Environmental Cadmium Exposure Induces an Increase in Systolic Blood Pressure by Its Effect on GFR
<p>Comparing cadmium effects on GFR in women and men. Scatterplots relate eGFR to log[(E<sub>Cd</sub>/C<sub>cr</sub>) × 10<sup>5</sup>] in women and men with (E<sub>Cd</sub>/C<sub>cr</sub>) × 100 < 1 µg/L filtrate (<b>a</b>) and E<sub>Cd</sub>/C<sub>cr</sub>) × 100 ≥ 1 µg/L filtrate (<b>b</b>). Coefficients of determination (R<sup>2</sup>) and standardized β-coefficients for all scatterplots, numbers of subjects in subgroups, and <span class="html-italic">p</span>-values are provided.</p> "> Figure 2
<p>Comparing the effects of cadmium on GFR in the normotensive and hypertensive groups. Scatterplots relate eGFR to log[(ECd/Ccr) × 105] in normotensive and hypertensive with (E<sub>Cd</sub>/C<sub>cr</sub>) × 100 < 1 µg/L filtrate (<b>a</b>) and E<sub>Cd</sub>/C<sub>cr</sub>) × 100 ≥ 1 µg/L filtrate (<b>b</b>). Coefficients of determination (R2) and standardized β-coefficients for all scatterplots, numbers of subjects in subgroups, and <span class="html-italic">p</span>-values are provided.</p> "> Figure 3
<p>Cadmium and eGFR as predictors of blood pressure increases. Scatterplots relate SBP (<b>a</b>,<b>b</b>) and DBP (<b>c</b>,<b>d</b>) to eGFR in women and men with (E<sub>Cd</sub>/C<sub>cr</sub>) × 100 of <1 and ≥ 1 µg/L filtrate. Coefficients of determination (R<sup>2</sup>) and standardized β-coefficients for all scatterplots, numbers of participants in subgroups, and <span class="html-italic">p</span>-values are provided.</p> "> Figure 4
<p>Mediation analysis of the effect of cadmium on blood pressure in the high-exposure group. (<b>a</b>) A model depicts eGFR as a mediator of the effect of Cd on blood pressure increases and standardized β values (<b>b</b>) The Sobel test of unstandardized β coefficients describing relationships of Cd with eGFR (A), eGFR with blood pressure (B), and Cd with blood pressure (C′).</p> "> Figure 5
<p>Mediation analysis of the effect of cadmium on blood pressure in the low-exposure group. (<b>a</b>) A model depicts eGFR as a mediator of the effect of Cd on blood pressure increases and standardized β values. (<b>b</b>) The Sobel test of unstandardized β coefficients describing relationships of Cd with eGFR (A), eGFR with blood pressure (B), and Cd with blood pressure (C′).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Demographic and Biologic Characteristics of Participants
2.2. Cadmium, Hypertension, Low eGFR and Tubular Proteinuria
2.3. Comparing Effects of Cadmium on eGFR in Women and Men
2.4. Comparing Effects of Cadmium on eGFR in the Normotensive and Hypertensive Groups
2.5. Inverse Relationships between Blood Pressure and eGFR
2.6. Regression Model Analysis of SBP and DBP
2.7. Mediation Analysis
3. Discussion
3.1. A Rise in Blood Pressure at Low Levels of Cadmium Exposure
3.2. Different Susceptibility to Cadmium-Induced Hypertension
3.3. A Rise of Blood Pressure Due to Tubular Damage and GFR Loss
4. Materials and Methods
4.1. Participants
4.2. Blood Pressure and Cadmium Exposure Ascertainment
4.3. Normalization of Cadmium Excretion Rate
4.4. Estimated Glomerular Filtration Rate (eGFR)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloch, M.J.; Basile, J.N. Review of recent literature in hypertension: Updated clinical practice guidelines for chronic kidney disease now include albuminuria in the classification system. J. Clin. Hypertens. 2013, 15, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.D.; Coffman, T.M. The inextricable role of the kidney in hypertension. J. Clin. Investig. 2014, 124, 2341–2347. [Google Scholar]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022–2050: A forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef]
- Verzelloni, P.; Urbano, T.; Wise, L.A.; Vinceti, M.; Filippini, T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. Environ. Pollut. 2024, 345, 123462. [Google Scholar] [CrossRef] [PubMed]
- Doccioli, C.; Sera, F.; Francavilla, A.; Cupisti, A.; Biggeri, A. Association of cadmium environmental exposure with chronic kidney disease: A systematic review and meta-analysis. Sci. Total Environ. 2024, 906, 167165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Ma, Z.; Dang, Y.; Yang, Y.; Cao, S.; Ouyang, C.; Shi, X.; Pan, J.; Hu, X. Associations of urinary and blood cadmium concentrations with all-cause mortality in US adults with chronic kidney disease: A prospective cohort study. Environ. Sci. Pollut. Res. Int. 2023, 30, 61659–61671. [Google Scholar] [CrossRef]
- Nishijo, M.; Satarug, S.; Honda, R.; Tsuritani, I.; Aoshima, K. The gender differences in health effects of environmental cadmium exposure and potential mechanisms. Mol. Cell. Biochem. 2004, 255, 87–92. [Google Scholar] [CrossRef]
- Trzcinka-Ochocka, M.; Jakubowski, M.; Szymczak, W.; Janasik, B.; Brodzka, R. The effects of low environmental cadmium exposure on bone density. Environ. Res. 2010, 110, 286–293. [Google Scholar] [CrossRef]
- Nishijo, M.; Nambunmee, K.; Suvagandha, D.; Swaddiwudhipong, W.; Ruangyuttikarn, W.; Nishino, Y. Gender-specific impact of cadmium exposure on bone metabolism in older people living in a cadmium-polluted area in Thailand. Int. J. Environ. Res. Public Health 2017, 14, 401. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res. 2018, 169, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.E.; Wong, L.Y.; Osterloh, J.D. Smoking status and urine cadmium above levels associated with subclinical renal effects in U.S. adults without chronic kidney disease. Int. J. Hyg. Environ. Health 2011, 214, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Ujjin, P.; Vanavanitkun, Y.; Baker, J.R.; Moore, M.R. Influence of body iron store status and cigarette smoking on cadmium body burden of healthy Thai women and men. Toxicol. Lett. 2004, 148, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Navas-Acien, A.; Crainiceanu, C.M.; Guallar, E. Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ. Health Perspect. 2008, 116, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Scinicariello, F.; Abadin, H.G.; Murray, H.E. Association of low-level blood lead and blood pressure in NHANES 1999–2006. Environ. Res. 2011, 111, 1249–1257. [Google Scholar] [CrossRef]
- Oliver-Williams, C.; Howard, A.G.; Navas-Acien, A.; Howard, B.V.; Tellez-Plaza, M.; Franceschini, N. Cadmium body burden, hypertension, and changes in blood pressure over time: Results from a prospective cohort study in American Indians. J. Am. Soc. Hypertens. 2018, 12, 426–437.e9. [Google Scholar] [CrossRef]
- Garner, R.E.; Levallois, P. Associations between cadmium levels in blood and urine, blood pressure and hypertension among Canadian adults. Environ. Res. 2017, 155, 64–72. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Zhu, G.; Liang, Y.; Jin, T. Benchmark dose estimation of cadmium reference level for hypertension in a Chinese population. Environ. Toxicol. Pharmacol. 2015, 39, 208–212. [Google Scholar] [CrossRef]
- Wu, W.; Liu, D.; Jiang, S.; Zhang, K.; Zhou, H.; Lu, Q. Polymorphisms in gene MMP-2 modify the association of cadmium exposure with hypertension risk. Environ. Int. 2019, 124, 441–447. [Google Scholar] [CrossRef]
- Zhong, Q.; Wu, H.B.; Niu, Q.S.; Jia, P.P.; Qin, Q.R.; Wang, X.D.; He, J.L.; Yang, W.J.; Huang, F. Exposure to multiple metals and the risk of hypertension in adults: A prospective cohort study in a local area on the Yangtze River, China. Environ. Int. 2021, 153, 106538. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Kim, Y. Association of blood cadmium with hypertension in the Korean general population: Analysis of the 2008–2010 Korean National Health and Nutrition Examination Survey data. Am. J. Ind. Med. 2012, 55, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.A.; Park, E.; Kim, S.; Kim, B. Influence of serum ferritin combined with blood cadmium concentrations on blood pressure and hypertension: From the Korean National Health and Nutrition Examination Survey. Chemosphere 2022, 288, 132469. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, M.; Wai, K.M.; Kanda, A.; Ando, M.; Murashita, K.; Nakaji, S.; Ihara, K. Low level of serum cadmium in relation to blood pressures among Japanese general population. Biol. Trace Element Res. 2021, 200, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kataoka, Y.; Hayashi, K.; Matsuda, R.; Uneyama, C. Dietary exposure of the Japanese general population to elements: Total diet study 2013–2018. Food Saf. 2022, 10, 83–101. [Google Scholar] [CrossRef]
- Almerud, P.; Zamaratskaia, G.; Lindroos, A.K.; Bjermo, H.; Andersson, E.M.; Lundh, T.; Ankarberg, E.H.; Lignell, S. Cadmium, total mercury, and lead in blood and associations with diet, sociodemographic factors, and smoking in Swedish adolescents. Environ. Res. 2021, 197, 110991. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, H.; Lee, J.; Kim, Y.J.; Chung, H.S.; Yu, J.M.; Jang, G.; Park, R.; Chung, W.; Oh, C.M.; et al. Smoking and passive smoking increases mortality through mediation effect of cadmium exposure in the United States. Sci. Rep. 2023, 13, 3878. [Google Scholar] [CrossRef]
- Hill, D.T.; Jandev, V.; Petroni, M.; Atallah-Yunes, N.; Bendinskas, K.; Brann, L.S.; Heffernan, K.; Larsen, D.A.; MacKenzie, J.A.; Palmer, C.D.; et al. Airborne levels of cadmium are correlated with urinary cadmium concentrations among young children living in the New York state city of Syracuse, USA. Environ. Res. 2023, 223, 115450. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Nomiyama, T.; Kumagai, N.; Dekio, F.; Uemura, T.; Takebayashi, T.; Nishiwaki, Y.; Matsumoto, Y.; Sano, Y.; Hosoda, K.; et al. Uptake of cadmium in meals from the digestive tract of young non-smoking Japanese female volunteers. J. Occup. Health 2003, 45, 43–52. [Google Scholar] [CrossRef]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Ikeda, Y.; Machida, M.; Kayama, F. Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. Toxicol. Appl. Pharmacol. 2004, 196, 114–123. [Google Scholar] [CrossRef]
- Satarug, S.; Phelps, K.R. Chapter 14: Cadmium Exposure and Toxicity. In Metal Toxicology Handbook; Bagchi, D., Bagchi, M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 219–274. [Google Scholar]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. Estimation of health risks associated with dietary cadmium exposure. Arch. Toxicol. 2023, 97, 329–358. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; el Belbasi, H.I.; Min, K.S.; Onosaka, S.; Okada, Y.; Matsumoto, Y.; Mutoh, N.; Tanaka, K. Fate of cadmium bound to phytochelatin in rats. Res. Commun. Chem. Pathol. Pharmacol. 1993, 82, 357–365. [Google Scholar] [PubMed]
- Langelueddecke, C.; Roussa, E.; Fenton, R.A.; Thévenod, F. Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS ONE 2013, 8, e71586. [Google Scholar] [CrossRef] [PubMed]
- Langelueddecke, C.; Lee, W.K.; Thévenod, F. Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: Implications for in vivo cadmium toxicity. Toxicol. Lett. 2014, 226, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Oosterwijk, M.M.; Hagedoorn, I.J.M.; Maatman, R.G.H.J.; Bakker, S.J.L.; Navis, G.; Laverman, G.D. Cadmium, active smoking and renal function deterioration in patients with type 2 diabetes. Nephrol. Dial. Transplant. 2023, 38, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Baker, J.R.; Reilly, P.E.; Moore, M.R.; Williams, D.J. Cadmium levels in the lung, liver, kidney cortex, and urine samples from Australians without occupational exposure to metals. Arch. Environ. Health 2002, 57, 69–77. [Google Scholar] [CrossRef]
- Barregard, L.; Sallsten, G.; Lundh, T.; Mölne, J. Low-level exposure to lead, cadmium and mercury, and histopathological findings in kidney biopsies. Environ. Res. 2022, 211, 113119. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Ruangyuttikarn, W.; Nishijo, M.; Gobe, G.C.; Phelps, K.R. The source and pathophysiologic significance of excreted cadmium. Toxics 2019, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol. Appl. Pharmacol. 2013, 268, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals 2010, 23, 783–792. [Google Scholar] [CrossRef]
- Satarug, S.; Gobe, G.C.; Vesey, D.A.; Phelps, K.R. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics 2020, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.M.; Schiffl, H. Smoking status, cadmium, and chronic kidney disease. Ren. Replace Ther. 2024, 10, 17. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Scmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Phelps, K.R.; Gosmanova, E.O. A generic method for analysis of plasma concentrations. Clin. Nephrol. 2020, 94, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hanif, A.A.M.; Shamim, A.A.; Hossain, M.M.; Hasan, M.; Khan, M.S.A.; Hossaine, M.; Ullah, M.A.; Sarker, S.K.; Rahman, S.M.M.; Mitra, D.K.; et al. Gender-specific prevalence and associated factors of hypertension among elderly Bangladeshi people: Findings from a nationally representative cross-sectional survey. BMJ Open 2021, 11, e038326. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.J.; Hung, C.H.; Wang, C.W.; Tu, H.P.; Li, C.H.; Tsai, C.C.; Lin, W.Y.; Chen, S.C.; Kuo, C.H. Associations among heavy metals and proteinuria and chronic kidney disease. Diagnostics 2021, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Yan, H.; Fan, X.; Xi, S. A benchmark dose analysis for urinary cadmium and type 2 diabetes mellitus. Environ. Pollut. 2021, 273, 116519. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Oh, S.; Kang, H.; Kim, S.; Lee, G.; Li, L.; Kim, C.T.; An, J.N.; Oh, Y.K.; Lim, C.S.; et al. Environment-wide association study of CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 766–775. [Google Scholar] [CrossRef]
- Li, H.; Fagerberg, B.; Sallsten, G.; Borné, Y.; Hedblad, B.; Engström, G.; Barregard, L.; Andersson, E.M. Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environ. Health 2019, 18, 56. [Google Scholar] [CrossRef]
- Hecht, E.M.; Landy, D.C.; Ahn, S.; Hlaing, W.M.; Hennekens, C.H. Hypothesis: Cadmium explains, in part, why smoking increases the risk of cardiovascular disease. J. Cardiovasc. Pharmacol. Ther. 2013, 18, 550–554. [Google Scholar] [CrossRef]
- Vahter, M.; Berglund, M.; Akesson, A. Toxic metals and the menopause. J. Br. Menopause Soc. 2004, 10, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Reckelhoff, J.F. Gender differences in the regulation of blood pressure. Hypertension 2001, 37, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Reckelhoff, J.F. Mechanisms of sex and gender differences in hypertension. J. Hum. Hypertens. 2023, 37, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Connelly, P.J.; Currie, G.; Delles, C. Sex differences in the prevalence, outcomes and management of hypertension. Curr. Hypertens. Rep. 2022, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.M.; Kim, H.C.; Kang, D.R. Sex differences in hypertension prevalence and control: Analysis of the 2010–2014 Korea National Health and Nutrition Examination Survey. PLoS ONE 2017, 12, e0178334. [Google Scholar] [CrossRef] [PubMed]
- Garner, R.; Levallois, P. Cadmium levels and sources of exposure among Canadian adults. Health Reports 2016, 27, 10–18. [Google Scholar] [PubMed]
- Liao, K.W.; Chien, L.C.; Chen, Y.C.; Kao, H.C. Sex-specific differences in early renal impairment associated with arsenic, lead, and cadmium exposure among young adults in Taiwan. Environ. Sci. Pollut. Res. Int. 2022, 29, 52655–52664. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Nishijo, M.; Ujjin, P.; Vanavanitkun, Y.; Moore, M.R. Cadmium-induced nephropathy in the development of high blood pressure. Toxicol. Lett. 2005, 157, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Hagedoorn, I.J.M.; Gant, C.M.; Huizen, S.V.; Maatman, R.G.H.J.; Navis, G.; Bakker, S.J.L.; Laverman, G.D. Lifestyle-related exposure to cadmium and lead is associated with diabetic kidney disease. J. Clin. Med. 2020, 9, 2432. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Shi, F.; Wang, F.; Liu, X.; Wen, H.; Mubarik, S.; Yu, C. Association of serum 25(OH)D, cadmium, CRP with all-cause, cause-specific mortality: A prospective cohort study. Front. Nutr. 2022, 9, 803985. [Google Scholar] [CrossRef]
- Mayne, K.J.; Sullivan, M.K.; Lees, J.S. Sex and gender differences in the management of chronic kidney disease and hypertension. J. Hum. Hypertens. 2023, 37, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shen, R.; Shen, J.; Lyu, L.; Wei, T. Association of blood cadmium with all-cause and cause-specific mortality in patients with hypertension. Front. Public Health 2023, 11, 1106732. [Google Scholar] [CrossRef] [PubMed]
- Mashima, Y.; Konta, T.; Kudo, K.; Takasaki, S.; Ichikawa, K.; Suzuki, K.; Shibata, Y.; Watanabe, T.; Kato, T.; Kawata, S.; et al. Increases in urinary albumin and beta2-microglobulin are independently associated with blood pressure in the Japanese general population: The Takahata Study. Hypertens. Res. 2011, 34, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Kudo, K.; Konta, T.; Mashima, Y.; Ichikawa, K.; Takasaki, S.; Ikeda, A.; Hoshikawa, M.; Suzuki, K.; Shibata, Y.; Watanabe, T.; et al. The association between renal tubular damage and rapid renal deterioration in the Japanese population: The Takahata study. Clin. Exp. Nephrol. 2011, 15, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Perry, H.M.; Erlanger, M.; Perry, E.F. Increase in the systolic pressure of rats chronically fed cadmium. Environ. Health Perspect. 1979, 28, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Perry, H.M., Jr.; Erlanger, M.W. Sodium retention in rats with cadmium-induced hypertension. Sci. Total Environ. 1981, 22, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.; Iturri, S.J. Cadmium as hypertensive agent. Effect on ion excretion in rats. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1993, 106, 315–319. [Google Scholar] [CrossRef]
- Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Kuraeiad, S.; Wongrith, P.; Vesey, D.A.; Gobe, G.C.; Satarug, S. Effects of environmental exposure to cadmium and lead on the risks of diabetes and kidney dysfunction. Int. J. Environ. Res. Public Health 2022, 19, 2259. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Swaddiwudhipong, W.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Modeling cadmium exposures in low- and high-exposure areas in Thailand. Environ. Health Perspect. 2013, 121, 531–536. [Google Scholar] [CrossRef]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef]
- Sripaoraya, K.; Siriwong, W.; Pavittranon, S.; Chapman, R.S. Environmental arsenic exposure and risk of diabetes type 2 in Ron Phibun subdistrict, Nakhon Si Thammarat Province, Thailand: Unmatched and matched case-control studies. Risk Manag Healthc. Policy 2017, 10, 41–48. [Google Scholar] [CrossRef]
- Suwatvitayakorn, P.; Ko, M.S.; Kim, K.W.; Chanpiwat, P. Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environ. Geochem. Health 2020, 42, 2331–2344. [Google Scholar] [CrossRef] [PubMed]
- Swaddiwudhipong, W.; Mahasakpan, P.; Limpatanachote, P.; Krintratun, S. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environ. Res. 2010, 110, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C.; Phelps, K.R. The effect of cadmium on GFR is clarified by normalization of excretion rates to creatinine clearance. Int. J. Mol. Sci. 2021, 22, 1762. [Google Scholar] [CrossRef] [PubMed]
- White, C.A.; Allen, C.M.; Akbari, A.; Collier, C.P.; Holland, D.C.; Day, A.G.; Knoll, G.A. Comparison of the new and traditional CKD-EPI GFR estimation equations with urinary inulin clearance: A study of equation performance. Clin. Chim. Acta 2019, 488, 189–195. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, D.P.; Warsi, G.; Dwyer, J.H. A simulation study of mediated effect measures. Multiv. Behav. Res. 1995, 30, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Meth. Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef]
Parameters | All, n = 447 | Cd Burden Tertiles | p | ||
---|---|---|---|---|---|
Low, n = 148 | Middle, n = 149 | High, n = 150 | |||
Age, years | 51.1 ± 8.6 | 56.6 ± 9.7 | 48.1 ± 6.9 | 48.7 ± 6.1 | <0.001 |
Age range, years | 33–80 | 37–80 | 33–78 | 36–73 | |
BMI, kg/m2 | 24.8 ± 4.0 | 25.5 ± 4.5 | 24.8 ± 3.8 | 24.0 ± 3.4 | 0.006 |
eGFR a, mL/min/1.73 m2 | 90 ± 18 | 84 ± 18 | 96 ± 17 | 91 ± 18 | <0.001 |
% eGFR ≤ 60 mL/min/1.73 m2 | 6.9 | 10.3 | 1.3 | 8.7 | 0.005 |
% Hypertension | 48.8 | 51.4 | 46.3 | 48.7 | 0.685 |
% Smoking | 31.1 | 16.2 | 34.9 | 42.7 | <0.001 |
% Diabetes | 15.4 | 39.2 | 3.4 | 4.0 | <0.001 |
Tubular proteinuria | |||||
% Moderate | 58.8 | 58.8 | 52.3 | 65.3 | 0.074 |
% Severe | 23.9 | 25.7 | 14.8 | 31.3 | 0.027 |
Systolic blood pressure, mmHg | 128 ± 17 | 134 ± 17 | 126 ± 16 | 126 ± 16 | <0.001 |
Diastolic blood pressure, mmHg | 81 ± 10 | 83 ± 10 | 80 ± 10 | 80 ± 11 | 0.019 |
[cr]p, mg/dL | 0.82 ± 0.22 | 0.86 ± 0.25 | 0.77 ± 0.17 | 0.83 ± 0.23 | 0.001 |
[cr]u, mg/dL | 114 ± 74 | 113 ± 72 | 131 ± 72 | 99 ± 75 | <0.001 |
[Cd]b, µg/L | 2.75 ± 3.19 | 0.72 ± 0.83 | 2.37 ± 2.06 | 5.14 ± 3.95 | <0.001 |
[Cd]u, µg/L | 4.23 ± 5.68 | 0.71 ± 1.20 | 3.91 ± 2.50 | 8.03 ± 7.86 | <0.001 |
Normalized to Ecr (ECd/Ecr) b | |||||
ECd/Ecr, µg/g creatinine | 4.03 ± 4.42 | 0.48 ± 0.62 | 3.07 ± 0.93 | 8.48 ± 4.87 | <0.001 |
Eβ2M/Ecr, µg/g creatinine | 3223 ± 21,872 | 1115 ± 1791 | 1186 ± 3108 | 7328 ± 37,331 | 0.001 |
ENAG/Ecr, units/g creatinine | 13.25 ± 11.43 | 8.85 ± 3.18 | 11.81 ± 6.43 | 15.80 ± 15.42 | <0.001 |
Normalized to Ccr, (ECd/Ccr) c | |||||
(ECd/Ccr) × 100, µg/L filtrate | 3.20 ± 3.73 | 0.38 ± 0.46 | 2.28 ± 0.56 | 6.89 ± 4.31 | <0.001 |
(Eβ2M/Ccr) × 100, µg/L filtrate | 3845 ± 30,456 | 1117 ± 2352 | 1105 ± 3657 | 9257 ± 52,090 | <0.001 |
(ENAG/Ccr) × 100, µg/L filtrate | 10.79 ± 12.20 | 6.78 ± 2.46 | 9.13 ± 6.71 | 13.46 ± 16.60 | <0.001 |
Independent Variables/Factors | Hypertension | ||||
---|---|---|---|---|---|
β Coefficients | POR | 95% CI | p | ||
(SE) | Lower | Upper | |||
Age, years | 0.023 (0.014) | 1.024 | 0.997 | 1.051 | 0.085 |
BMI, kg/m2 | 0.079 (0.027) | 1.082 | 1.027 | 1.140 | 0.003 |
Gender | 0.070 (0.260) | 0.932 | 0.560 | 1.551 | 0.788 |
Smoking | 0.444 (0.250) | 0.642 | 0.393 | 1.048 | 0.076 |
Diabetes | 0.575 (0.329) | 1.777 | 0.932 | 3.388 | 0.081 |
Cd burden a | |||||
Mild | Referent | ||||
Moderate | 0.748 | 2.114 | 1.049 | 4.260 | 0.036 |
Heavy | 0.504 | 1.655 | 0.921 | 2.973 | 0.092 |
Independent Variables/Factors | Hypertension | ||||
---|---|---|---|---|---|
β Coefficients | POR | 95% CI | p | ||
(SE) | Lower | Upper | |||
Age, years | 0.018 (0.012) | 1.018 | 0.994 | 1.042 | 0.148 |
BMI, kg/m2 | 0.080 (0.026) | 1.083 | 1.029 | 1.140 | 0.002 |
Gender | 0.050 (0.254) | 0.951 | 0.578 | 1.565 | 0.844 |
Smoking | 0.433 (0.255) | 0.649 | 0.394 | 1.069 | 0.089 |
Diabetes | 0.422 (0.294) | 1.526 | 0.858 | 2.713 | 0.150 |
Quartile of [Cd]b, µg/L | |||||
Q1: <0.60 | Referent | ||||
Q2: 0.61–1.69 | 0.748 (0.293) | 2.113 | 1.191 | 3.749 | 0.011 |
Q3: 1.70–3.38 | 0.606 (0.309) | 1.833 | 1.000 | 3.360 | 0.050 |
Q4: >3.38 | 0.587 (0.337) | 1.798 | 0.928 | 3.482 | 0.082 |
Independent Variables/Factors | Low eGFR a | Moderate Proteinuria b | Severe Proteinuria c | |||
---|---|---|---|---|---|---|
POR (95% CI) | p | POR (95% CI) | p | POR (95% CI) | p | |
Age, years | 1.146 (1.087, 1.209) | <0.001 | 1.037 (1.007, 1.067) | 0.014 | 1.064 (1.029,1.100) | <0.001 |
BMI, kg/m2 | 1.023 (0.926, 1.129) | 0.659 | 0.972 (0.921, 1.026) | 0.299 | 0.964 (0.903,1.030) | 0.283 |
Log2[(ECd/Ccr) × 105], µg/L filtrate | 1.417 (1.247, 1.750) | 0.001 | 1.230 (1.101, 1.374) | <0.001 | 1.480 (1.271,1.724) | <0.001 |
Gender | 1.701 (0.479, 6.043) | 0.412 | 1.395 (0.828, 2.349) | 0.211 | 1.250 (0.663,2.357) | 0.490 |
Smoking | 0.814 (0.263, 2.521) | 0.721 | 0.942 (0.579, 1.566) | 0.815 | 0.757 (0.418,1.370) | 0.358 |
Diabetes | 4.262 (1.532, 12.86) | 0.005 | 5.485 (2.614, 11.51) | <0.001 | 13.37 (5.698,31.36) | <0.001 |
Independent Variables/ Factors | eGFR, mL/min/1.73 m2 | |||||||
---|---|---|---|---|---|---|---|---|
Women, n = 333 | Men, n = 114 | Normotension, n = 229 | Hypertension, n = 218 | |||||
β | p | β | p | β | p | β | p | |
Age, years | −0.528 | <0.001 | −0.505 | <0.001 | −0.559 | <0.001 | −0.517 | <0.001 |
BMI, kg/m2 | −0.050 | 0.308 | −0.136 | 0.122 | −0.037 | 0.532 | −0.077 | 0.216 |
Log2[(ECd/Ccr) × 105], µg/L filtrate | −0.121 | 0.051 | −0.077 | 0.463 | −0.056 | 0.440 | −0.177 | 0.023 |
Gender | − | − | − | − | −0.017 | 0.787 | −0.012 | 0.870 |
Hypertension | −0.045 | 0.344 | −0.203 | 0.018 | − | − | − | − |
Smoking | 0.031 | 0.533 | 0.043 | 0.624 | 0.152 | 0.020 | −0.098 | 0.178 |
Diabetes | −0.133 | 0.016 | −0.018 | 0.854 | −0.049 | 0.445 | −0.175 | 0.012 |
Adjusted R2 | 0.279 | <0.001 | 0.248 | <0.001 | 0.318 | <0.001 | 0.242 | <0.001 |
Independent Variables/Factors | SBP or DBP | |||||
---|---|---|---|---|---|---|
All, n = 447 | Mild Cd Burden a n = 123 | Medium + Heavy n = 324 | ||||
β | p | β | p | β | p | |
Model 1: SBP | ||||||
Age, years | 0.243 | <0.001 | 0.395 | <0.001 | 0.091 | 0.143 |
BMI, kg/m2 | 0.113 | 0.013 | 0.081 | 0.361 | 0.097 | 0.084 |
Log2[(ECd/Ccr) × 105], µg/L filtrate | 0.027 | 0.624 | 0.080 | 0.372 | −0.051 | 0.352 |
eGFR, mL/min/1.73 m2 | −0.106 | 0.036 | 0.011 | 0.907 | −0.176 | 0.004 |
Gender | −0.044 | 0.378 | −0.096 | 0.360 | −0.024 | 0.688 |
Smoking | −0.075 | 0.145 | −0.176 | 0.093 | −0.031 | 0.600 |
Diabetes | 0.216 | <0.001 | 0.202 | 0.020 | 0.265 | <0.001 |
Adjusted R2 | 0.199 | <0.001 | 0.157 | <0.001 | 0.150 | <0.001 |
Model 2: DBP | ||||||
Age, years | −0.028 | 0.650 | 0.036 | 0.739 | −0.081 | 0.213 |
BMI, kg/m2 | 0.123 | 0.013 | 0.069 | 0.475 | 0.123 | 0.037 |
Log2[(ECd/Ccr) × 105], µg/L filtrate | −0.069 | 0.255 | −0.059 | 0.546 | −0.025 | 0.660 |
eGFR, mL/min/1.73 m2 | −0.085 | 0.123 | 0.057 | 0.582 | −0.130 | 0.041 |
Gender | −0.055 | 0.314 | −0.207 | 0.074 | −0.003 | 0.968 |
Smoking | −0.050 | 0.373 | −0.209 | 0.068 | 0.008 | 0.897 |
Diabetes | 0.102 | 0.064 | 0.027 | 0.775 | 0.193 | 0.001 |
Adjusted R2 | 0.046 | <0.001 | −0.005 | 0.498 | 0.058 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satarug, S.; Vesey, D.A.; Yimthiang, S.; Khamphaya, T.; Pouyfung, P.; Đorđević, A.B. Environmental Cadmium Exposure Induces an Increase in Systolic Blood Pressure by Its Effect on GFR. Stresses 2024, 4, 436-451. https://doi.org/10.3390/stresses4030029
Satarug S, Vesey DA, Yimthiang S, Khamphaya T, Pouyfung P, Đorđević AB. Environmental Cadmium Exposure Induces an Increase in Systolic Blood Pressure by Its Effect on GFR. Stresses. 2024; 4(3):436-451. https://doi.org/10.3390/stresses4030029
Chicago/Turabian StyleSatarug, Soisungwan, David A. Vesey, Supabhorn Yimthiang, Tanaporn Khamphaya, Phisit Pouyfung, and Aleksandra Buha Đorđević. 2024. "Environmental Cadmium Exposure Induces an Increase in Systolic Blood Pressure by Its Effect on GFR" Stresses 4, no. 3: 436-451. https://doi.org/10.3390/stresses4030029
APA StyleSatarug, S., Vesey, D. A., Yimthiang, S., Khamphaya, T., Pouyfung, P., & Đorđević, A. B. (2024). Environmental Cadmium Exposure Induces an Increase in Systolic Blood Pressure by Its Effect on GFR. Stresses, 4(3), 436-451. https://doi.org/10.3390/stresses4030029