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Simple Summary: Cervical cancer continues to pose a major health challenge for women, especially
in advanced stages. While standard treatments such as radiation and chemotherapy are effective
for many, about 20% of patients experience incomplete responses, and relapse remains a significant
concern. CT radiomics, an innovative technique that extracts and analyzes complex patterns from
CT scans, reveals tumor characteristics that are often undetectable by the human eye. This technol-
ogy holds the potential to help clinicians predict treatment responses earlier, paving the way for
personalized therapeutic strategies to improve outcomes for each patient.

Abstract: The objective of this study was to evaluate the effectiveness of utilizing radiomic features
from radiation planning computed tomography (CT) scans in predicting tumor progression among
patients with cervical cancers. A retrospective analysis was conducted on individuals who underwent
radiotherapy for cervical cancer between 2015 and 2020, utilizing an institutional database. Radiomic
features, encompassing first-order statistical, morphological, Gray-Level Co-Occurrence Matrix
(GLCM), Gray-Level Run Length Matrix (GLRLM), and Gray-Level Dependence Matrix (GLDM)
features, were extracted from the primary cervical tumor on the CT scans. The study encompassed
112 CT scans from patients with varying stages of cervical cancer ((FIGO Staging of Cervical Cancer
2018): 24% at stage I, 47% at stage II, 21% at stage III, and 10% at stage IV). Of these, 31% (n = 35/112)
exhibited tumor progression. Univariate feature analysis identified three morphological features that
displayed statistically significant differences (p < 0.05) between patients with and without progression.
Combining these features enabled a classification model to be developed with a mean sensitivity,
specificity, accuracy, and AUC of 76.1% (CI 1.5%), 70.4% (CI 4.1%), 73.6% (CI 2.1%), and 0.794 (CI
0.029), respectively, employing nested ten-fold cross-validation. This research highlights the potential
of CT radiomic models in predicting post-radiotherapy tumor progression, offering a promising
approach for tailoring personalized treatment decisions in cervical cancer.

Keywords: cervical cancer; radiomics; radiation

1. Introduction

Cervical cancer is the fourth most prevalent female malignancy globally and the
second leading cause of death among young patients [1]. Approximately 40% of patients
are diagnosed with locally advanced disease (stages IIB-IVA) [2], for which a combination
of external beam radiotherapy, concurrent platinum chemotherapy, and brachytherapy
is the standard of care. Despite radical-intent treatment, about 20% of patients do not
achieve a complete response, and approximately one-third experience a relapse [3], often
detected months after the initial treatment, potentially causing delays in administering
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further treatments. Therefore, there is an unmet need to develop models that can predict
therapeutic responses and long-term outcomes early in the course of radiotherapy to
permit the development of risk-adapted personalized treatment care. The prediction
of reliable biomarkers facilitates timely interventions, including the administration of
adjuvant chemotherapy and escalated radiation dosages, particularly for patients at a
higher risk of recurrence [4]. Over the past years, imaging texture analysis has emerged
as an effective method for predicting treatment outcomes [5–7]. This technique has the
capability of gathering a large amount of quantitative information that is not perceptible
to the human eye and can be used to decipher inherent biological tumor characteristics,
such as intratumoral heterogeneity, which ultimately enables the prediction of clinical
outcomes [5,6,8–10].

Oncology research has been gaining popularity with the advent of radiomics, a method
that involves the high-throughput extraction of quantitative image features from radio-
logical images, leading to enhanced prognostic, diagnostic, and predictive accuracy when
integrated into clinical decision-support systems. Radiomics analysis is a powerful tech-
nique in modern medicine that utilizes image-based characteristics for precise diagnosis
and treatment alongside advanced imaging analysis software and rapid development and
authentication of medical imaging data [11]. Typically, MRI is used for diagnostic purposes
in cervix cancer due to its superior contrast based on inherent tissue properties and better
contrast resolution when compared to CT, especially for evaluating soft tissues. CT, how-
ever, remains the standard for radiation planning due to the direct input of pixel Hounsfield
units into dose-distribution software, and only now is MRI being used in fusion with CT
for radiation planning. Most studies have focused on MRI features, whereas the work here
deliberately explores CT features due to the ubiquitous use of CT in radiation planning.

Previous studies have investigated the application of MRI and positron emission
tomography (PET) radiomic features to predict the outcomes of patients with cervical
cancer [12–14]. In one such study, Kawarha et al. used a radiomics model with baseline
T1- and T2-weighted MRI to predict recurrences. In a LASSO analysis, they selected
twenty-five features from unnormalized T1w images and four from T2w images. After
normalization, eleven T1w and twenty-seven T2w features were selected. The normalized
model outperformed the unnormalized one, achieving an accuracy, specificity, sensitivity,
and AUC of 83%, 72%, 89%, and 0.90 with normalized T1w images, 93%, 91%, 94%,
and 0.96 with normalized T2w images, and 96%, 93%, 99%, and 1.00 when combining
both [15]. Similarly, Lucia et al. developed a recurrence prediction model for locally
advanced cervical cancer using combined radiomic features from MRI and PET images
across multiple institutions, achieving 90% accuracy for predicting disease-free survival
and 98% accuracy for locoregional control [16].

These studies highlight the potential for texture analysis to predict outcomes in cervical
cancer. However, there is limited evidence for using CT-based radiomic models to predict
tumor recurrence, specifically for this population. Therefore, the work here specifically
investigates and reports a pre-treatment CT radiomic classification model for predicting
the recurrence of cervical cancer.

2. Material and Methods

This retrospective study was conducted in accordance with the principles of good
clinical practice outlined in the Declaration of Helsinki. The institutional research ethics
board at the Sunnybrook Health Sciences Centre in Canada (REB #3036) approved this study
and granted a waiver for the informed consent requirement. This study included patients
diagnosed with stage IB-IV cervical cancer who underwent external beam radiotherapy and
were having baseline planning CT between 2015 and 2020. All patients diagnosed during
this period were included in this study. In Canada, cervical cancer is becoming increasingly
uncommon. The cases analyzed reflect the total number treated during this timeframe at
the country’s largest radiotherapy center, which handles over 800 new patients each year.
The only exceptions were those who had already received treatment for cervical cancer or
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presented with a recurrent tumor, as these cases were excluded from the analysis. After
treatment completion, patients were typically followed up with a physical examination
and pelvic magnetic resonance imaging (MRI) every three months until achieving a known
response. Patients who achieved a complete clinical and/or radiological response were
scheduled for physical examinations every three to six months. Additionally, pelvic MRIs
were performed as needed based on clinical indications. The follow-up period lasted up to
three years, providing a comprehensive and ongoing evaluation of their condition.

Patient demographic, tumor, and treatment data were collected from electronic medical
records, whereas radiotherapy data were collected from a treatment planning system.

The primary endpoint was to develop a CT-based prediction model for tumor progres-
sion using radiomic data obtained from the radiation planning CT imaging of the primary
cervical tumor. Tumor progression was defined per RECIST 1.1 [17] and included any
locoregional or distant progression.

2.1. Image Preprocessing and Feature Determination

Four-stage data preprocessing was applied to arrive at well-formed data. This included
data consolidation, data cleaning, data transformation, and data reduction [18].

The pre-treatment CT data were obtained from our institutional imaging-planning
database. The planning CT images were captured using a Philips Brilliance CT Big Bore
scanner with a slice thickness of 1.5 mm. For a better tumor prediction, 80 mL of Omnipaque
contrast medium (350 mg/mL) was injected, with the scan initiated after a calculated delay
of 45 s, allowing an optimal contrast distribution. The imaging database was reviewed
for all eligible candidates and included the planning CT scan data, image registration
parameters, and tumor segmentation for the study analysis. The primary cervical tumor
was meticulously delineated as the region of interest (ROI) on each slice of the baseline
computed tomography (CT) images, with fused MRI scans providing enhanced preci-
sion. These MRI scans, featuring both T1 and T2-weighted imaging, played vital roles
in guiding the contouring process. Multiple oncologists performed the contouring, with
all contours reviewed collectively to ensure consistency as part of the standard clinical
care. The DICOM and contour images were exported and converted into Neuroimaging
Informatics Technology Initiative (NIfTI) files. An open-source software package called
Pyradiomics [19] was used to determine the radiomic features from computed tomography
(CT) images of cervical cancers. One hundred features were determined computationally,
which included first-order statistical features, shape or morphological features, and textural
features. Textural features included those derived from the Gray-Level Co-Occurrence
Matrix (GLCM) [20], Gray-Level Run Length Matrix (GLRLM) [21,22], and Gray-Level De-
pendence Matrix (GLDM) used for features analysis [23]. The feature extraction process was
carried out by first discretizing the pixel intensities into a 128 fixed bin count. The GLCM
methodology described the frequency of co-occurrences of pixel value pairs, whereas the
GLRLM methodology quantified the frequency of consecutive occurrences of the same
voxel value, and the GLDM methodology quantified the number of connected voxels within
a distance that is dependent on a center voxel. These are different mathematical approaches
to describing textures in images.

2.2. Data Cleaning and Transformation

Outliers were removed from the data using an isolation forest technique [24]. Sub-
sequently, data were standardized by transforming each feature to have a zero mean and
unit variance. This was carried out in order to ensure a uniform pixel value range with
less extreme differences in intensity values among different texture features. We utilized a
“Robust scaler” method that was less prone to outliers as it utilized the median value as
opposed to the mean value as a measure of central tendency when performing standard-
ization. The standardization of features is important when building a model. However,
since the outliers were removed or, at the very least, reduced, the “Standard scaler” method
should work equivalently. We argue that although the outlier removal procedure was
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implemented, it was only an approximation, and it was still possible that not all outliers
were removed. So, the “robust scaler” served as a catching net if this was the case. If all
outliers were caught, then both scaling methods should be equivalent.

2.3. Data Reduction

The data reduction stage included feature reduction and data balancing. Here, the
initial feature reduction stage removed correlated features. Correlations between all fea-
tures were calculated and features that had a Pearson correlation coefficient greater than
0.9 were identified. For those features with a correlation of 0.9 or greater, one of the corre-
lated features was removed. This reduced the number of features from 100 to 36. For the
36 texture features, the differences in feature values between patients with recurrence (R)
and those with no recurrence (NR) were compared. In order to test for a statistically signifi-
cant difference between the two groups, either an independent t-test or Mann–Whitney
U Test was performed. For a particular feature, if the data were normally distributed,
a t-test was utilized, and if the data were not normally distributed, a Mann–Whitney U
Test was employed. A Shapiro–Wilk normality test was utilized to see if the data were
normally distributed. For statistical tests, a p-value of 0.05 or less was used as the threshold
for significance.

Prior to model building, training data were balanced by oversampling the minority
class using a Synthetic Minority Oversampling technique (SMOTE) [25]. The ratio of
imbalances was not extreme, but it was still necessary to have a balanced dataset.

2.4. Model Building and Evaluation

Given the well-formed data obtained from the preprocessing stage, a multivariate
model was developed to predict the target response t ∈ {‘R’, ‘NR’} associated with recur-
rence (R) and non-recurrence (NR), respectively. The feature selection process was used to
determine the best seven classifying features as those with the highest feature importance.
A Random Forest classifier [26] was used to assess the feature importance.

Three model validation and evaluation strategies were implemented. These included
leave-one-out cross-validation (LOOCV), ten-fold cross-validation (CV), and nested ten-
fold cross-validation (CV). Among these strategies, only the last method reserved an
independent test set from each fold.

In LOOCV, the whole dataset was partitioned into k = N development-validation folds
in which each partition of the validation set consisted of one sample. We fitted a classifier
on the N folds of N − 1 samples and assessed its performance on the leave-one-out sample.
The final model determined was the one with the best average classification performance
with the leave-one-out observations.

In the ten-fold cross-validation (CV), the samples were divided into k = 10 cross-
validation (CV) folds. In each partition, the development set consisted of 9/10th of the
whole dataset, while the validation set consisted of 1/10th of the whole dataset. Classifiers
were fitted on the development set, and their performance was assessed on the validation
set. The final model was the one with the best average classification performance on the
ten validation sets.

In the nested ten-fold cross-validation (CV), the whole dataset was partitioned into
ten development-test partitions. In each partition, the development set consisted of 9/10th
samples, while the test set consisted of 1/10th samples. Subsequently, we partitioned each
development set into ten train-validation folds. In each fold, the training and validation
sets consisted of 9/10th and 1/10th of the samples in a development fold, respectively.
A grid search was performed in order to optimize the hyper-parameters of the classifier
using the train-validation partitions. The same cross-validation (CV) folds were used to
select an optimum model. The final model was the one with the best average performance
on the validation sets. Subsequently, the generalization performance of the final model
on the test sets was evaluated. The final nested cross-validation (CV) performance was
averaged over all ten test folds. The mean classification performance over ten iterations
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and at 95% confidence intervals were reported. Figure 1 represents the flowchart of the
study methodology.
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Figure 1. Flowchart showing the study methodology. General steps include patient selection, data
acquisition, feature extraction, and analysis and development of machine learning models.

3. Results
3.1. Patient Characteristics

Patients (n = 112) with cervix cancer were included in this study (Table 1). The
median age was 57 years (range of 29–93), and 78.5% had squamous cell carcinoma. Most
patients had stage IB (21%), IIB (45%), and IIIC (16%) disease. Lymph node involvement
was present in 23% of patients, with 20% in pelvic nodes and 3% in para-ortic nodes.
Most patients (94%) underwent 45 Gy in 25 fractions, with 43% treated with intensity-
modulated radiotherapy and the remaining 57% treated with 3D radiotherapy. Eighty-four
percent (n = 94) of patients underwent concurrent chemo-radiotherapy consisting of cis-
platinum administered weekly at a dose of 40 mg given intravenously. However, not
all patients completed the full treatment course. The remaining patients (n = 18) either
declined chemotherapy or had contraindications. All except three patients (97%) underwent
brachytherapy following external beam radiotherapy completion. One-third of patients
(31%, n = 35/112) developed tumor progression. Among these cases, 17 patients exhibited
locoregional metastasis, while 18 patients presented with distant metastasis.

3.2. Imaging Features Analysis

Figure 2 shows a representative anatomical (CT) image of the pelvic region overlaid
with radiomic texture maps of the cervical tumor from recurrence and non-recurrence
patient groups. The texture maps in Figure 2 include first-order statistical skewness, the
GLCM information measure of correlation (IMC) 1, GLCM IMC 2, GLCM correlation,
GLDM dependence non-uniformity, and GLDM Large-dependence High Gray-Level Em-
phasis for features analysis. These represent some of the features that were most distinct
between the recurrence and non-recurrence patient groups.

Figure 3 depicts the box-scatter and distribution plots of radiomic feature values for
the recurrence ‘R’ and non-recurrence ‘NR’ groups for all 36 radiomic features that have
been shown in Supplementary Figure S1. Among these features, three morphological-based
attributes demonstrated statistically significant differences (p < 0.05), as indicated by the
asterisks (*). These included sphericity, major axis length, and maximum 2D diameter
column. The mean values and standard deviations for sphericity were 0.68 ± 0.06 versus
0.64 ± 0.09 for non-recurrence ‘NR’ and recurrence ‘R’ groups, respectively. The mean
values and standard deviations for the major axis length were 67.5 ± 27.1 versus 72.6 ± 24.5
for non-recurrence ‘NR’ and recurrence ‘R’ groups, respectively. The mean values and stan-
dard deviations for the maximum 2D diameter column were 70.2 ± 22.8 versus 78.2 ± 21.4
for non-recurrence ‘NR’ and recurrence ‘R’, respectively.
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Table 1. Cohort demographics for recurrence and non-recurrence groups.

Recurrence (n = 35) Non-Recurrence (n = 77) Total (n = 112)

Age (Median, range) 58 (33–81) 57 (29–93) 57 (33–93)

Primary Tumor Size (median) 4.8 cm (2.0–8.2) 3.9 cm (1.5–8.9) 4.4 cm (1.5–8.9)

FIGO Staging of Cervical Cancer 2018

IB 2 (1.7%) 22 (19.6%) 24 (21.4%)

IIA 1 (0.89%) 2 (1.7%) 3 (2.6%)

IIB 10 (8.9%) 40 (35.7%) 50 (44.6%)

IIIA 0 (0.0%) 0 (0.0%) 0 (0.0%)

IIIB 4 (3.5%) 2 (1.7%) 6 (5.3%)

IIIC 10 (8.9%) 8 (7.1%) 18 (16.0%)

IVA 8 (7.1%) 3 (2.6%) 11 (9.8%)

Lymph Node Involvement

Pelvic 13 (11.6%) 10 (8.9%) 23 (20.5%)

Para-aortic 3 (2.6%) 0 (0.0%) 3 (2.6%)

Tumor Histology

Squamous Cell Carcinoma 26 (23.2%) 62 (55.3%) 88 (78.5%)

Adenocarcinoma 7 (6.2%) 10 (8.9%) 17 (15.1%)

Adenosquamous 1 (1.7%) 3 (2.6%) 4 (3.5%)

Neuroendocrine 1 (1.7%) 2 (1.7%) 3 (2.6%)

Histologic Tumor Grade

Well-differentiated 0 (0.0%) 6 (5.3%) 6 (5.3%)

Moderately differentiated 11 (9.8%) 23 (20.5%) 34 (30.3%)

Poorly differentiated 14 (12.5%) 21 (18.7%) 35 (31.2%)

Not available 10 (8.9%) 27 (24.1%) 37 (33.0%)

Radiation Dose

4500 Gy in 25 fractions 33 (29.4%) 76 (67.8%) 109 (97.3%)

3000 Gy in 10 fractions * 0 (0.0%) 1 (0.89%) 1 (0.8%)

3750 Gy in 15 fractions 1 (0.8%) 0 (0.0%) 1 (0.8%)

5040 Gy in 28 fractions 1 (0.8%) 0 (0.0%) 1 (0.8%)

Brachytherapy Dose

2800 Gy in 4 fractions 24 (21.4%) 41 (36.6%) 65 (58.0%)

2400 Gy in 3 fractions 7 (6.2%) 25 (22.3%) 32 (28.5%)

2750 Gy in 5 fractions 1 (0.8%) 8 (7.1%) 9 (8.0%)

800 Gy in 1 fractions 1 (0.8%) 0 (0.0%) 1 (0.8%)

700 Gy in 1 fractions 0 (0.0%) 1 (0.8%) 1 (0.8%)

550 Gy in 1 fractions 0 (0.0%) 1 (0.8%) 1 (0.8%)

None 2 (1.7%) 1 (0.8%) 3 (2.6%)

Concurrent chemotherapy

Yes 30 (26.7%) 64 (57.1%) 94 (83.9%)

No 5 (4.4%) 13 (11.6%) 18 (16.0%)

* One elderly and frail patient with stage IIB disease was treated with 30 Gy in 10 fractions and died due to
non-oncological causes in the absence of tumor progression.
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Figure 2. Representative radiomics feature maps overlaid on axial CT anatomical images of cervical
tumors from recurrence (R) and non-recurrence (NR) groups. The representative maps are those that
contribute to the best-performing seven features. The white scale bar indicates 2 cm. The color bar
indicates −1.20 to 0.35 for the GLCM lmc 1 parameter, −1.20 to 0.35 for the GLCM lmc 2 parameter,
−1.20 to 1.50 for the Skewness parameter, −0.30 to 0.30 for the GLCM Correlation parameter, −2.00
to 2.00 for the GLDM Dependence Non-Uniformity parameter, and −20,000.00 to 20,000.00 for the
GLDM Large Dependence High Gray-Level Emphasis parameter. These are the original ranges of
the parameters, prior to the feature normalization procedure. These texture parameters and their
representation as parametrized images reflect the tumor structure and heterogeneity. Differences can
be subtle and require machine learning approaches for interpretation.

The differentiation between recurrence ‘R’ and non-recurrence ‘NR’ groups using the
image texture feature shows first-order statistical features, morphological features, the
Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM), and
Gray-Level Dependence Matrix (GLDM) features. Figure 4 and Supplementary Figure S2
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shows the correlation between these radiomic features and demonstrates the best classifier
based on their importance.
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Figure 3. Box and scatter plots for selected radiomic features from the recurrence (‘R’) and the
non-recurrence (‘NR’) groups. These demonstrate the presence of discriminating features potentially
useful for building a classification model to separate recurrence samples from non-recurrence ones.
The asterisk (*) mark demonstrates a statistical significant difference (p-value < 0.05). Blue indicates
non-recurrence. Orange indicates recurrence.

3.3. Classification Performance

Tables 2–4 tabulates the classification performances across different model building
and evaluation strategies, including (A) LOOCV, (B) ten-fold CV, and (C) nested ten-fold
CV. In each strategy, we aimed to determine which machine learning classifier works best
for the particular dataset at hand. The CV approaches, including LOOCV, ten-fold CV, and
nested LOOCV, serve as frameworks/constructions for model building and evaluation.

Across strategies, the SVM-RBF classifier obtained the highest classification perfor-
mance; for example, using LOOCV, we obtained 86% sensitivity, 82% specificity, 84%
accuracy, and 0.82 AUC.

Amongst the strategies, only the nested ten-fold cross-validation (CV) presented an
out-of-sample test set for assessment of model generalization performance. The SVM-RBF
model demonstrated average performances of 76% sensitivity, 70% specificity, 74% accuracy,
and 0.79 AUC.
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Maximum, 8: Shape Least Axis Length, 9: GLDM Large Area High Gray-Level Emphasis, 10: GLDM 
Large Area Emphasis, 11: GLSZM Gray-Level Non-uniformity Normalized, 12: GLDM Gray-Level 
Non-Uniformity, 13: GLSZM Size Zone Non-uniformity, 14: GLCM Imc1, 15: First Order 10 
percentile, 16: First Order Mean, 17: First Order Skewness, 18: First Order Minimum, 19: First Order 
Entropy, 20: GLSZM Zone Entropy, 21: GLSZM Size Non-uniformity Normalized, 22: GLCM 
Difference Average, 23: Shape Surface Volume Ratio, 24: GLDM Small Dependence High Gray-Level 
Emphasis, 25: GLDM Dependence Entropy, 26:GLCM Contrast, 27: GLDM Large Dependence Low 
Gray-Level Emphasis, 28: GLCM Correlation, 29: First Order Interquartile Range, 30: First Order 90 
percentile, 31: GLCM Imc2, 32: GLCM Autocorrelation, 33: GLDM Large Dependence High Gray-
Level Emphasis, 34: Shape Elongation, 35: Shape Flatness, and 36: Shape Sphericity). 

3.3. Classification Performance 
Tables 2–4 tabulates the classification performances across different model building 

and evaluation strategies, including (A) LOOCV, (B) ten-fold CV, and (C) nested ten-fold 
CV. In each strategy, we aimed to determine which machine learning classifier works best 
for the particular dataset at hand. The CV approaches, including LOOCV, ten-fold CV, 
and nested LOOCV, serve as frameworks/constructions for model building and 
evaluation. 

Across strategies, the SVM-RBF classifier obtained the highest classification 
performance; for example, using LOOCV, we obtained 86% sensitivity, 82% specificity, 
84% accuracy, and 0.82 AUC. 

Amongst the strategies, only the nested ten-fold cross-validation (CV) presented an 
out-of-sample test set for assessment of model generalization performance. The SVM-RBF 
model demonstrated average performances of 76% sensitivity, 70% specificity, 74% 
accuracy, and 0.79 AUC. 

Figure 4. Correlation between image texture features using the Random Forest classifier model for
determining the best classifying feature. This figure displays inter-feature correlation. We observed
the presence of highly correlated features as indicated by the lighter coloring. If there was more than
one feature that was highly correlated, we selected only a single feature from this pool of correlated
features. Redundant features do not add quality to the classification model. Figure S2 (1: GLCM
Dependence Non-Uniformity, 2: Shape Maximum 2D Diameter Slice, 3: First Order Energy, 4: Shape
Maximum 2D Diameter Column, 5: Shape Major Axis Length, 6: First Order Kurtosis, 7: First Order
Maximum, 8: Shape Least Axis Length, 9: GLDM Large Area High Gray-Level Emphasis, 10: GLDM
Large Area Emphasis, 11: GLSZM Gray-Level Non-uniformity Normalized, 12: GLDM Gray-Level
Non-Uniformity, 13: GLSZM Size Zone Non-uniformity, 14: GLCM Imc1, 15: First Order 10 percentile,
16: First Order Mean, 17: First Order Skewness, 18: First Order Minimum, 19: First Order Entropy,
20: GLSZM Zone Entropy, 21: GLSZM Size Non-uniformity Normalized, 22: GLCM Difference
Average, 23: Shape Surface Volume Ratio, 24: GLDM Small Dependence High Gray-Level Emphasis,
25: GLDM Dependence Entropy, 26:GLCM Contrast, 27: GLDM Large Dependence Low Gray-Level
Emphasis, 28: GLCM Correlation, 29: First Order Interquartile Range, 30: First Order 90 percentile, 31:
GLCM Imc2, 32: GLCM Autocorrelation, 33: GLDM Large Dependence High Gray-Level Emphasis,
34: Shape Elongation, 35: Shape Flatness, and 36: Shape Sphericity).

Table 2. Classification performances Leave-one-out cross-validation (LOOCV).

Classifier Sensitivity Specificity Precision NPV Accuracy F1 Score AUC
K-NN 79.7 62.5 71.1 72.7 71.7 75.2 0.666

RF 79.7 75.0 78.7 76.2 77.5 79.2 0.784
SVM Linear 73.0 42.2 59.3 57.5 58.7 65.5 0.517
SVM-RBF 85.9 82.1 83.6 84.6 84.1 84.7 0.824

Table 3. Classification performances in Ten-fold cross-validation (CV).

Classifier Sensitivity Specificity Precision Accuracy F1 Score AUC
K-NN 71.8 62.9 67.8 67.4 68.8 0.716

RF 71.4 68.3 74.1 70.4 71.5 0.740
SVM Linear 52.1 66.9 61.5 58.6 54.7 0.635
SVM-RBF 75.0 80.0 81.3 77.4 76.8 0.830
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Table 4. Classification performances in Nested ten-fold cross-validation (CV). Mean over 10 trials
(95% confidence interval).

Classifier Sensitivity Specificity Precision Accuracy F1 Score AUC
K-NN 71.4 (3.87) 57.2 (2.56) 65.9 (1.96) 64.7 (2.01) 67.3 (2.61) 0.689 (0.030)

RF 69.3 (3.34) 60.2 (3.20) 67.8 (2.00) 65.1 (1.90) 67.6 (2.17) 0.705 (0.018)
SVM Linear 52.0 (3.17) 58.0 (3.66) 59.3 (3.07) 54.7 (2.37) 53.6 (2.62) 0.563 (0.028)
SVM-RBF 76.1 (1.47) 70.4 (4.09) 75.7 (2.81) 73.6 (2.06) 74.5 (1.72) 0.794 (0.029)

4. Discussion

CT-Based texture analysis has been shown to be a powerful tool for outcome predic-
tions for other primary malignancies. For example, Moghadas-Dastjerdi et al. constructed a
multivariate classification model using Gray Level Co-Occurrence Matrix (GLCM) features
from the baseline contrast-enhanced CT images of LABC tumors. They found that AdaBoost
decision tree models using these features predict the patient response with a cross-validated
AUC, accuracy, sensitivity, and specificity of 0.89, 84%, 80%, and 88%, respectively. Their
findings supported the significant potential of CT-based radiomics in predicting breast
tumor response to therapy and can be a powerful tool for outcome predictions [27,28]. Our
work represents an approach that applies this to computed tomography data, indicating
accuracies from 74% to 84%.

Several studies in the past have demonstrated the significant contribution of radiomics
and imaging modalities to develop recurrence prediction models, specifically for cervical
cancers [29–31]. One such study published by Reuzé et al. [29] utilized the texture analysis
of 18F-FDG positron emission tomography (PET) images to predict local recurrence in lo-
cally advanced cervical cancer (LACC) patients treated with combined chemoradiotherapy
(CRT) and brachytherapy. A combination of four features achieved the best validation
performance of AUC = 0.76 (CI = 0.66–0.87). The study demonstrated that a multivariate
model was more accurate in predicting local recurrence than a model based on the maxi-
mum standardized uptake value (SUVmax) feature of the PET image. For the comparison
of prognostic values between a radiomics model and clinical parameters, Lucia et al. [30]
used the radiomic features from both PET/CT and MRI to predict the prognosis of cervi-
cal cancer with clinical comparison. The results showed significantly higher prognostic
power of the radiomics feature from diffusion-weighted magnetic resonance imaging (DW-
MRI) and (PET) images as an independent predictor of local failure (accuracy of 94%)
and locoregional failure (100% accuracy) compared to clinical parameters (50–60%). How-
ever, a combination model of radiomics and clinical characteristics has, overall, displayed
excellent improvements in accuracy and outcomes, as seen in the study conducted by
Zhang et al. [31]. Their study was conducted to observe the radiomic signature for overall
survival (OS) and disease-free survival (DFS), as well as to show that a clinical parameter
model could display improvements in the model performance. The authors reported that
the combination model, which included a radiomics score and clinical parameter model,
outperformed other models in survival and prediction evaluation with the training cohort
(AUC, 0.860; 95% CI: 0.747–0.973) and validation cohort (AUC, 0.862; 95% CI: 0.738–0.986).

The use of a CT radiomics model would be a potential alternative to the MIR/PET
radiomics model, considering the cost and accessibility involved and that such images
are standard in planning radiation treatments. Specifically, CT imaging is cost-effective
and easily accessible since the majority of patients undergo CT planning during their
clinical evaluation, which can be utilized for the analysis. There are studies that report the
application of computed tomography (CT) based radiomics for the prediction of treatment
response in locally advanced breast cancer (LABC) [27,28]. Nevertheless, the application of
CT-based radiomics for predicting recurrence in cervical cancers is lacking overall.

This study was conducted with the intention of addressing the importance of recur-
rence prediction early in the disease course, to guide personalized treatment care, and
to study the benefit of more intense treatments for those patients most likely to have
a recurrence or to have a shorter follow-up as they are likely to have a recurrence. A
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model was developed utilizing baseline (CT) scans that predicted recurrences in cervical
cancer following radical-intent radiotherapy. Our radiomics model for the prediction of
recurrence in cervical cancers demonstrated a very favorable classification performance
beyond the development set. This was demonstrated by the nested ten-fold cross-validation
(CV) performance with the mean sensitivity, specificity, accuracy, and AUC of 76% (95%
confidence interval [CI] 1.5%), 70% (95% CI 4.1%), 74% (95% CI 2.1%), and 0.79 (95% CI
0.029), respectively. The accuracy increased to 84% with the leave-one-out cross-validation.
The proposed model demonstrated promising results, and the numbers herein are very
favorable for objectively proving the model performance in deployment tests, which is
crucial for demonstrating its generalization.

Univariate analysis of the radiomic features showed that three morphological features
were statistically and significantly different between the two groups (p < 0.05). Although
this analysis only indicated a limited number of discriminating features, the combination
of features can often result in interactions that result in models with decent classification
performance. Here, the best combination of seven features resulted in the highest valida-
tion performance, including the GLCM IMC 1, GLCM IMC 2, GLCM correlation, GLDM
Large Dependence High Gray Level Emphasis, GLDM non-uniformity, first-order statistics
skewness, and shape sphericity.

We conformed to the highest standard in statistical learning for model building and
evaluation by implementing a nested cross-validation (CV). For a relatively small dataset,
the cross-validation (CV) approach mitigates the risk of model bias due to data granularity
resulting from partitioning into train-validation-test folds. Still, we required separate training,
validation, and test partitions to fit a model, optimize and select a final model, and finally
assess the model’s performance beyond the development dataset. A nested cross-validation
(CV) allowed for the estimation of the model generalization in deployment. With only a
relatively small patient cohort (n = 112), the leave-one-out analysis may be a performance
overestimate, but the nested cross-validation may be an underestimate of performance.

To the best of our knowledge, this research represents one of a few studies documented
in the literature that employs a radiomics model based on computed tomography (CT)
for predicting recurrence in cervical cancer, demonstrating good predictive performance.
However, certain limitations may impact the classifier’s performance. Firstly, the relatively
small cohort size of cervical cancer patients may have decreased our ability to detect
promising outcomes. In addition, the prediction model was developed and evaluated
utilizing data from a single institution, where treatment planning, follow-up care, and
tumor recurrence or persistence evaluation were all uniform across all patients in the
cohort. In a global prediction model, using a large number of cases in a multicenter setting
and carrying out subgroup analysis will require attention to data acquisition uniformity
and the high quality of data. Considering the encouraging findings of our study and
the prevailing concerns regarding the robustness, reproducibility, and standardization
in radiomics research, conducting a large-scale cohort analysis in a multicenter setting
remains essential to validate that multiple centers can execute the required methodology to
an acceptable standard [32].

5. Conclusions

In conclusion, this study emphasizes the noticeable potential for computed tomog-
raphy (CT)-based radiomic models in predicting the recurrence of cervical cancer. These
models could play a pivotal role in shaping personalized treatment strategies in the fu-
ture. Ongoing research aims to broaden the predictive capabilities by incorporating larger
cohorts and exploring alternative radiomic models, thereby laying a solid foundation for
further advancements. This work offers valuable insights into the development of an
optimal and standardized radiomic approach, enhancing the accuracy and reliability of
predicting cervical cancer response.
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tion plots of radiomic feature values for the recurrence ‘R’ and non-recurrence ‘NR’ groups for
all 36 radiomic features Figure S2: The differentiation between recurrence ‘R’ and non-recurrence
‘NR’ groups using the image texture feature shows first-order statistical features, morphological
features, the Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM),
and Gray-Level Dependence Matrix (GLDM) features.
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CRT Concurrent chemo-radiotherapy
RT Radiation Therapy
R Recurrence
NR Non-recurrence
CT Computed Tomography
MRI Magnetic Resonance Imaging
DW-MRI Diffusion-Weighted Magnetic Resonance Imaging
PET Positron Emission Tomography
GLCM Gray-Level Co-Occurrence Matrix
GLDM Gray-Level Dependence Matrix
SMOTE Synthetic Minority Oversampling technique
LOOCV Leave-One-Out Cross-Validation
GLRLM Gray-Level Run Length Matrix
GLSZM Gray-Level Size Zone Matrix
CV Cross-Validation
ROI Region of Interest
CI Confidence Interval
LABC Locally Advanced Breast Cancer
NAC Neoadjuvant Chemotherapy
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