Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing
"> Figure 1
<p>Agar plate with red colonies of <span class="html-italic">Serratia marcescens</span> SB08.</p> "> Figure 2
<p>HPLC profile (<b>a</b>), gas chromatogram (<b>b</b>), mass spectrum (<b>c</b>), FTIR (<b>d</b>), <sup>1</sup>H NMR (<b>e</b>), and <sup>13</sup>C NMR (<b>f</b>) of the pigment.</p> "> Figure 2 Cont.
<p>HPLC profile (<b>a</b>), gas chromatogram (<b>b</b>), mass spectrum (<b>c</b>), FTIR (<b>d</b>), <sup>1</sup>H NMR (<b>e</b>), and <sup>13</sup>C NMR (<b>f</b>) of the pigment.</p> "> Figure 2 Cont.
<p>HPLC profile (<b>a</b>), gas chromatogram (<b>b</b>), mass spectrum (<b>c</b>), FTIR (<b>d</b>), <sup>1</sup>H NMR (<b>e</b>), and <sup>13</sup>C NMR (<b>f</b>) of the pigment.</p> "> Figure 3
<p>(<b>a</b>) Effect of pH on pigment exhaustion (5% owl) for 30 min at room temperature. (<b>b</b>) Effect of reaction time on pigment exhaustion (5% owl) at room temperature and pH 6. (<b>c</b>) Effect of temperature on pigment exhaustion (5% owl) for 100 min at room temperature and pH 6.</p> "> Figure 4
<p>(<b>a</b>) Pigment production in Kings B medium; (<b>b</b>) pigment extraction; (<b>c</b>) pure silk yarn shade drying; (<b>d</b>) Cotton yarn shade drying.</p> "> Figure 5
<p>Antimicrobial activity of textile materials dyed with pigment.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin and Identification of the Bacterium
2.2. Cultivation, Extraction, and Purification of the Pigment
2.3. Structural Identification of the Pigment
2.4. Textile Dyeing
2.5. Optimization of Dyeing Conditions
2.6. Pigment Exhaustion
2.7. Color Measurement Analysis
2.8. Assessment of Visual Color
2.9. Determination of Fastness Properties
2.10. Antimicrobial Activity of Pigments
2.10.1. Test Organisms
2.10.2. Antimicrobial Screening Test
3. Results and Discussion
3.1. Identification of the Pigment
3.2. Optimization of pH, Retention Time, and Temperature for Textile Dyeing
3.3. Color Analysis by Reflectance Measurement
3.4. Visual Assessment of Yarn Samples
3.5. Fastness Properties of Pigment-Dyed Yarn Samples
3.6. Antimicrobial Activity of Pigment
Antimicrobial Activity of Pigment on Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisht, G.; Srivastava, S.; Kulshreshtha, R.; Sourirajan, A.; Baulmer, D.J.; Dev, K. Applications of red pigments from psychrophilic Rhodonellum psychrophilum GL8 in health, food and antimicrobial finishes on textiles. Process. Biochem. 2020, 94, 15–29. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Joshi, V.K.; Attri, D.; Bala, A.; Bhusha, S. Microbial pigments. Indian J. Biotechnol. 2003, 2, 362–369. [Google Scholar]
- Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Bacterial pigments and their applications. Process. Biochem. 2013, 48, 1065–1079. [Google Scholar] [CrossRef]
- Siva, R. Status of natural dyes and dye yielding plants in India. Curr. Sci. 2007, 92, 916–925. [Google Scholar]
- Tuli, H.S.; Chaudhary, P.; Beniwal, V.; Sharma, A.K. Microbial pigments as natural color sources: Current trends and future perspectives. J. Food Sci. Technol. 2015, 52, 4669–4678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, A.S.; Kumar, B.P.; Geo, J.A. Microbial production of textile grade pigments. Afr. J. Microbiol. Res. 2017, 11, 1532–1537. [Google Scholar] [CrossRef] [Green Version]
- Venil, C.K.; Dufossé, L.; Devi, P.R. Bacterial Pigments: Sustainable Compounds with Market Potential for Pharma and Food Industry. Front. Sustain. Food Syst. 2020, 4, 100. [Google Scholar] [CrossRef]
- Heer, K.; Sharma, S. Microbial pigments as a natural color: A review. Int. J. Pharma Sci. Res. 2017, 8, 1913–1922. [Google Scholar]
- Shrivastava, M.; Tiwari, M.; Saraf, A. Pigment extraction methods from fungi for industrial applications: A review. Int. J. Adv. Res. Sci. Eng. 2017, 6, 875–881. [Google Scholar]
- Soliev, A.B.; Hosokawa, K.; Enomoto, K. Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles. Evidence-Based Complement. Altern. Med. 2011, 2011, 1–17. [Google Scholar] [CrossRef]
- Agha, Y.Y.; Bahjat, S.A.; Thanoon, M.F. Assessment of Bacterial Pigments as Textile Colorants. Indian J. Public Health Res. Dev. 2019, 10, 1565. [Google Scholar] [CrossRef]
- Darshan, N.; Manonmani, H.K. Prodigiosin and its potential applications. J. Food Sci. Technol. 2015, 52, 5393–5407. [Google Scholar] [CrossRef] [Green Version]
- Alihosseini, F.; Ju, K.; Lango, J.; Hammock, B.D.; Sun, G. Antibacterial Colorants: Characterization of Prodiginines and Their Applications on Textile Materials. Biotechnol. Prog. 2008, 24, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanelli, M.; Mandic, M.; Kalakona, M.; Vasilakos, S.; Kekos, D.; Nikodinovic-Runic, J.; Topakas, E. Microbial Production of Violacein and Process Optimization for Dyeing Polyamide Fabrics with Acquired Antimicrobial Properties. Front. Microbiol. 2018, 9, 1495. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.S.; Ahmad, W.Y.W.; Zakaria, Z.K.; Yusof, N.Z. Applications of Bacterial Pigments as Colorant. The Malaysian Perspective; Springer: New York, NY, USA, 2012; p. 77. [Google Scholar]
- Kumar, A.; Vishwakarma, H.S.; Singh, J.; Dwivedi, S.; Kumar, M. Microbial pigments: Production and their applications in various industries. Int. J. Pharm. Chem. Biol. Sci. 2015, 5, 203–212. [Google Scholar]
- Desore, A.; Narula, S.A. An overview on corporate response towards sustainability issues in textile industry. Environ. Dev. Sustain. 2018, 20, 1439–1459. [Google Scholar] [CrossRef]
- Sekar, T. Forest History of the Nilgiris; Tamil Nadu Forest Department: Chennai, India, 2004.
- Azambuja, P.; Feder, D.; Garcia, E. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: Impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp. Parasitol. 2004, 107, 89–96. [Google Scholar] [CrossRef]
- De Santis, M.A.; Gallo, M.A.; Petruccioli, M. Assessment of the dyeing properties of pigments from Monascus purpureus. J. Chem. Technol. Biotechnol. 2005, 80, 1072–1079. [Google Scholar] [CrossRef]
- Andreyeva, I.N.; Ogorodnikova, T.I. Pigmentation of Serratia marcescens and spectral properties of prodigiosin. Microbiology 2015, 84, 28–33. [Google Scholar] [CrossRef]
- Sivakumar, V.; Lakshmi, A.J.; Vijayeeswaree, J.; Swaminathan, G. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochem. 2009, 16, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Vora, J.U.; Jain, N.K.; Modi, H.A. Extraction, characterization and application studies of red pigment of halophile Serratia marcescens KH1R KM035849 isolated from Kharaghoda soil. Int. J. Pure Appl. Biosci. 2014, 2, 160–168. [Google Scholar]
- Mohammed, H.; Naseer, J.; Aruna, K. Study on optimization of prodigiosin production by Serratia marcescens MSK1 Isolated from air. Int. J. Adv. Biol. Res. 2012, 2, 671–680. [Google Scholar]
- Srimathi, R.; Priya, R.; Nirmala, M.; Malarvizhi, A. Isolation, identification, optimization of prodigiosin pigment produced by Serratia marcescens and its applications. Int. J. Latest Eng. Manag. Res. 2017, 2, 11–21. [Google Scholar]
- Lapenda, J.C.L.; Alves, V.P.; Adam, M.L.; Rodrigues, M.D.; Nascimento, S.C. Cytotoxic Effect of Prodigiosin, Natural Red Pigment, Isolated from Serratia marcescens UFPEDA 398. Indian J. Microbiol. 2020, 60, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.K.; Subha, D.B.; Ghosh, A.R.; Babu, S. Characterization and enhanced production of prodigiosin from the spoiled coconut. Appl. Biochem. Biotechnol. 2012, 166, 187–196. [Google Scholar]
- Yang, F.; Wei, H.Y.; Li, X.Q.; Li, Y.H.; Yin, L.H.; Pu, Y.P. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse microcystis aeruginosa. Biomed. Environ. Sci. 2013, 26, 148–154. [Google Scholar]
- Lin, C.; Jia, X.; Fang, Y.; Chen, L.; Zhang, H.; Lin, R.; Chen, J. Enhanced production of prodigiosin from Serratia marcescens FZSFO2 in the form of pigment pellets. Electron. J. Biotechnol. 2019, 20, 58–64. [Google Scholar] [CrossRef]
- Sumathi, C.; Mohanapriya, D.; Swarnalatha, S.; Dinesh, M.G.; Sekaran, G. Production of Prodigiosin Using Tannery Fleshing and Evaluating Its Pharmacological Effects. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Song, M.-J.; Bae, J.; Lee, D.-S.; Kim, C.-H.; Kim, J.-S.; Kim, S.-W.; Hong, S.-I. Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J. Biosci. Bioeng. 2006, 101, 157–161. [Google Scholar] [CrossRef]
- Zang, C.-Z.; Yeh, C.-W.; Chang, W.-F.; Lin, C.-C.; Kan, S.-C.; Shieh, C.-J.; Liu, Y.-C. Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612. J. Taiwan Inst. Chem. Eng. 2014, 45, 1133–1139. [Google Scholar] [CrossRef]
- Ali, S.; Hussain, T.; Nawaz, R. Optimization of alkaline extraction of natural dye from Henna leaves and its dyeing on cotton by exhaust method. J. Clean. Prod. 2009, 17, 61–66. [Google Scholar] [CrossRef]
- Sutlović, A.; Brlek, I.; Ljubić, V.; Glogar, M.I. Optimization of Dyeing Process of Cotton Fabric with Cochineal Dye. Fibers Polym. 2020, 21, 555–563. [Google Scholar] [CrossRef]
- Bechtold, T.; Mahmudali, A.; Mussak, R. Natural dyes for textile dyeing: A comparison of methods to assess the quality of Canadian golden rod plant material. Dye. Pigment. 2007, 75, 287–293. [Google Scholar] [CrossRef]
- Lea, A.G.H. HPLC of natural pigments in foodstuffs. In HPLC in Food Analysis; Macrae, R., Ed.; Academic Press Ltd.: London, UK, 1988; pp. 227–333. [Google Scholar]
- Velmurugan, P.; Kamala-Kannan, S.; Balachandar, V.; Lakshmanaperumalsamy, P.; Chae, J.-C.; Oh, B.-T. Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr. Polym. 2010, 79, 262–268. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.J.; Lee, S.J.; Lee, M.S. Effects of Hahella cheuensis derived prodigiosin on UV induced ROS production, inflammation and cytotoxicity in HaCaT human skin keratinocytes. J. Microbiol. Biotechnol. 2021, 31, 475–482. [Google Scholar] [CrossRef]
- Suryawanshi, R.K.; Patil, C.D.; Borase, H.P.; Narkhede, C.P.; Stevenson, A.; Hallsworth, J.E.; Patil, S.V. Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int. J. Cosmet. Sci. 2014, 37, 98–107. [Google Scholar] [CrossRef]
- Cardamone, J.M. Proteolytic activity of Aspergillus flavus on wool. AATCC Rev. 2002, 2, 30–35. [Google Scholar]
- Thiry, M.C. Small game hunting: Anti microbials take the field. AATCC Rev. 2001, 11, 11–17. [Google Scholar]
- Singh, R.; Jain, A.; Panwar, S.; Gupta, D.; Khare, S. Antimicrobial activity of some natural dyes. Dye. Pigment. 2005, 66, 99–102. [Google Scholar] [CrossRef]
Darker Shade | |
---|---|
More positive L* | Lighter shade |
More negative a* | Green |
More positive a* | Red |
More negative b* | Blue |
More positive b* | Yellow |
C* | Purity |
h | Shade |
Yarns | Color Contributes | Dye Exhaustion and Visual Color | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | c* | h | % Pigment Exhaustion | Color Shift | Uniformity | Depth of Shade | Intensity of Dyeing | |
Control | 65.92 | 8.22 | 29.29 | 30.42 | 74.32 | 73 ± 1.2 | 8 | 7.3 | 7 | 7.3 |
Pure silk | 67.02 | 18.95 | 30.46 | 19.78 | 23.10 | 70 ± 1.4 | 8 | 7.0 | 7 | 7 |
China silk | 65.78 | 17.86 | 25.15 | 17.86 | 38.98 | 60 ± 1.7 | 7 | 7.5 | 6.5 | 7 |
Cotton | 55.87 | 12.01 | 19.58 | 23.87 | 41.78 | 39 ± 1.6 | 6.5 | 6.5 | 6 | 7 |
Sample | Optimized Pigment Conc. | Before Ageing | After Ageing | ||||
---|---|---|---|---|---|---|---|
Washing | Rubbing | Light | Washing | Rubbing | Light | ||
Pure Silk | 5 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 3.5–4 |
pH 4–9 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 3.5–4 | |
20–120 (min) | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 3.5–4 | |
20–90(°C) | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 3.5–4 | |
Optimized conditions (pH 6, 100 min, 70°C) | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 3.5–4 | |
China silk | 5 | 4–5 | 4–5 | 4–5 | 3.5–4 | 4–5 | 3.5–4 |
pH 4–9 | 4–5 | 4–5 | 4–5 | 3.5–4 | 4–5 | 3.5–4 | |
20–120 (min) | 4–5 | 4–5 | 4–5 | 3.5–4 | 4–5 | 3.5–4 | |
20–90(°C) | 4–5 | 4–5 | 4–5 | 3.5–4 | 4–5 | 3.5–4 | |
Optimized conditions (pH 6, 100 min, 60°C) | 4–5 | 4–5 | 4–5 | 3.5–4 | 4–5 | 3.5–4 | |
Cotton | 5 | 4–5 | 4–5 | 3–4 | 4–5 | 4–5 | 2.5–3 |
pH 4–9 | 4–5 | 4–5 | 3–4 | 4–5 | 4–5 | 2.5–3 | |
20–120 (min) | 4–5 | 4–5 | 3–4 | 4–5 | 4–5 | 2.5–3 | |
20–90(°C) | 4–5 | 4–5 | 3–4 | 4–5 | 4–5 | 2.5–3 | |
Optimized conditions (pH 6, 100 min, 60°C) | 4–5 | 4–5 | 3–4 | 4–5 | 4–5 | 2.5–3 |
Natural Pigment | Concentration (mg) | Zone of Inhibition (Diameter in cm) | ||||
---|---|---|---|---|---|---|
Bacillus subtilis MTCC2388 | Escherichia coli MTCC443 | Klebsiella pneumonia MTCC109 | Proteus vulgaris MTCC1771 | Pseudomonas aeruginosa MTCC1688 | ||
Prodigiosin | 5 | 0.7 | 0.8 | - | - | 1.1 |
10 | 0.9 | 1.2 | - | - | 1.4 | |
20 | 1.1 | 1.5 | - | - | 1.7 | |
40 | 1.4 | 1.9 | - | - | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venil, C.K.; Dufossé, L.; Velmurugan, P.; Malathi, M.; Lakshmanaperumalsamy, P. Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing. Textiles 2021, 1, 21-36. https://doi.org/10.3390/textiles1010003
Venil CK, Dufossé L, Velmurugan P, Malathi M, Lakshmanaperumalsamy P. Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing. Textiles. 2021; 1(1):21-36. https://doi.org/10.3390/textiles1010003
Chicago/Turabian StyleVenil, Chidambaram Kulandaisamy, Laurent Dufossé, Palanivel Velmurugan, Mahalingam Malathi, and Perumalsamy Lakshmanaperumalsamy. 2021. "Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing" Textiles 1, no. 1: 21-36. https://doi.org/10.3390/textiles1010003
APA StyleVenil, C. K., Dufossé, L., Velmurugan, P., Malathi, M., & Lakshmanaperumalsamy, P. (2021). Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing. Textiles, 1(1), 21-36. https://doi.org/10.3390/textiles1010003