
Citation: Mamun, A.; Kiari, M.;

Benyoucef, A.; Sabantina, L.

Advancement of Electrospun Carbon

Nanofiber Mats in Sensor Technology

for Air Pollutant Detection. Eng. Proc.

2024, 67, 82. https://doi.org/

10.3390/engproc2024067082

Academic Editor: Juan Francisco

García Martín

Published: 3 January 2025

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Advancement of Electrospun Carbon Nanofiber Mats in Sensor
Technology for Air Pollutant Detection †

Al Mamun 1 , Mohamed Kiari 2 , Abdelghani Benyoucef 3 and Lilia Sabantina 1,4,*

1 Department of Textile and Paper Engineering, Universitat Politècnica de València, Pza Ferrandiz y
Carbonell s/n, 03801 Alcoy, Spain; amamun@doctor.upv.es

2 Institute of Materials, Department of Physical Chemistry, University of Alicante (UA), 03080 Alicante, Spain;
kiarimohamed29@gmail.com

3 L.S.T.E. Laboratory, University of Mustapha Stambouli Mascara, Mascara 29000, Algeria;
a.benyoucel@univ-mascara.dz

4 Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences-HTW Berlin,
12459 Berlin, Germany

* Correspondence: lilia.sabantina@htw-berlin.de or lsabant@doctor.upv.es
† Presented at the 3rd International Electronic Conference on Processes—Green and Sustainable Process

Engineering and Process Systems Engineering (ECP 2024), 29–31 May 2024; Available online:
https://sciforum.net/event/ECP2024.

Abstract: The use of electrospun carbon nanofibers (ECNs) has been the focus of considerable in-
terest due to their potential implementation in sensing. These ECNs have unique structural and
morphological features such as high surface area-to-volume ratio, cross-linked pore structure, and
good conductivity, making them well suited for sensing applications. Electrospinning technology,
in which polymer solutions or melts are electrostatically deposited, enables the production of high-
performance nanofibers with tailored properties, including fiber diameter, porosity, and composition.
This controllability enables the use of ECNs to optimize sensing applications, resulting in improved
sensor performance and sensitivity. While carbon nanofiber mats have potential for sensor applica-
tions, several challenges remain to improve selectivity, sensitivity, stability and scalability. Sensor
technologies play a critical role in the global sharing of environmental data, facilitating collaboration
to address transboundary pollution issues and fostering international cooperation to find solutions to
common environmental challenges. The use of carbon nanofibers for the detection of air pollutants
offers a variety of possibilities for industrial applications in different sectors, ranging from healthcare
to materials science. For example, optical, piezoelectric and resistive ECNs sensors effectively monitor
particulate matter, while chemoresistive and catalytic ECNs sensors are particularly good at detecting
gaseous pollutants. For heavy metals, electrochemical ECNF sensors offer accurate and reliable
detection. This brief review provides in-sights into the latest developments and findings in the
fabrication, properties and applications of ECNs in the field of sensing. The efficient utilization of
these resources holds significant potential for meeting the evolving needs of sensing technologies in
various fields, with a particular focus on air pollutant detection.

Keywords: sensors; electrospun nanofiber mats; carbon nanofibers; air pollutant detection

1. Introduction

Recent advancements in sensing materials are playing a crucial in enhancing the
sensitivity, selectivity, and stability of sensors for industrial applications in environmental
monitoring and pollutant detection. These components are of great importance in the
enhancement of sensor sensitivity, selectivity and stability, which are essential for accu-
rate environmental monitoring and pollutant detection [1]. Recently, electrospun carbon
nanofiber (ECN) mats have attracted considerable attention owing to their exceptional
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structural properties, impressive mechanical strength, and remarkable electrical conductiv-
ity [2]. These nanomaterials are mainly prepared using electrospinning technology from a
variety of bio-based and synthetic polymers or, for example, by adding magnetic particles.
The unique combination of properties of ECN mats, including their large surface area,
tunable porosity, exceptional electrical conductivity, and mechanical robustness, make
them an ideal substrate for a variety of sensing applications [3,4]. In particular, the use of
electrospun ECN mats has proven to be a versatile and promising platform for the advance-
ment of sensors in various fields ranging from environmental monitoring to healthcare
and beyond [5–7]. These sensors can effectively utilize the advantageous properties of
ECN mats to detect and quantify various analytes, including gasses, chemicals, biological
molecules and physical parameters [8,9]. Electrospinning involves applying an electric
field to a polymer solution or melt, resulting in the formation of ultrafine fibers that can
be collected as nonwovens or well-organized arrays. After a carbonization step, these
nanofibers transform into a conductive and porous network that serves as an ideal basis
for numerous sensor applications. For example, Hou et al. developed a cellulose–nanofiber
capacitive humidity sensor with high sensitivity and fast recovery [10]. Caesium–cellulose
nanocomposites and their effects on detecting nitrogen gas were investigated by Park et al.
and showed promising applications in gas sensing [11]. De Souza et al. investigated carbon
nanofibers grown in CaO that could sense themselves in mortar for structural monitor-
ing in building materials [12]. Free-standing, translucent ZnO–cellulose–nanocomposite
films with promising unique properties for UV sensing applications were developed by
Komatsu et al. [13]. Chemiresistive gas sensors based on chemical vapor deposition (CVD)-
grown CNF mats for NO2 detection at room temperature were investigated by Lapekin
et al. [14]. Meenakshi et al. prepared carbon nanofiber (CNF) mats to form CNF/CuWO4
nanocomposites by a simple hydrothermal method and investigated the composite for
electrochemical detection of hazardous organic pollutants such as 4-nitrotoluene (4-NT).
The well-defined CNF/CuWO4 nanocomposite was used as a glassy carbon electrode
(GCE) modifier to form a CuWO4/CNF/GCE for the detection of 4-NT. The electrode
showed a remarkable sensitivity of 7.258 µA µM−1 cm−2, a low detection limit of 86.16 nM,
and a long linear range of 0.2–100 µM. The electrode was characterized by high selectivity,
acceptable stability of about 90% and good reproducibility [15]. Karlapudi et al. combined
electrospinning and spray coating processes to fabricate nanofibers with conductive sensing
properties. Their electrosprayed CNF mats exhibited excellent performance characteris-
tics. These included exceptional sensitivity with a gauge factor of about 28.2 over a strain
range of 0% to 80%. The CNF mats exhibited high ductility of up to 184%, demonstrating
their elasticity under load and remarkable durability [16]. CNF mats have demonstrated
remarkable versatility and potential as a platform for advanced sensors, particularly in the
context of environmental monitoring. These nanofibers are capable of effectively detecting
a wide range of pollutants, including gaseous contaminants such as CO, NO2, NH3, and
volatile organic compounds such as benzene and toluene. Furthermore, they are capable of
identifying heavy metal ions (Pb2+, Cd2+, Hg2+) and organic pollutants such as pesticides,
herbicides, and phenolic compounds. Additionally, CNFs can be integrated with piezo-
electric or optical systems for monitoring particulate matter, thereby demonstrating their
adaptability for air quality assessment applications. In addition, ECNFs can be integrated
with piezoelectric or optical systems to monitor particles, enabling versatile applications in
air and water quality monitoring. This brief review highlights the use of the properties of
CNF mats for the effective detection and quantification of various analytes, such as gasses
and chemicals, for the purpose of air pollutant detection.

2. Fabrication Process of Electrospun Carbon Nanofiber Mats

The fabrication of electrospun ECN mats involves a multistep process, and variations
in parameters, equipment, and materials are critical to the design of the final ECN mat
product [17–20]. The process starts with the selection of a suitable polymer material, which
can be natural or synthetic, depending on the desired properties of the ECN mats and the
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possible material fusion with, for example, ceramics or metal nanoparticles. Nanofibers
can be made from a wide variety of natural and synthetic polymers, although natural
polymers are more likely to contribute to sustainability. Both natural polymers, e.g.,
polysaccharides, lignin, collagen, cellulose, and synthetic polymers, e.g., polyacrylonitrile
(PAN), poly(lactic acid) (PLA), acrylonitrile butadiene styrene (ABS), polyurethane (PU),
are widely utilized in electrospinning technology. Common synthetic options include
polyvinyl alcohol (PVA), poly(ethylene glycol) (PEG), polystyrene (PS), polypropylene
(PP), polyethylene terephthalate (PET), and polyamide-6 (PA-6). Among these, PAN and
lignin are frequently employed for fabricating carbon nanofiber mats due to their favorable
properties for carbonization [21]. The selected polymer is usually dissolved in a compatible
solvent such as dimethylformamide (DMF), dimethylacetamide (DMAc), tetrahydrofuran
(THF), or dimethylsulfoxide (DMSO). These solvents are known for their good solubility
and volatility, which are essential for the electrospinning process [22,23]. The advantage of
electrospinning technology is the simplicity of the composition of bio-based or synthetic
polymers or a mix of both (see Figure 1a PAN with magnetite particles) and the possibility
of adding, for example, magnetic particles (see Figure 1b PAN/gelatin nanofiber mat) in
one step.
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Figure 1. (a) Atomic force microscopy (AFM) image of magnetic electrospun nanofiber mat. The scale
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nanofiber mats on a 3D-printed sample. The scale indicates 50 µm.

There is a growing interest in the use of electrospinning for the production of nanofiber
mats, with a variety of techniques being employed, including melt, coaxial, multi-jet, and
bubble electrospinning. Electrospinning is the most prevalent and uncomplicated tech-
nique, capable of generating uninterrupted nanofibers from materials including polymers,
composites, ceramics and nanoparticles [19]. The electrospinning process requires a well-
calibrated system consisting of a spinneret, a high-voltage supply and a collector. By
applying a high voltage to the spinneret, an electric field is generated between the poly-
mer solution and the collector, and a Taylor cone structure is formed. As the electrostatic
forces exceed the surface tension of the solution within the Taylor cone, nanofibers are
formed and solvent evaporates [24]. There are two main types of electrospinning processes:
needle-based and needleless. Needle-based systems can be oriented either vertically or
horizontally, whereas needleless systems employ rotating or stationary spinnerets to gener-
ate fibers directly from liquid surfaces through Taylor cone formation. The quality of the
fibers produced is dependent upon a number of factors, including the properties of the
solution, the operating parameters employed, and the environmental conditions in which
the process is conducted [25]. These nanofibers are collected on the grounded collector
to form nonwoven mats or ordered arrays. Investigation of the surface morphology of
electrospun nanofibers can be performed using various techniques such as a scanning
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electron microscope (SEM), atomic force microscopic (AFM) or confocal laser scanning
microscope (CLSM).

The precise electrospinning process enables the properties of CNF mats to be tailored
for specific applications, with careful consideration of process parameters, equipment
and materials used [26]. The use of polymers such as polyacrylonitrile (PAN) involves a
two-step process: first, a stabilization phase in an oxygen-rich environment to increase
thermal resistance, usually by 280 ◦C [27], and then carbonization at high temperatures
(usually above 800 ◦C) in an inert atmosphere, resulting in the conversion of the polymer
into pure CNF mats [28,29].

3. Functionalization and Surface Modification of Carbon Nanofiber Mats

Key principles for sensor operation include selectivity, sensitivity, linearity, response
time, and calibration. Factors such as sensor type, transduction mechanism, materials, op-
erating conditions, power requirements, data interface, and packaging must be considered
when designing an efficient sensor. Sensor performance evaluation includes assessment
of accuracy, precision, resolution, sensitivity, range, response time, stability, noise, and
interference. Sensors play an important role in various applications and enable the measure-
ment of different characteristics. Understanding critical design factors and performance
characteristics is critical to developing reliable and accurate sensors that drive technical
and scientific progress [30–34].

To achieve high selectivity in sensor applications, the surface properties of CNF
mats often need to be tailored to interact specifically with target molecules or analytes.
This can be achieved by functionalization and surface modification methods [35]. In
covalent functionalization, specific functional groups are chemically attached to CNF mats,
enabling precise control over their distribution and nature. Non-covalent functionalization
methods bind functional molecules or polymers to CNF mats through weak interactions
such as stacking, hydrogen bonds, or van der Waals forces and offer reversibility and
suitability for specific applications. Some researchers are contributing to progress in
the field of functionalization and modification of carbon nanofiber mats. Hung et al.
utilized specific surface area measurements and mass loss analysis to investigate the
interaction between carbon nanofibers and multilayer carbon nanotubes produced via
catalytic pyrolysis of CH4 with alkalis [36]. CVD enables the controlled deposition of thin
films or functionalized layers on CNF mats, which is advantageous for the preparation of
metal nanoparticles or metal oxides to improve sensor selectivity [37]. Molecular imprinting
creates specific binding sites for target molecules within CNF mats by adding template
molecules during fabrication, resulting in high selectivity. Surface activation techniques
such as plasma treatment or chemical etching alter the surface chemistry of CNF mats
and improve interactions with specific analytes. In self-assembled monolayers (SAMs),
functional molecules are self-assembled in a monomolecular layer on CNF mats, which can
be tailored to specific analytes by selecting appropriate functional molecules [38–40]. In a
study by Górska et al., a nanocomposite for new electrochemical sensors was obtained by
combining the electrospinning of precursor nanofibers, high-temperature heat treatment,
and catalytic CVD synthesis of carbon nanotubes directly on the surface of nanofibers [41].

4. Sensor Applications in Air Pollutant Detection

CNF mats have garnered widespread recognition for their versatility in sensor ap-
plications, capitalizing on their unique structural and electrical attributes. These sensors
harness the remarkable properties of CNF mats to detect and quantify a diverse range of
factors, including gasses, chemicals, biological elements, pressure, humidity, temperature,
and strain [42,43]. Monitoring the presence of hazardous gasses in industrial settings is
crucial to ensure worker safety and prevent accidents [43].

Electrospun carbon nanofiber mats serve as effective sensitive materials in gas sensors
for the detection of various air pollutants, including VOCs, nitrogen oxides (NOx), sulfur
dioxide (SO2), and CO. Their large surface area and porous structure provide a rich inter-
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face for gas adsorption, thereby enhancing sensor sensitivity. In addition, functionalization
of these nanofibers with specific receptor molecules enables selective detection of targeted
pollutants. Ding et al. review the use of electrospun nanofibers in gas sensors, highlighting
their larger surface area and superior sensitivity compared to flat films [44]. For example,
Platonov et al. stress the critical requirement for safety sensors to facilitate hydrogen use
under varying oxygen conditions. Their study assesses electrospun ZnO and ZnO/Pd
nanofibers for detecting CO, NH3, and H2 in diverse oxygen settings. The results indicate
that ZnO/Pd nanofibers exhibit remarkable sensitivity to NH3 and H2, making them a
promising choice for hydrogen detection in low-oxygen environments due to factors like
palladium hydride formation, potential barrier adjustment, and alterations in ZnO charac-
teristics [45]. Chen et al. review recent advancements in electrospun gas sensors capable
of detecting a variety of gasses. Various nanomaterial shapes and compositions show
excellent sensor performance with high sensitivity and stability, low humidity interference,
and fast response times [46].

Electrospun carbon nanofiber mats find application in particulate matter (PM) sensors,
allowing for the detection and quantification of airborne particulate matter—a vital metric
for evaluating air quality. These mats are proficient at trapping fine particulates on their
surface, and variations in electrical conductivity can be directly linked to the concentration
of PM in the surrounding air. For example, Halicka and Cabaj discussed the development
of aptamer and nanocomposite-based sensors for detecting various metal ions such as Hg2+,
Cd2+, Pb2+, and As3+. These sensors incorporate CNF or nanowhiskers, often enhanced
with metal nanoparticles like PtNPs, AuNPs, and Fe-CNFs. Electrochemical techniques
like cyclic voltammetry (CV) and anodic stripping voltammetry (ASV) are employed for
analysis, resulting in sensors with outstanding sensitivity, low limits of detection (LOD),
and proven selectivity and stability during real sample analysis [47].

VOCs significantly impact air quality and indoor pollution. CNF mats offer a valuable
solution for VOC detection by functionalizing them with materials that react to specific
VOCs, enabling real-time monitoring and early identification of harmful substances. For
example, Yin et al. provide a comprehensive review of carbon-based nanomaterials in VOC
gas detection, emphasizing sensor construction strategies and applications in environmen-
tal monitoring and disease diagnosis, as well as serving as a resource for future research on
high-performance VOC gas sensors using carbon materials [48]. Table 1 shows the different
types of carbon nanofibers for pollutant detection.

Table 1. The different types of carbon nanofibers for pollutant detection.

CNFs Pollutant Detection References

Graphitized Carbon Nanofibers (GCNFs) Phenol and lead [49]

Amorphous Carbon Nanofibers (ACNFs) Heavy metals, organic pollutants [50]

Hollow Carbon Nanofibers (HCNFs) Dyes, VOCs [51]

Doped Carbon Nanofibers (e.g., N-Doped CNFs) Heavy metals [52]

Porous Carbon Nanofibers (PCNFs) Pharmaceuticals, heavy metals [53]

Electrospun Carbon Nanofibers (ECNFs) Targeted pollutants [54]

Activated Carbon Nanofibers (ACNFs) Organic pollutants [55]

Carbon nanofiber-based sensors find applications in both environmental monitoring
systems, offering real-time air quality data in urban and industrial areas, especially for
tracking emissions from various pollution sources, and in wearable devices. When inte-
grated into wearables, electrospun carbon nanofiber mats enable individuals to monitor
their personal exposure to air pollutants on the go, particularly valuable for urban and
occupational environments where air quality is a critical concern. For example, Hooshmand
and colleagues present the addition of multi-walled carbon nanotubes (MWCNTs), which
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significantly enhance the performance of ZnO-based chemiresistive sensors in detecting
NH3 compared to bare ZnO sensors. The incorporation of MWCNTs in the porous spaces
between ZnO nanoparticles increases the surface area for gas adsorption, resulting in
improved gas detection capabilities. The sensor exhibited high and stable selectivity and
sensitivity to NH3, even in the presence of CH4 and CO, at low NH3 concentrations (10 and
20 ppm). The sensor’s key parameters include a response of 1.022, a response time of
13.687 s, and a recovery time of 107.109 s, as depicted in Figure 2, which illustrates the
sensor architecture, sensing mechanism, and experimental setup [56].
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Figure 2. Schematic of experimental setup for the fabrication of ZnO-MWCNT nanocomposite sensor
and its ammonia gas sensing properties at room temperature. Reprinted from [56], with permission
from Elsevier.

5. Conclusions, Challenges and Future Research Perspectives

This review emphasizes the considerable potential of ECNF mats in sensor technology,
particularly for the detection of air pollutants such as carbon monoxide (CO), nitrogen
dioxide (NO2), ammonia (NH3), and volatile organic compounds (VOCs). Nevertheless,
several challenges must be addressed in order to optimize their use, including improve-
ments in selectivity, sensitivity, stability and scalability. For instance, ECNF sensors utilized
for CO detection in urban settings may exhibit cross-sensitivity to other gasses, such as
NO2 or VOCs, resulting in erroneous readings. To address this issue, functionalization
techniques, such as doping the ECNFs with metal oxides (e.g., tin oxide), can enhance
selectivity, thereby increasing the sensor’s sensitivity to CO while reducing interference
from other pollutants [57].

Another crucial consideration is the biocompatibility of the sensors, which is especially
pertinent in the context of wearable technology. To illustrate this, ECNF-based sensors
incorporated into clothing or health monitoring devices may be in contact with the skin
for extended periods. Moreover, the integration of ECNF sensors with smart devices
via machine learning can facilitate real-time data analysis and prediction. For instance,
machine learning algorithms can analyze patterns from ECNF sensors monitoring indoor
air quality, thereby enabling automatic adjustment of ventilation systems to optimize air
quality and reduce the risk of respiratory problems. Furthermore, energy efficiency and
flexibility are also pivotal considerations for the prospective evolution of ECNF sensors.
Flexible, lightweight ECNF-based sensors can be used in portable devices, such as handheld
air pollution detectors or personal wearable air quality monitors [58]. Standardizing test
protocols, fostering interdisciplinary collaboration, and clarifying legal and safety issues are
essential for progress in this area. Applications span across various sectors, from healthcare
to materials science, providing a wide range of opportunities for the use of ECN mats in
sensor technology for the purpose of detecting air pollutants. Electrospun carbon nanofiber
mats show substantial potential in the field of air pollutant detection sensor technology as
valuable assets in the quest to oversee and address air pollution concerns for the betterment
of both the environment and public health.
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