Leveraging Tumor Mutation Profiles to Forecast Immune Checkpoint Blockade Resistance in Melanoma, Lung, Head and Neck, Bladder and Renal Cancers
<p>Mutations associated with a difference in overall survival for patients with lung cancer following immunotherapy. N = 350 lung cancer patients. I investigated patient response or resistance to immune checkpoint blockade (ICB) based on mutation profiles. Only mutations included in the MSK IMPACT panel that showed statistically significant differences in survival were shown. I employed Cox regression and hazard ratios, with significance set at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 2
<p>Mutations associated with a difference in overall survival for patients with melanoma following immunotherapy. N = 320 melanoma patients. I investigated patient response or resistance to immune checkpoint blockade (ICB) based on mutation profiles. Only mutations included in the MSK IMPACT panel that showed statistically significant differences in survival were shown. I employed Cox regression and hazard ratios, with significance set at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 3
<p>Mutations associated with a difference in overall survival for patients with bladder cancer following immunotherapy. N = 215 bladder cancer patients. I investigated patient response or resistance to immune checkpoint blockade (ICB) based on mutation profiles. Only mutations included in the MSK IMPACT panel that showed statistically significant differences in survival were shown. I employed Cox regression and hazard ratios, with significance set at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 4
<p>Mutations associated with a difference in overall survival for patients with renal carcinoma following immunotherapy. N = 151 renal carcinoma patients. I investigated patient response or resistance to immune checkpoint blockade (ICB) based on mutation profiles. Only mutations included in the MSK IMPACT panel that showed statistically significant differences in survival were shown. I employed Cox regression and hazard ratios, with significance set at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 5
<p>Mutations associated with a difference in overall survival for patients with head and neck cancer following immunotherapy. N = 139 head and neck cancer patients. I investigated patient response or resistance to immune checkpoint blockade (ICB) based on mutation profiles. Only mutations included in the MSK IMPACT panel that showed statistically significant differences in survival were shown. I employed Cox regression and hazard ratios, with significance set at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 6
<p>Profiling of cancer patient mutations enables the prediction of their overall survival following ICB. (<b>A</b>) N = 350 lung cancer patients. (<b>B</b>) N = 320 melanoma patients. (<b>C</b>) N = 215 bladder cancer patients. (<b>D</b>) N = 151 renal carcinoma patients. (<b>E</b>) N = 139 head and neck cancer patients. Machine learning models were employed to predict patient overall survival in months after immune checkpoint blockade using previously identified mutational features. The dataset was partitioned into five different subsets and further split into training (80% of the patients) and testing (20% of the patients) subsets. Various algorithms, including Gradient Boosting, Random Forest, Decision Tree, Logistic Regression, Support Vector Classifier (SVC) and Multi-layer Perceptron (MLP), were trained on the mutational features using five-fold cross-validation. Additionally, a Mean Ensemble model combining the best-performing Random Forest and Gradient Boosting models was utilized to improve the accuracy of survival predictions. Hyperparameters of the models were optimized and their performance was evaluated using standard metrics on the test sets.</p> "> Figure 7
<p>Shapley values for each model predicting overall survival following ICB. (<b>A</b>) N = 350 lung cancer patients. (<b>B</b>) N = 320 melanoma patients. (<b>C</b>) N = 215 bladder cancer patients. (<b>D</b>) N = 151 renal carcinoma patients. (<b>E</b>) N = 139 head and neck cancer patients.</p> ">
1. Introduction
2. Methods
2.1. Patient Datasets and Mutation Profiles
2.2. Statistics
2.3. Machine Learning Algorithms to Predict the Response of Each Patient to Immune Checkpoint Blockade
2.3.1. Data Preparation
2.3.2. Data Splitting and Scaling
2.3.3. Model Training and Hyperparameter Tuning
2.3.4. Model Evaluation
2.3.5. Ensemble Model
2.3.6. Visualization
2.4. Alpha Fold Prediction of Protein Structure According to Mutation Status
3. Results
3.1. Missense and Nonstop Mutation Counts Predict Response to ICB in Lung Cancer
3.2. Missense, Nonsense and 5′ Flank Mutation Counts Forecast Response Following ICB in Melanoma
3.3. Missense, Nonsense, Nonstart and Frameshift Deletion Mutation Counts Predict Response Following ICB in Bladder Cancer
3.4. Splice Mutation Count Forecasts Response Following ICB in Renal Carcinoma
3.5. 5′Flank Mutation Count Forecasts Resistance Following ICB While Frameshift Deletion Count Predicts Response in Head and Neck Cancer
3.6. In Lung Cancer, Missense Mutations in ABL1, ASXL1, EPHA3, EPHA5, ERBB4, MET, MRE11A, MSH2, NOTCH1, PAK7, PAX5, PGR, ZFHX3, PIK3C3 and REL Genes Predict Response to ICB
3.7. In Melanoma, Mutations in FBXW7, NOTCH1, CREBBP and Other Genes Predict Response and Resistance Following ICB
3.8. In Bladder Cancer, Mutations in ERBB2, GNAS, HRAS, ATM, CDKN2A, LATS1, NCOR1, SMARC4 and TP53 Genes Predict Response and Resistance Following ICB
3.9. In Renal Carcinoma, Mutations in B2M, BCOR, JUN, FH, IGF1R, MYCN and VHL Genes Forecast Resistance and Response Following ICB
3.10. In Head and Neck Cancer, Mutations in ANKRD11, ERCC5, FANCA, KMT2A, WT1, HIST1H1C, KRAS, PIK2CA, PTRT, TERT, TP53 and TSC1 Genes Predict Response and Resistance Following ICB
3.11. Profiling of Cancer Patient Mutations Enables the Prediction of Their Overall Survival Following ICB
3.12. Characterization of the Missense Mutations Driving the Prediction of the Response and Resistance by Machine Learning in Head and Neck Cancer Patients
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABL1 | Abelson Tyrosine Kinase 1 |
ARID2 | AT-Rich Interaction Domain 2 |
ARID5B | AT-Rich Interaction Domain 5B |
ASXL1 | Additional Sex Combs Like 1 |
ATM | ATM Serine/Threonine Kinase |
B2M | Beta-2-Microglobulin |
BCOR | BCL6 Corepressor |
CDK12 | Cyclin Dependent Kinase 12 |
CDKN2A | Cyclin Dependent Kinase Inhibitor 2A |
CDKN2C | Cyclin Dependent Kinase Inhibitor 2C |
CREBBP | CREB Binding Protein |
CTNNB1 | Catenin Beta 1 |
EPHA3 | EPH Receptor A3 |
EPHA5 | EPH Receptor A5 |
ERBB2 | Erb-B2 Receptor Tyrosine Kinase 2 |
ERBB4 | Erb-B2 Receptor Tyrosine Kinase 4 |
FAM46C | Family With Sequence Similarity 46 Member C |
FBXW7 | F-Box and WD Repeat Domain Containing 7 |
FH | Fumarate Hydratase |
GNAS | GNAS Complex Locus |
HIST1H3I | Histone Cluster 1 H3 Family Member I |
HIST1H1C | Histone Cluster 1 H1 Family Member C |
HRAS | HRas Proto-Oncogene, GTPase |
IGF1R | Insulin-Like Growth Factor 1 Receptor |
JUN | Jun Proto-Oncogene, AP-1 Transcription Factor Subunit |
KRAS | KRAS Proto-Oncogene, GTPase |
LATS1 | Large Tumor Suppressor Kinase 1 |
MAX | MYC Associated Factor X |
MET | MET Proto-Oncogene, Receptor Tyrosine Kinase |
MGA | MGA, MAX Dimerization Protein |
MRE11A | MRE11 Homolog A |
MSH2 | MutS Homolog 2 |
MYCN | MYCN Proto-Oncogene, BHLH Transcription Factor |
NCOR1 | Nuclear Receptor Corepressor 1 |
NOTCH1 | NOTCH Receptor 1 |
PAX5 | Paired Box 5 |
PAK7 | P21 (RAC1) Activated Kinase 7 |
PIK3CA | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha |
PIK3C3 | Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3 |
PIK3R1 | Phosphoinositide-3-Kinase Regulatory Subunit 1 |
PMS1 | PMS1 Homolog 1 |
PMS2 | PMS1 Homolog 2 |
PGR | Progesterone Receptor |
RAD51 | RAD51 Recombinase |
REL | REL Proto-Oncogene, NF-KB Subunit |
RICTOR | RPTOR Independent Companion Of MTOR Complex 2 |
RHOA | Ras Homolog Family Member A |
RB1 | Retinoblastoma 1 |
SMAD2 | SMAD Family Member 2 |
SMAD4 | SMAD Family Member 4 |
SMARC4 | SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 4 |
TERT | Telomerase Reverse Transcriptase |
TP53 | Tumor Protein P53 |
TGFBR2 | Transforming Growth Factor Beta Receptor 2 |
TSC1 | TSC Complex Subunit 1 |
VHL | Von Hippel-Lindau Tumor Suppressor |
WT1 | Wilms Tumor 1 |
ZFHX3 | Zinc Finger Homeobox 3 |
References
- Li, C.; Lei, S.; Ding, L.; Xu, Y.; Wu, X.; Wang, H.; Zhang, Z.; Gao, T.; Zhang, Y.; Li, L. Global Burden and Trends of Lung Cancer Incidence and Mortality. Chin. Med. J. 2023, 136, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Wang, P.; Wang, Y. Identification of the Prognosis Value and Potential Mechanism of Immune Checkpoints in Renal Clear Cell Carcinoma Microenvironment. Front. Oncol. 2021, 11, 720125. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Lugand, L.; Mestrallet, G.; Laboureur, R.; Dumont, C.; Bouhidel, F.; Djouadou, M.; Masson-Lecomte, A.; Desgrandchamps, F.; Culine, S.; Carosella, E.D.; et al. Methods for Establishing a Renal Cell Carcinoma Tumor Spheroid Model With Immune Infiltration for Immunotherapeutic Studies. Front. Oncol. 2022, 12, 898732. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Huseni, M.A.; Atskins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; et al. Clinical Activity and Molecular Correlates of Response to Atezolizumab Alone or in Combination with Bevacizumab versus Sunitinib in Renal Cell Carcinoma. Nat. Med. 2018, 24, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Miao, X.; Xu, R.; Fan, B.; Chen, J.; Li, X.; Mao, W.; Hua, S.; Li, B. PD-L1 Reverses Depigmentation in Pmel-1 Vitiligo Mice by Increasing the Abundance of Tregs in the Skin. Sci. Rep. 2018, 8, 1605. [Google Scholar] [CrossRef]
- Mamdani, H.; Matosevic, S.; Khalid, A.B.; Durm, G.; Jalal, S.I. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Front. Immunol. 2022, 13, 823618. [Google Scholar] [CrossRef]
- Mestrallet, G.; Sone, K.; Bhardwaj, N. Strategies to Overcome DC Dysregulation in the Tumor Microenvironment. Front. Immunol. 2022, 13, 980709. [Google Scholar] [CrossRef]
- Mestrallet, G.; Rouas-Freiss, N.; LeMaoult, J.; Fortunel, N.O.; Martin, M.T. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front. Immunol. 2021, 12, 772516. [Google Scholar] [CrossRef]
- Payne, K.K.; Mine, J.A.; Biswas, S.; Chaurio, R.A.; Perales-Puchalt, A.; Anadon, C.M.; Costich, T.L.; Harro, C.M.; Walrath, J.; Ming, Q.; et al. BTN3A1 Governs Antitumor Responses by Coordinating Aβ and Γδ T Cells. Science 2020, 369, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, A.; Loick, S.; Bawden, E.G.; Fietz, S.; Dietrich, J.; Diekmann, E.; Saavedra, G.; Fröhlich, H.; Niebel, D.; Sirokay, J.; et al. Comprehensive Analysis of Tumor Necrosis Factor Receptor TNFRSF9 (4-1BB) DNA Methylation with Regard to Molecular and Clinicopathological Features, Immune Infiltrates, and Response Prediction to Immunotherapy in Melanoma. eBioMedicine 2020, 52, 102647. [Google Scholar] [CrossRef]
- Fan, C.; Hu, H.; Shen, Y.; Wang, Q.; Mao, Y.; Ye, B.; Xiang, M. PRF1 Is a Prognostic Marker and Correlated with Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Transl. Oncol. 2021, 14, 101042. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, J.; Gravestein, L.A.; Tesselaar, K.; van Lier, R.A.W.; Schumacher, T.N.M.; Borst, J. CD27 Is Required for Generation and Long-Term Maintenance of T Cell Immunity. Nat. Immunol. 2000, 1, 433–440. [Google Scholar] [CrossRef]
- Cekic, C.; Linden, J. Adenosine A2A Receptors Intrinsically Regulate CD8+ T Cells in the Tumor Microenvironment. Cancer Res. 2014, 74, 7239–7249. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Serafini, P.; De Santo, C.; Marigo, I.; Tosello, V.; Mazzoni, A.; Segal, D.M.; Staib, C.; Lowel, M.; Sutter, G.; et al. IL-4-Induced Arginase 1 Suppresses Alloreactive T Cells in Tumor-Bearing Mice. J. Immunol. 2003, 170, 270–278. [Google Scholar] [CrossRef]
- Mantovani, A.; Barajon, I.; Garlanda, C. IL-1 and IL-1 Regulatory Pathways in Cancer Progression and Therapy. Immunol. Rev. 2018, 281, 57–61. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Rouas-Freiss, N.; LeMaoult, J.; Verine, J.; Tronik-Le Roux, D.; Culine, S.; Hennequin, C.; Desgrandchamps, F.; Carosella, E.D. Intratumor Heterogeneity of Immune Checkpoints in Primary Renal Cell Cancer: Focus on HLA-G/ILT2/ILT4. Oncoimmunology 2017, 6, e1342023. [Google Scholar] [CrossRef]
- Parikh, M.; Bajwa, P. Immune Checkpoint Inhibitors in the Treatment of Renal Cell Carcinoma. Semin. Nephrol. 2020, 40, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Mestrallet, G. Predicting Immunotherapy Outcomes in Glioblastoma Patients through Machine Learning. Cancers 2024, 16, 408. [Google Scholar] [CrossRef]
- Sung, J.-Y.; Cheong, J.-H. Machine Learning Predictor of Immune Checkpoint Blockade Response in Gastric Cancer. Cancers 2022, 14, 3191. [Google Scholar] [CrossRef]
- Tonneau, M.; Phan, K.; Manem, V.S.K.; Low-Kam, C.; Dutil, F.; Kazandjian, S.; Vanderweyen, D.; Panasci, J.; Malo, J.; Coulombe, F.; et al. Generalization Optimizing Machine Learning to Improve CT Scan Radiomics and Assess Immune Checkpoint Inhibitors’ Response in Non-Small Cell Lung Cancer: A Multicenter Cohort Study. Front. Oncol. 2023, 13, 1196414. [Google Scholar] [CrossRef]
- Wiesweg, M.; Mairinger, F.; Reis, H.; Goetz, M.; Walter, R.F.H.; Hager, T.; Metzenmacher, M.; Eberhardt, W.E.E.; McCutcheon, A.; Köster, J.; et al. Machine Learning-Based Predictors for Immune Checkpoint Inhibitor Therapy of Non-Small-Cell Lung Cancer. Ann. Oncol. 2019, 30, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Mestrallet, G. Prediction of Glioma Resistance to Immune Checkpoint Inhibitors Based on Mutation Profile. Neuroglia 2024, 5, 145–154. [Google Scholar] [CrossRef]
- Mestrallet, G. Predicting Resistance to Immunotherapy in Melanoma, Glioblastoma, Renal, Stomach and Bladder Cancers by Machine Learning on Immune Profiles. Onco 2024, 4, 192–206. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Mestrallet, G. Software Development for Severe Burn Diagnosis and Autologous Skin Substitute Production. Comput. Methods Programs Biomed. Update 2022, 2, 100069. [Google Scholar] [CrossRef]
- Mestrallet, G. Software Development to Estimate Herd Profitability According to Nutrition Parameters. agriRxiv 2023, 2023, 20230009899. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Mestrallet, G.; Brown, M.; Bozkus, C.C.; Bhardwaj, N. Immune Escape and Resistance to Immunotherapy in Mismatch Repair Deficient Tumors. Front. Immunol. 2023, 14, 1210164. [Google Scholar] [CrossRef] [PubMed]
- Grady, W.M.; Myeroff, L.L.; Swinler, S.E.; Rajput, A.; Thiagalingam, S.; Lutterbaugh, J.D.; Neumann, A.; Brattain, M.G.; Chang, J.; Kim, S.J.; et al. Mutational Inactivation of Transforming Growth Factor Beta Receptor Type II in Microsatellite Stable Colon Cancers. Cancer Res. 1999, 59, 320–324. [Google Scholar] [PubMed]
- Holstege, H.; Joosse, S.A.; van Oostrom, C.T.M.; Nederlof, P.M.; de Vries, A.; Jonkers, J. High Incidence of Protein-Truncating TP53 Mutations in BRCA1-Related Breast Cancer. Cancer Res. 2009, 69, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Lindenbergh-van der Plas, M.; Brakenhoff, R.H.; Kuik, D.J.; Buijze, M.; Bloemena, E.; Snijders, P.J.F.; Leemans, C.R.; Braakhuis, B.J.M. Prognostic Significance of Truncating TP53 Mutations in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 3733–3741. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Kato, S.; Otsuka, K.; Watanabe, G.; Kumabe, T.; Tominaga, T.; Yoshimoto, T.; Ishioka, C. The Relationship among P53 Oligomer Formation, Structure and Transcriptional Activity Using a Comprehensive Missense Mutation Library. Oncogene 2005, 24, 6976–6981. [Google Scholar] [CrossRef]
- DiGiammarino, E.L.; Lee, A.S.; Cadwell, C.; Zhang, W.; Bothner, B.; Ribeiro, R.C.; Zambetti, G.; Kriwacki, R.W. A Novel Mechanism of Tumorigenesis Involving pH-Dependent Destabilization of a Mutant P53 Tetramer. Nat. Struct. Biol. 2002, 9, 12–16. [Google Scholar] [CrossRef]
- Bullock, A.N.; Fersht, A.R. Rescuing the Function of Mutant P53. Nat. Rev. Cancer 2001, 1, 68–76. [Google Scholar] [CrossRef]
- Shirole, N.H.; Pal, D.; Kastenhuber, E.R.; Senturk, S.; Boroda, J.; Pisterzi, P.; Miller, M.; Munoz, G.; Anderluh, M.; Ladanyi, M.; et al. TP53 Exon-6 Truncating Mutations Produce Separation of Function Isoforms with pro-Tumorigenic Functions. eLife 2016, 5, e17929. [Google Scholar] [CrossRef]
- D’Urso, C.M.; Wang, Z.G.; Cao, Y.; Tatake, R.; Zeff, R.A.; Ferrone, S. Lack of HLA Class I Antigen Expression by Cultured Melanoma Cells FO-1 Due to a Defect in B2m Gene Expression. J. Clin. Investig. 1991, 87, 284–292. [Google Scholar] [CrossRef]
- Challa-Malladi, M.; Lieu, Y.K.; Califano, O.; Holmes, A.B.; Bhagat, G.; Murty, V.V.; Dominguez-Sola, D.; Pasqualucci, L.; Dalla-Favera, R. Combined Genetic Inactivation of Β2-Microglobulin and CD58 Reveals Frequent Escape from Immune Recognition in Diffuse Large B Cell Lymphoma. Cancer Cell 2011, 20, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Sucker, A.; Zhao, F.; Real, B.; Heeke, C.; Bielefeld, N.; Maβen, S.; Horn, S.; Moll, I.; Maltaner, R.; Horn, P.A.; et al. Genetic Evolution of T-Cell Resistance in the Course of Melanoma Progression. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 6593–6604. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, A.; Fiore, M.; Melchionda, F.; Indio, V.; Bertuccio, S.N.; Pession, A. BCOR Involvement in Cancer. Epigenomics 2019, 11, 835–855. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Cai, X.; Yao, Y.; Fang, G. JunB: A Paradigm for Jun Family in Immune Response and Cancer. Front. Cell. Infect. Microbiol. 2023, 13, 1222265. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Shi, P.; Wang, Z.; Yuan, C.; Cui, H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front. Oncol. 2021, 10, 625332. [Google Scholar] [CrossRef]
- Chen, Y.-B.; Brannon, A.R.; Toubaji, A.; Dudas, M.E.; Won, H.H.; Al-Ahmadie, H.A.; Fine, S.W.; Gopalan, A.; Frizzell, N.; Voss, M.H.; et al. Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome-Associated Renal Cancer: Recognition of the Syndrome by Pathologic Features and the Utility of Detecting Aberrant Succination by Immunohistochemistry. Am. J. Surg. Pathol. 2014, 38, 627–637. [Google Scholar] [CrossRef]
- Wang, P.; Mak, V.C.Y.; Cheung, L.W.T. Drugging IGF-1R in Cancer: New Insights and Emerging Opportunities. Genes Dis. 2022, 10, 199–211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mestrallet, G. Leveraging Tumor Mutation Profiles to Forecast Immune Checkpoint Blockade Resistance in Melanoma, Lung, Head and Neck, Bladder and Renal Cancers. Onco 2024, 4, 439-457. https://doi.org/10.3390/onco4040031
Mestrallet G. Leveraging Tumor Mutation Profiles to Forecast Immune Checkpoint Blockade Resistance in Melanoma, Lung, Head and Neck, Bladder and Renal Cancers. Onco. 2024; 4(4):439-457. https://doi.org/10.3390/onco4040031
Chicago/Turabian StyleMestrallet, Guillaume. 2024. "Leveraging Tumor Mutation Profiles to Forecast Immune Checkpoint Blockade Resistance in Melanoma, Lung, Head and Neck, Bladder and Renal Cancers" Onco 4, no. 4: 439-457. https://doi.org/10.3390/onco4040031
APA StyleMestrallet, G. (2024). Leveraging Tumor Mutation Profiles to Forecast Immune Checkpoint Blockade Resistance in Melanoma, Lung, Head and Neck, Bladder and Renal Cancers. Onco, 4(4), 439-457. https://doi.org/10.3390/onco4040031