PBL Height Retrievals during ASKOS Campaign †
<p>Conceptual diagram of the application of the (<b>a</b>) Wavelet Covariance Transform method (WCT): wavelet function (red line) is derived using a signal (black line), and a local maximum is identified (purple line); (<b>b</b>) Gradient Method (GM): the gradient (red line) of a vertical profile (black line) is calculated, and a sharp change is located (purple line); (<b>c</b>) Threshold Method (TM): while the signal is lower than a threshold value, it is considered to be within PBL.</p> "> Figure 2
<p>Boundary layer height observed on 12 September 2022: PBL<sub>WVMR_PollyXT</sub> (blue triangles) is retrieved with WCT on WVMR product of PollyXT Lidar; PBL<sub>BSC_PollyXT</sub> (purple circles) is retrieved with WCT on 1064 nm BSC product of PollyXT Lidar; PBL<sub>BSC_Halo</sub> (black circles) is retrieved with WCT on BSC product of Halo Lidar; PBL<sub>TKE_Halo</sub> (maroon diamond) is retrieved with TM on TKE product of Halo Lidar; and PBL<sub>ECMWF</sub> (green square) is the output of ECMWF model. Orange shading corresponds to Volume Depolarization Ratio (VLDR) at 532 nm channel of PollyXT Lidar, and blue shading corresponds to TKE dissipation rate measured with Halo Lidar.</p> "> Figure 3
<p>Same as <a href="#environsciproc-26-00023-f002" class="html-fig">Figure 2</a> for 23 September 2022.</p> "> Figure A1
<p>Aerosol Optical Depth measured with CIMEL Sunphotometer for 12 and 23 September 2022.</p> "> Figure A2
<p>Global horizontal irradiance of shortwave radiation measured with a pyranometer for 12 September 2022 (blue line) and 23 September 2022 (orange line).</p> ">
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Case Study: 12 September 2022—Light Dust Load
3.2. Case Study: 23 September 2022—Heavy Dust Load
3.3. Comparison of the Two Cases
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- ASKOS. Available online: https://askos.space.noa.gr/data (accessed on 22 August 2023).
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Berlin/Heidelberg, Germany, 1988; pp. 2–21. [Google Scholar] [CrossRef]
- Vakkari, V.; O’Connor, E.J.; Nisantzi, A.; Mamouri, R.E.; Hadjimitsis, D.G. Low-level mixing height detection in coastal locations with a scanning Doppler lidar. Atmos. Meas. Tech. 2015, 8, 1875–1885. [Google Scholar] [CrossRef]
- Tsikoudi, I.; Marinou, E.; Vakkari, V.; Gialitaki, A.; Tsichla, M.; Amiridis, V.; Komppula, M.; Raptis, I.P.; Kampouri, A.; Daskalopoulou, V.; et al. PBL Height Retrievals at a Coastal Site Using Multi-Instrument Profiling Methods. Remote Sens. 2022, 14, 4057. [Google Scholar] [CrossRef]
- Amiridis, V.; Melas, D.; Balis, D.S.; Papayannis, A.; Founda, D.; Katragkou, E.; Giannakaki, E.; Mamouri, R.E.; Gerasopoulos, E.; Zerefos, C. Aerosol Lidar observations and model calculations of the Planetary Boundary Layer evolution over Greece, during the March 2006 Total Solar Eclipse. Atmos. Chem. Phys. 2007, 7, 6181–6189. [Google Scholar] [CrossRef]
- Tombrou, M.; Dandou, A.; Helmis, C.; Akylas, E.; Angelopoulos, G.; Flocas, H.; Assimakopoulos, V.; Soulakellis, N. Model evaluation of the atmospheric boundary layer and mixed-layer evolution. Bound. Layer Meteorol. 2007, 124, 61–79. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Engelmann, R.; Althausen, D. Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys. 2008, 8, 7281–7296. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Hu, X.-M.; Wang, Z.; Zhang, S. A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data. Remote Sens. 2019, 11, 1590. [Google Scholar] [CrossRef]
- Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I.S.; Amiridis, V.; et al. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation. Atmos. Meas. Tech. 2016, 9, 1767–1784. [Google Scholar] [CrossRef]
- Pearson, G.; Davies, F.; Collier, C. An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer. J. Atmos. Ocean. Technol. 2009, 26, 240–250. [Google Scholar] [CrossRef]
- ECMWF ERA5 Information. Available online: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (accessed on 15 August 2022).
- Vogelezang, D.H.P.; Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations. Bound. Layer Meteorol. 1996, 81, 245–269. [Google Scholar] [CrossRef]
- Brooks, I.M. Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles. J. Atmos. Ocean. Technol. 2003, 20, 1092–1105. [Google Scholar] [CrossRef]
- Li, H.; Liu, B.; Ma, X.; Jin, S.; Ma, Y.; Zhao, Y.; Gong, W. Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data. Atmos. Meas. Tech. 2021, 14, 5977–5986. [Google Scholar] [CrossRef]
- Gutleben, M.; Groß, S.; Wirth, M.; Emde, C.; Mayer, B. Impacts of water vapor on Saharan Air Layer radiative heating. Geophys. Res. Lett. 2019, 46, 14854–14862. [Google Scholar] [CrossRef]
- ACTRIS, The Aerosol, Clouds and Trace Gases Research Infrastructure. Available online: https://www.actris.eu (accessed on 22 August 2023).
Time Space (UTC) | PBLBSC_PollyXT | PBLBSC_Halo | PBLTKE_Halo | PBLECMWF |
---|---|---|---|---|
12 September 10:00–14:00 1 | 918.6 ± 86.4 m | 784 ± 24 m | 811.2 ± 64.4 m | 821.3 ± 35.3 m |
23 September 10:00–14:00 1 | 672.9 ± 27.3 m | 698.7 ± 25.3 m | 782.4 ± 21.5 m | 748.4 ± 27.7 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsikoudi, I.; Marinou, E.; Voudouri, K.; Koutsoupi, I.; Drakaki, E.; Kampouri, A.; Vakkari, V.; Baars, H.; Giannakaki, E.; Tombrou, M.; et al. PBL Height Retrievals during ASKOS Campaign. Environ. Sci. Proc. 2023, 26, 23. https://doi.org/10.3390/environsciproc2023026023
Tsikoudi I, Marinou E, Voudouri K, Koutsoupi I, Drakaki E, Kampouri A, Vakkari V, Baars H, Giannakaki E, Tombrou M, et al. PBL Height Retrievals during ASKOS Campaign. Environmental Sciences Proceedings. 2023; 26(1):23. https://doi.org/10.3390/environsciproc2023026023
Chicago/Turabian StyleTsikoudi, Ioanna, Eleni Marinou, Kalliopi Voudouri, Iliana Koutsoupi, Eleni Drakaki, Anna Kampouri, Ville Vakkari, Holger Baars, Elina Giannakaki, Maria Tombrou, and et al. 2023. "PBL Height Retrievals during ASKOS Campaign" Environmental Sciences Proceedings 26, no. 1: 23. https://doi.org/10.3390/environsciproc2023026023
APA StyleTsikoudi, I., Marinou, E., Voudouri, K., Koutsoupi, I., Drakaki, E., Kampouri, A., Vakkari, V., Baars, H., Giannakaki, E., Tombrou, M., & Amiridis, V. (2023). PBL Height Retrievals during ASKOS Campaign. Environmental Sciences Proceedings, 26(1), 23. https://doi.org/10.3390/environsciproc2023026023