Andrographolide Nanosuspensions via Apoptosis in Breast Cancer Cells. Pharmaceutics 2022, 14, 1196. [Google Scholar] [CrossRef] [PubMed]
- Pengnam, S.; Plianwong, S.; Patrojanasophon, P.; Radchatawedchakoon, W.; Yingyongnarongkul, B.E.; Opanasopit, P.; Charoensuksai, P. Synergistic Effect of Doxorubicin and SiRNA-Mediated Silencing of Mcl-1 Using Cationic Niosomes against 3D MCF-7 Spheroids. Pharmaceutics 2021, 13, 550. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Jiang, X.; Zhao, X.; Wang, Y.; Kuai, Q.; Nie, G.; He, M.; Pan, Y.; Shi, W.; et al. Co-Delivery of Gemcitabine and Mcl-1 SiRNA via Cationic Liposome-Based System Enhances the Efficacy of Chemotherapy in Pancreatic Cancer. J. Biomed. Nanotechnol. 2019, 15, 966–978. [Google Scholar] [CrossRef]
- Dey, N.; De, P.; Leyland-Jones, B. PI3K-AKT-MTOR Inhibitors in Breast Cancers: From Tumor Cell Signaling to Clinical Trials. Pharmacol. Ther. 2017, 175, 91–106. [Google Scholar] [CrossRef]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/MTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Silva-Lima, B.; Videira, M. Akt/MTOR Activation in Lung Cancer Tumorigenic Regulators and Their Potential Value as Biomarkers. Onco 2022, 2, 36–55. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Jiang, L.; Zhang, L.; Xiang, M.; Ren, H. FoxM1 Induced Paclitaxel Resistance via Activation of the FoxM1/PHB1/RAF-MEK-ERK Pathway and Enhancement of the ABCA2 Transporter. Mol. Ther. Oncolytics 2019, 14, 196–212. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, S.J.; Ryu, J.H.; Kim, S.H.; Kwon, I.C.; Roberts, T.M. Combination of KRAS Gene Silencing and PI3K Inhibition for Ovarian Cancer Treatment. J. Control. Release 2020, 318, 98–108. [Google Scholar] [CrossRef]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef]
- Gupte, A.; Baker, E.K.; Wan, S.S.; Stewart, E.; Loh, A.; Shelat, A.A.; Gould, C.M.; Chalk, A.M.; Taylor, S.; Lackovic, K.; et al. Systematic Screening Identifies Dual PI3K and MTOR Inhibition as a Conserved Therapeutic Vulnerability in Osteosarcoma. Clin. Cancer Res. 2015, 21, 3216–3229. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular Survival: A Play in Three Akts. Genes Dev. 1999, 13, 2905–2927. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Semba, S.; Ito, M.; Takeda, H.; Kawata, S.; Yamakawa, M. Phosphorylation of Akt/PKB Is Required for Suppression of Cancer Cell Apoptosis and Tumor Progression in Human Colorectal Carcinoma. Cancer 2002, 94, 3127–3134. [Google Scholar] [CrossRef]
- Stephens, D.M. Testing Early Treatment for Patients with High-Risk Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Leukemia (SLL), EVOLVE CLL/SLL Study. NCI. Available online: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCT04269902 (accessed on 19 December 2024).
- Kater, A.P.; Wu, J.Q.; Kipps, T.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Robak, T.; de la Serna, J.; et al. Venetoclax plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations from the MURANO Phase III Study. J. Clin. Oncol. 2020, 38, 4042–4054. [Google Scholar] [CrossRef] [PubMed]
- Ewald, L.; Dittmann, J.; Vogler, M.; Fulda, S. Side-by-Side Comparison of BH3-Mimetics Identifies MCL-1 as a Key Therapeutic Target in AML. Cell Death Dis. 2019, 10, 917. [Google Scholar] [CrossRef]
- Gomez-Bougie, P.; Wuillème-Toumi, S.; Ménoret, E.; Trichet, V.; Robillard, N.; Philippe, M.; Bataille, R.; Amiot, M. Noxa Up-Regulation and Mcl-1 Cleavage Are Associated to Apoptosis Induction by Bortezomib in Multiple Myeloma. Cancer Res. 2007, 67, 5418–5424. [Google Scholar] [CrossRef] [PubMed]
- Yuda, J.; Will, C.; Phillips, D.C.; Abraham, L.; Alvey, C.; Avigdor, A.; Buck, W.; Besenhofer, L.; Boghaert, E.; Cheng, D.; et al. Selective MCL-1 Inhibitor ABBV-467 Is Efficacious in Tumor Models but Is Associated with Cardiac Troponin Increases in Patients. Commun. Med. 2023, 3, 154. [Google Scholar] [CrossRef]
- Nachmias, B.; Ashhab, Y.; Ben-Yehuda, D. The Inhibitor of Apoptosis Protein Family (IAPs): An Emerging Therapeutic Target in Cancer. Semin. Cancer Biol. 2004, 14, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhao, W.; Tong, P.; Li, P.; Zhao, Y.; Li, H.; Liang, J. Comprehensive Molecular Characterization of Inhibitors of Apoptosis Proteins (IAPs) for Therapeutic Targeting in Cancer. BMC Med. Genom. 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, R.; Ramamoorthy, A.; Jeddy, N.; Singaram, M. Evaluation and Expression of Survivin in Potentially Malignant Lesions and Squamous Cell Carcinoma: A Comparative Study. Cureus 2020, 12, e7551. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A Molecular Biomarker in Cancer. Indian J. Med. Res. 2015, 141, 389. [Google Scholar] [CrossRef]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A Unique Target for Tumor Therapy. Cancer Cell Int. 2016, 16, 49. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Yang, J.; Edwards, M.; Jiang, S. Survivin as a Biological Biomarker for Diagnosis and Therapy. Expert Opin. Biol. Ther. 2021, 21, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, T.; Liu, Z.; Tang, S.; Yue, M.; Feng, S.; Hu, M.; Xuan, L.; Chen, Y. Small Interfering RNA Targeting of the Survivin Gene Inhibits Human Tumor Cell Growth in Vitro. Exp. Ther. Med. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, D.; Zhou, Y.; Li, Y.; Xie, J.; Lee, R.J.; Cai, Y.; Teng, L. Silencing of Survivin Expression Leads to Reduced Proliferation and Cell Cycle Arrest in Cancer Cells. J. Cancer 2015, 6, 1187. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Sheikh, A.; Abourehab, M.A.S.; Salve, R.; Gajbhiye, V. A Combinatorial Delivery of Survivin Targeted SiRNA Using Cancer Selective Nanoparticles for Triple Negative Breast Cancer Therapy. J. Drug Deliv. Sci. Technol. 2023, 80, 104164. [Google Scholar] [CrossRef]
- Akbaba, H.; Erel-Akbaba, G.; Kotmakçı, M.; Başpınar, Y. Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-SiRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells. Pharm. Res. 2020, 37, 165. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Zhi, D.; Zhao, Y.; Cui, S.; Cui, J. Co-Delivery of Paclitaxel and Survivin SiRNA with Cationic Liposome for Lung Cancer Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124054. [Google Scholar] [CrossRef]
- Tanioka, M.; Nokihara, H.; Yamamoto, N.; Yamada, Y.; Yamada, K.; Goto, Y.; Fujimoto, T.; Sekiguchi, R.; Uenaka, K.; Callies, S.; et al. Phase i Study of LY2181308, an Antisense Oligonucleotide against Survivin, in Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2011, 68, 505–511. [Google Scholar] [CrossRef]
- Xie, S.; Yin, S.; Li, D.; Nie, D.; Li, Y.; Ma, L.; Wang, X.; Xiao, J. The Effect of SiRNA Down-Regulating XIAP On the Apoptosis and Chemo-Sensitivity of K562 Cells in Vitro. Blood 2009, 114, 5053. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.Q.; Deng, C.M.; Su, X.S.; Li, G.Y. Downregulation of XIAP Expression by Small Interfering RNA Inhibits Cellular Viability and Increases Chemosensitivity to Methotrexate in Human Hepatoma Cell Line HepG2. J. Chemother. 2006, 18, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jian, Z.; Xia, K.; Li, X.; Lv, X.; Pei, H.; Chen, Z.; Li, J. XIAP Is Related to the Chemoresistance and Inhibited Its Expression by RNA Interference Sensitize Pancreatic Carcinoma Cells to Chemotherapeutics. Pancreas 2006, 32, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, L.; Guo, Y.; Bai, L.; Luo, Y.; Wang, B.; Kuang, M.; Liu, X.; Sun, M.; Wang, C.; et al. Nanoemulsion Co-Loaded with XIAP SiRNA and Gambogic Acid for Inhalation Therapy of Lung Cancer. Int. J. Mol. Sci. 2022, 23, 14294. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic Microenvironment in Cancer: Molecular Mechanisms and Therapeutic Interventions. Signal Transduct. Target. Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 5703. [Google Scholar] [CrossRef]
- Zhao, Y.; Xing, C.; Deng, Y.; Ye, C.; Peng, H. HIF-1α Signaling: Essential Roles in Tumorigenesis and Implications in Targeted Therapies. Genes Dis. 2024, 11, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, H.; Yao, H.; Cheng, X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. Front. Nanotechnol. 2022, 4, 932976. [Google Scholar] [CrossRef]
- Liao, H.; Wang, G.; Huang, S.; Li, Y.; Cai, S.; Zhang, J.; Chen, H.; Wu, W. HIF-1α Silencing Suppresses Growth of Lung Adenocarcinoma A549 Cells through Induction of Apoptosis. Mol. Med. Rep. 2014, 9, 911–915. [Google Scholar] [CrossRef]
- Jeong, W.; Rapisarda, A.; Park, S.R.; Kinders, R.J.; Chen, A.; Melillo, G.; Turkbey, B.; Steinberg, S.M.; Choyke, P.; Doroshow, J.H.; et al. Pilot Trial of EZN-2968, an Antisense Oligonucleotide Inhibitor of Hypoxia-Inducible Factor-1 Alpha (HIF-1α), in Patients with Refractory Solid Tumors. Cancer Chemother. Pharmacol. 2014, 73, 343. [Google Scholar] [CrossRef] [PubMed]
- Montaño-Samaniego, M.; Bravo-Estupiñan, D.M.; Méndez-Guerrero, O.; Alarcón-Hernández, E.; Ibáñez-Hernández, M. Strategies for Targeting Gene Therapy in Cancer Cells with Tumor-Specific Promoters. Front. Oncol. 2020, 10, 605380. [Google Scholar] [CrossRef]
- Kumar, A.; Das, S.K.; Emdad, L.; Fisher, P.B. Applications of Tissue-Specific and Cancer-Selective Gene Promoters for Cancer Diagnosis and Therapy. Adv. Cancer Res. 2023, 160, 253–315. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y. The Impact of VEGF on Cancer Metastasis and Systemic Disease. Semin. Cancer Biol. 2022, 86, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Jin, M.; Zeng, B.; Liu, Y.; Jin, L.; Hou, Y.; Liu, C.; Liu, W.; Wu, H.; Chen, L.; Gao, Z.; et al. Co-Delivery of Repurposing Itraconazole and VEGF SiRNA by Composite Nanoparticulate System for Collaborative Anti-Angiogenesis and Anti-Tumor Efficacy against Breast Cancer. Pharmaceutics 2022, 14, 1369. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Chen, W.L.; Wang, D.D.; Zhou, Y.J.; You, B.G.; Liu, Y.; Qu, C.X.; Yang, S.D.; Chen, M.T.; et al. Co-Delivery of VEGF SiRNA and Etoposide for Enhanced Anti-Angiogenesis and Anti-Proliferation Effect via Multi-Functional Nanoparticles for Orthotopic Non-Small Cell Lung Cancer Treatment. Theranostics 2019, 9, 5886–5898. [Google Scholar] [CrossRef] [PubMed]
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Weihua, Z. Rethink of EGFR in Cancer with Its Kinase Independent Function on Board. Front. Oncol. 2019, 9, 468754. [Google Scholar] [CrossRef]
- Videira, M.A.; Llop, J.; Sousa, C.; Kreutzer, B.; Cossío, U.; Forbes, B.; Vieira, I.; Gil, N.; Silva-Lima, B. Pulmonary Administration: Strengthening the Value of Therapeutic Proximity. Front. Med. 2020, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, L.; Wang, Y.; Li, F.; Zhang, J.; Ye, M.; Zhao, H.; Zhang, X.; Zhang, M.; Zhao, J.; et al. SiRNA Delivered by EGFR-Specific ScFv Sensitizes EGFR-TKI-Resistant Human Lung Cancer Cells. Biomaterials 2016, 76, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Majumder, J.; Minko, T. Multifunctional Lipid-Based Nanoparticles for Codelivery of Anticancer Drugs and Sirna for Treatment of Non-Small Cell Lung Cancer with Different Level of Resistance and Egfr Mutations. Pharmaceutics 2021, 13, 1063. [Google Scholar] [CrossRef] [PubMed]
- Qing, L.; Li, Q.; Dong, Z. MUC1: An Emerging Target in Cancer Treatment and Diagnosis. Bull. Cancer. 2022, 109, 1202–1216. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Ni, W.; Tai, G. Expression of MUC1 in Different Tumours and Its Clinical Significance. Mol. Clin. Oncol. 2022, 17, 161. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sandrine, I.K.; Yang, M.; Tu, J.; Yuan, X. MUC1 and MUC16: Critical for Immune Modulation in Cancer Therapeutics. Front. Immunol. 2024, 15, 1356913. [Google Scholar] [CrossRef]
- Ham, S.Y.; Kwon, T.; Bak, Y.; Yu, J.H.; Hong, J.; Lee, S.K.; Yu, D.Y.; Yoon, D.Y. Mucin 1-Mediated Chemo-Resistance in Lung Cancer Cells. Oncogenesis 2016, 5, e185. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Merikhian, P.; Naseri, N.; Eisavand, M.R.; Farahmand, L. MUC1 Is a Potential Target to Overcome Trastuzumab Resistance in Breast Cancer Therapy. Cancer Cell Int. 2022, 22, 110. [Google Scholar] [CrossRef]
- Engel, B.J.; Bowser, J.L.; Broaddus, R.R.; Carson, D.D. MUC1 Stimulates EGFR Expression and Function in Endometrial Cancer. Oncotarget 2016, 7, 32796–32809. [Google Scholar] [CrossRef]
- Hattrup, C.L.; Gendler, S.J. MUC1 Alters Oncogenic Events and Transcription in Human Breast Cancer Cells. Breast Cancer Res. 2006, 8, R37. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination Immunotherapy of MUC1 MRNA Nano-Vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol. Ther. 2018, 26, 45–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the C-Met Receptor Tyrosine Kinase in Carcinogenesis and Associated Therapeutic Opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef]
- Raj, S.; Kesari, K.K.; Kumar, A.; Rathi, B.; Sharma, A.; Gupta, P.K.; Jha, S.K.; Jha, N.K.; Slama, P.; Roychoudhury, S.; et al. Molecular Mechanism(s) of Regulation(s) of c-MET/HGF Signaling in Head and Neck Cancer. Mol. Cancer 2022, 21, 45. [Google Scholar] [CrossRef]
- Faiella, A.; Riccardi, F.; Cartenì, G.; Chiurazzi, M.; Onofrio, L. The Emerging Role of C-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. J. Oncol. 2022, 2022, 5179182. [Google Scholar] [CrossRef]
- Xie, B.; Xing, R.; Chen, P.; Gou, Y.; Li, S.; Xiao, J.; Dong, J. Down-Regulation of c-Met Expression Inhibits Human HCC Cells Growth and Invasion by RNA Interference. J. Surg. Res. 2010, 162, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hu, C.; Li, W.; Ren, J.; Zou, F.; Zhou, D.; Zou, W.; Wei, Y.; Zhou, Y. Downregulation of C-Met Expression Does Not Enhance the Sensitivity of Gastric Cancer Cell Line MKN-45 to Gefitinib. Mol. Med. Rep. 2014, 11, 2269–2275. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Ning, T.; Liu, D.; Deng, T.; Liu, R.; Bai, M.; Zhu, K.; Li, J.; Fan, Q.; et al. Exosome-Delivered c-Met SiRNA Could Reverse Chemoresistance to Cisplatin in Gastric Cancer. Int. J. Nanomed. 2020, 15, 2323. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, X.; Chen, J.; Ma, S.; Mu, D.; Hu, J.; Lu, S. Phase 1 Study of the Selective C-MET Inhibitor, HS-10241, in Patients With Advanced Solid Tumors. JTO Clin. Res. Rep. 2023, 4, 100449. [Google Scholar] [CrossRef]
- Lee, D.H.; Roohullah, A.; Cho, B.C.; Lemech, C.R.; de Souza, P.L.; Millward, M.; Choi, J.Y.; Park, K.E.; Kim, N.Y.; Kim, E.; et al. A Phase 1 Dose-Escalation Study of the ABN401 (c-MET Inhibitor) in Patients with Solid Tumors. J. Clin. Oncol. 2022, 40, 3105. [Google Scholar] [CrossRef]
- Galogre, M.; Rodin, D.; Pyatnitskiy, M.; Mackelprang, M.; Koman, I. A Review of HER2 Overexpression and Somatic Mutations in Cancers. Crit. Rev. Oncol. Hematol. 2023, 186, 103997. [Google Scholar] [CrossRef]
- Cheng, X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes 2024, 15, 903. [Google Scholar] [CrossRef] [PubMed]
- Faltus, T.; Yuan, J.; Zimmer, B.; Krämer, A.; Loibl, S.; Kaufmann, M.; Strebhardt, K. Silencing of the HER2/Neu Gene by SiRNA Inhibits Proliferation and Induces Apoptosis in HER2/Neu-Overexpressing Breast Cancer Cells. Neoplasia 2004, 6, 786. [Google Scholar] [CrossRef]
- Balgobind, A.; Daniels, A.; Ariatti, M.; Singh, M. HER2/Neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023, 15, 1190. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Hu, Z.; Ngamcherdtrakul, W.; Castro, D.J.; Morry, J.; Reda, M.M.; Gray, J.W.; Yantasee, W. Therapeutic SiRNA for Drug-Resistant HER2-Positive Breast Cancer. Oncotarget 2016, 7, 14727. [Google Scholar] [CrossRef]
- Archana, M.G.; Anusree, K.S.; Unnikrishnan, B.S.; Reshma, P.L.; Syama, H.P.; Sreekutty, J.; Joseph, M.M.; Sreelekha, T.T. HER2 SiRNA Facilitated Gene Silencing Coupled with Doxorubicin Delivery: A Dual Responsive Nanoplatform Abrogates Breast Cancer. ACS Appl. Mater. Interfaces 2024, 16, 25710–25726. [Google Scholar] [CrossRef]
- Vervaeke, P.; Borgos, S.E.; Sanders, N.N.; Combes, F. Regulatory Guidelines and Preclinical Tools to Study the Biodistribution of RNA Therapeutics. Adv. Drug Deliv. Rev. 2022, 184, 114236. [Google Scholar] [CrossRef]
- Sharma, P.; Jhawat, V.; Mathur, P.; Dutt, R. Innovation in Cancer Therapeutics and Regulatory Perspectives. Med. Oncol. 2022, 39, 76. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.S.; Jones, D. New Regulatory Framework for Cancer Drug Development. Drug Discov. Today 2012, 17, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Committee for Advanced Therapies (CAT). ICH Q5E Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process: Comparability of Biotechnological/Biological Products—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Committee for Advanced Therapies (CAT). ICH Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Center for Drug Evaluation and Research. Clinical Pharmacology Considerations for the Development of Oligonucleotide Therapeutics; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Committee for Advanced Therapies (CAT). Gene Therapy Product Quality Aspects in the Production of Vectors and Genetically Modified Somatic Cells—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Center for Biologics Evaluation and Research. Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products; European Medicines Agency: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Center for Biologics Evaluation and Research. Considerations for the Use of Human-and Animal-Derived Materials in the Manufacture of Cell and Gene Therapy and Tissue-Engineered Medical Products; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Committee for Advanced Therapies (CAT). ICH Q11 Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities)—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Committee for Advanced Therapies (CAT). Quality, Preclinical and Clinical Aspects of Gene Therapy Medicinal Products—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Center for Biologics Evaluation and Research. Human Gene Therapy Products Incorporating Human Genome Editing; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Center for Biologics Evaluation and Research; Center for Drug Evaluation and Research. Adaptive Design Clinical Trials for Drugs and Biologics Guidance for Industry; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Committee for Medicinal Products for Human Use (CHMP). Methodological Issues in Confirmatory Clinical Trials Planned with an Adaptive Design—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Committee for Veterinary Medicinal Products (CVMP). Development of a Guideline on the Safety of Nanoparticles—In the Context of the Establishment of Maximum Residue Limits and Veterinary Marketing Authorisations; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Food and Drug Administration. Fast Track, Breakthrough Therapy, Accelerated Approval, Priority Review. Available online: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/fast-track-breakthrough-therapy-accelerated-approval-priority-review (accessed on 28 September 2024).
- European Medicines Agency. PRIME: Priority Medicines. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/prime-priority-medicines (accessed on 28 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, C.; Videira, M. Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies. Onco 2025, 5, 2. https://doi.org/10.3390/onco5010002
Sousa C, Videira M. Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies. Onco. 2025; 5(1):2. https://doi.org/10.3390/onco5010002
Chicago/Turabian StyleSousa, Carolina, and Mafalda Videira. 2025. "Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies" Onco 5, no. 1: 2. https://doi.org/10.3390/onco5010002
APA StyleSousa, C., & Videira, M. (2025). Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies. Onco, 5(1), 2. https://doi.org/10.3390/onco5010002