An Optimized H5 Hysteresis Current Control with Clamped Diodes in Transformer-Less Grid-PV Inverter
<p>Main circuit of HCH5-D2 inverter topology.</p> "> Figure 2
<p>Resonant circuits of the H5 inverter. (<b>a</b>) Resonant circuit in terms of pole voltages. (<b>b</b>) Resonant circuit in terms of DM and CM voltages.</p> "> Figure 3
<p>Resonant circuit of H5 inverter with current sources.</p> "> Figure 4
<p>Resonant circuits of H5 inverter in various voltage and current source configurations. (<b>a</b>) A single voltage and current source. (<b>b</b>) In the form of two voltage sources.</p> "> Figure 5
<p>Simplified resonant circuit of H5 inverter in the form of single common-mode voltage source.</p> "> Figure 6
<p>Different modes of operation of HCH5D2. Mode (<b>1</b>). Positive power transfer. Mode (<b>2</b>). Positive freewheeling. Mode (<b>3</b>). Negative power transfer. Mode (<b>4</b>). Negative freewheeling.</p> "> Figure 7
<p>A control structure diagram for HCH5D2 inverter system, red arrow representing the five gating signals passed to the MOSFETs of the proposed inverter.</p> "> Figure 8
<p>A visual representation of hysteresis band current control.</p> "> Figure 9
<p>Simulation results of the HCH5-D2 topology showing the DC-link voltage and the corresponding switching pattern. The left plot (<b>a</b>) illustrates the stable DC-link voltage, while the right diagram (<b>b</b>) shows the switching pattern for different switches (S1–S5) over time.</p> "> Figure 10
<p>Simulation results of HCH5-D2 topology. Together, the graphs demonstrate the voltage behavior for both common and differential modes in the simulation of the clamped H5 inverter topology, reflecting stability in common mode and regular AC-like switching in differential mode.</p> "> Figure 11
<p>Comparison of simulation results: current. The HCH5-D2 topology shows almost no leakage current, indicating a more efficient and safer design compared to the fluctuating spikes of leakage current in the H4 topology.</p> "> Figure 12
<p>Comparative FFT analysis.</p> "> Figure 13
<p>Simulation results of the HCH5-D2 topology showing the grid voltage and injected grid current. The voltage and current waveforms are sinusoidal, indicating stable operation of the inverter.</p> "> Figure 14
<p>Experimental setup of HCH5D2 inverter topology.</p> ">
Abstract
:1. Introduction
2. Proposed HCH5-D2 Inverter Topology
2.1. Conversion of Voltage Sources into Current Sources
2.2. Conversion of Current Source into Voltage Source
2.3. Leakage Current and Resonant Frequency
3. Modes of Operation in Proposed HCH5-D2 Inverter
4. Dual Loop Control Strategy for the Proposed HCH5-D2 Inverter
4.1. Outer DC Link Voltage Control Loop
4.2. Hysteresis Current Control (Inner Grid)
5. Results
5.1. DC-Link Analysis
5.2. CMV and DMV Analysis
5.3. Leakage Current Comparison
5.4. Total Harmonic Distortion (THD) Analysis
5.5. Grid Voltage and Current
6. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BESS | Battery Energy Storage System |
CMV | Common Mode Voltage |
DERs | Distributive Energy Resources |
DMV | Differential Mode Voltage |
EMI | Electromagnetic Interference |
HBCC | Hysteresis Band Current Control |
LC | Leakage Current |
PV | Photovoltaics |
TLI | Transformer-Less Inverter |
References
- Awasthi, A.; Karthikeyan, V.; Das, V.; Rajasekar, S.; Singh, A.K. Energy storage systems in solar-wind hybrid renewable systems. In Smart Energy Grid Design for Island Countries: Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 189–222. [Google Scholar]
- Phuyal, S.; Shrestha, S.; Sharma, S.; Subedi, R.; Khan, S. Predictive Load Management Using IoT and Data Analytics. In Proceedings of the International Conference on Artificial Intelligence of Things; Springer: Berlin/Heidelberg, Germany, 2023; pp. 153–168. [Google Scholar]
- Vakacharla, V.R.; Gnana, K.; Xuewei, P.; Narasimaharaju, B.; Bhukya, M.; Banerjee, A.; Sharma, R.; Rathore, A.K. State-of-the-art power electronics systems for solar-to-grid integration. Sol. Energy 2020, 210, 128–148. [Google Scholar] [CrossRef]
- Shayestegan, M. Overview of grid-connected two-stage transformer-less inverter design. J. Mod. Power Syst. Clean Energy 2018, 6, 642–655. [Google Scholar] [CrossRef]
- Salem, M.; Richelli, A.; Yahya, K.; Hamidi, M.N.; Ang, T.Z.; Alhamrouni, I. A comprehensive review on multilevel inverters for grid-tied system applications. Energies 2022, 15, 6315. [Google Scholar] [CrossRef]
- Khan, M.N.H.; Forouzesh, M.; Siwakoti, Y.P.; Li, L.; Kerekes, T.; Blaabjerg, F. Transformerless Inverter Topologies for Single-Phase Photovoltaic Systems: A Comparative Review. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 805–835. [Google Scholar] [CrossRef]
- Xiao, H. Overview of Transformerless Photovoltaic Grid-Connected Inverters. IEEE Trans. Power Electron. 2021, 36, 533–548. [Google Scholar] [CrossRef]
- Biswas, M.; Biswas, S.P.; Islam, M.R.; Rahman, M.A.; Muttaqi, K.M.; Muyeen, S.M. A new transformer-less single-phase photovoltaic inverter to improve the performance of grid-connected solar photovoltaic systems. Energies 2022, 15, 8398. [Google Scholar] [CrossRef]
- Pourmirasghariyan, M.; Zarei, S.F.; Hamzeh, M. DC-system grounding: Existing strategies, performance analysis, functional characteristics, technical challenges, and selection criteria-a review. Electr. Power Syst. Res. 2022, 206, 107769. [Google Scholar] [CrossRef]
- VDE012611; Automatic Disconnection Device Between a Generator and the Public Low Voltage Grid. Kostal Solar Electric GmbH: Freiburg, Germany, 2008.
- Calais, M.; Agelidis, V.G.; Meinhardt, M. Multilevel converters for single-phase grid connected photovoltaic systems: An overview. Sol. Energy 1999, 66, 325–335. [Google Scholar] [CrossRef]
- Blaacha, J.; Aboutni, R.; Aziz, A. A comparative study between a unipolar and a bipolar PWM used in inverters for photovoltaic systems. In Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2020, Saidia, Morocco, 13–15 April 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 353–360. [Google Scholar]
- Xiao, H.; Wang, X. Full-Bridge Transformerless PV Grid-Connected Inverters. In Transformerless Photovoltaic Grid-Connected Inverters; Springer: Singapore, 2021; pp. 35–128. [Google Scholar] [CrossRef]
- Sun, J.; Sun, H.; Jiang, J. An improved modulation method for low common-mode current non-isolated series simultaneous power supply dual-input inverters for new energy generation applications. Electr. Eng. 2024, 106, 1–11. [Google Scholar] [CrossRef]
- Victor, M.; Greizer, F.; Bremicker, S.; Hübler, U. Method of Converting a Direct Current Voltage from a Source of Direct Current Voltage, More Specifically from a Photovoltaic Source of Direct Current Voltage, into a Alternating Current Voltage. US Patent 7,411,802, 12 August 2008. [Google Scholar]
- Ji, B.; Wang, J.; Zhao, J. High-Efficiency Single-Phase Transformerless PV H6 Inverter With Hybrid Modulation Method. IEEE Trans. Ind. Electron. 2013, 60, 2104–2115. [Google Scholar] [CrossRef]
- Schmidt, H.; Siedle, C.K.J. Inverter for transforming a DC voltage into an AC current or an AC voltage. 2003. Available online: https://patents.google.com/patent/EP1369985A2/en (accessed on 7 November 2024).
- Liao, Z.; Cao, C.; Qiu, D.; Xu, C. Single-Phase Common-Ground-Type Transformerless PV Grid-Connected Inverters. IEEE Access 2019, 7, 63276–63287. [Google Scholar] [CrossRef]
- Xiao, H.; Xie, S.; Chen, Y.; Huang, R. An Optimized Transformerless Photovoltaic Grid-Connected Inverter. IEEE Trans. Ind. Electron. 2011, 58, 1887–1895. [Google Scholar] [CrossRef]
- Wei, B.; Guo, X.; Guerrero, J.; Savaghebi, M. Leakage Current Suppression with A Novel Six-Switch Photovoltaic Grid-Connected Inverter. In Proceedings of the 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, 1–4 September 2015; IEEE Press: Piscataway, NJ, USA, 2015; pp. 22–26. [Google Scholar] [CrossRef]
- Barzegarkhoo, R.; Forouzesh, M.; Lee, S.S.; Blaabjerg, F.; Siwakoti, Y.P. Switched-Capacitor Multilevel Inverters: A Comprehensive Review. IEEE Trans. Power Electron. 2022, 37, 11209–11243. [Google Scholar] [CrossRef]
- Grigoletto, F. Multilevel Common-Ground Transformerless Inverter for Photovoltaic Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 831–842. [Google Scholar] [CrossRef]
- Guo, X.; He, R.; Jia, X.; Rojas, C.A. Leakage current reduction of transformerless three-phase cascaded multilevel PV inverter. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Rio de Janeiro, Brazil, 3–5 June 2015; pp. 1110–1114. [Google Scholar] [CrossRef]
- Dhara, S.; Somasekhar, V. A nine-level transformerless boost inverter with leakage current reduction and fractional direct power transfer capability for PV applications. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 7938–7949. [Google Scholar] [CrossRef]
- Srivastava, A.; Seshadrinath, J. Common Mode Leakage Current Analysis of 1ϕ Grid-Tied Transformer Less H-Bridge PV Inverter. In Proceedings of the 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, 21–23 January 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Estévez-Bén, A.A.; Alvarez-Diazcomas, A.; Macias-Bobadilla, G.; Rodríguez-Reséndiz, J. Leakage current reduction in single-phase grid-connected inverters—A review. Appl. Sci. 2020, 10, 2384. [Google Scholar] [CrossRef]
- Lopez, V.; Žindžiūtė, U.; Ziar, H.; Zeman, M.; Isabella, O. Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point Tracking Algorithm. Energies 2022, 15, 7562. [Google Scholar] [CrossRef]
- Bode, G.; Holmes, D. Implementation of three level hysteresis current control for a single phase voltage source inverter. In Proceedings of the 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No. 00CH37018), Galway, Ireland, 23 June 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 33–38. [Google Scholar]
- Saleem, M.; Ko, B.S.; Kim, S.H.; Kim, S.i.; Chowdhry, B.S.; Kim, R.Y. Active disturbance rejection control scheme for reducing mutual current and harmonics in multi-parallel grid-connected inverters. Energies 2019, 12, 4363. [Google Scholar] [CrossRef]
Modes | ||||
---|---|---|---|---|
Mode 1 (Positive power transfer) | 0 | |||
Mode 2 (Positive freewheeling) | 0 | |||
Mode 3 (Negative power transfer) | 0 | |||
Mode 4 (Negative freewheeling) | 0 |
Parameters | Symbol | Value |
---|---|---|
Grid voltage | 220 Vrms | |
Input voltage | 400 V | |
Input capacitors | 1500 μF | |
Output filter inductors | 4.06 mH | |
Equivalent parasitic capacitor | 24 nF | |
MPPT switching frequency | 20 kHz | |
Output power | 2200 W |
Topology | Leakage Current (RMS) |
---|---|
H4 with unipolar modulation | 285 mA |
H5 | 1.35 mA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuyal, S.; Shrestha, S.; Sharma, S.; Subedi, R.; Panjiyar, A.K.; Gautam, M. An Optimized H5 Hysteresis Current Control with Clamped Diodes in Transformer-Less Grid-PV Inverter. Electricity 2025, 6, 1. https://doi.org/10.3390/electricity6010001
Phuyal S, Shrestha S, Sharma S, Subedi R, Panjiyar AK, Gautam M. An Optimized H5 Hysteresis Current Control with Clamped Diodes in Transformer-Less Grid-PV Inverter. Electricity. 2025; 6(1):1. https://doi.org/10.3390/electricity6010001
Chicago/Turabian StylePhuyal, Sushil, Shashwot Shrestha, Swodesh Sharma, Rachana Subedi, Anil Kumar Panjiyar, and Mukesh Gautam. 2025. "An Optimized H5 Hysteresis Current Control with Clamped Diodes in Transformer-Less Grid-PV Inverter" Electricity 6, no. 1: 1. https://doi.org/10.3390/electricity6010001
APA StylePhuyal, S., Shrestha, S., Sharma, S., Subedi, R., Panjiyar, A. K., & Gautam, M. (2025). An Optimized H5 Hysteresis Current Control with Clamped Diodes in Transformer-Less Grid-PV Inverter. Electricity, 6(1), 1. https://doi.org/10.3390/electricity6010001