Climate Change Influences on Central European Insect Fauna over the Last 50 Years: Mediterranean Influx and Non-Native Species
<p>The <span class="html-italic">Graphocephala fennahi</span> Young, 1977 (Rhododendron Leafhopper), native to North America, were first found on the leaves of Rhododendron catawbiense in Hungary in 2012. It well illustrates the role of alien insect species in the transformation of our fauna (photo: György Csóka).</p> "> Figure 2
<p>Biogeographic map of the investigated area. Pannonian (brown), Continental (green), and Alpine biogeographic regions (violet). (source: EEA [<a href="#B7-ecologies-06-00016" class="html-bibr">7</a>]).</p> "> Figure 3
<p>Hydrogeological map of the Carpathian Basin (source: [<a href="#B8-ecologies-06-00016" class="html-bibr">8</a>]).</p> "> Figure 4
<p>Average annual temperatures of three Central European countries between 1970 and 2023. Green: Hungary, orange: Romania, red: Slovakia. Climatic data from World Bank Portal [<a href="#B19-ecologies-06-00016" class="html-bibr">19</a>].</p> "> Figure 5
<p>Long-term trend of horse-flies (Tabanidae) in the Carpathian Basin.</p> "> Figure 6
<p>Long-term declining trend of hoverflies (Syrphidae) in the Carpathian Basin.</p> "> Figure 7
<p>Long-term increasing trend of xerotherm bee flies (Bombyliidae) in the Carpathian Basin, winners of the warming climatic conditions.</p> "> Figure 8
<p>Long-term trend of tachinid flies (Tachinidae) in the Carpathian Basin. General declining trend with strong fluctuation probably typical for parasitoids.</p> "> Figure 9
<p>Long-term trend of species richness of Bumblebees in the high (blue) and low (red) elevations of the Carpathian Basin.</p> "> Figure 10
<p>Long-term trend of wild bee families in the Carpathian Basin.</p> "> Figure 11
<p>Long-term trend of Bembecidae, Psenidae, Sphecidae and Pemphedronidae in the Carpathian Basint.</p> "> Figure 12
<p>Long-term trend of Chrysididae, Philantidae and Crabronidae in the Carpathian Basin.</p> "> Figure 13
<p>Long-term trend of numbers of specimens of sawflies (Symphyta) by Malaise trap method based on Haris et al., 2024 [<a href="#B6-ecologies-06-00016" class="html-bibr">6</a>]. Sawflies are primarily distributed in northern and montane regions, mostly inhabiting moderately cool, rainy areas.</p> "> Figure 14
<p>Long-term trend of species richness of sawflies (Symphyta) by Malaise trap method based on Haris et al., 2024 [<a href="#B6-ecologies-06-00016" class="html-bibr">6</a>].</p> "> Figure 15
<p><span class="html-italic">Aglais urticae</span> (Linnaeus, 1758) (Small Tortoiseshell) was once common until the late 1980s. In the last decades, it nearly disappeared from the deeper region of the Carpathian Basin (photo: Ádám Gór).</p> "> Figure 16
<p><span class="html-italic">Brintesia circe</span> (Fabricius, 1775) (Great Banded Grayling) has successfully resisted climate change so far (photo: Péter Schmidt).</p> "> Figure 17
<p>Some butterflies, like <span class="html-italic">Iphiclides podalirius</span> (Linnaeus, 1758) (Scarce Swallowtail), have even been able to increase their abundance in Central Europe (Photo: Gábor Glemba).</p> "> Figure 18
<p>Changes in nocturnal macrolepidoptera populations in total abundance between 1970 and 2022.</p> "> Figure 19
<p>Changes in nocturnal macrolepidoptera populations in total abundance between 2014 and 2022.</p> "> Figure 20
<p>Changes in species richness of nocturnal macrolepidoptera between 1970 and 2022.</p> "> Figure 21
<p>Timeline of non-native insects in the Carpathian Basin from the Neolithic period till 2024.</p> "> Figure 22
<p>Timeline of the introduction of tropical insect species.</p> "> Figure 23
<p>Division of non-native insects according to their taxonomic groups.</p> "> Figure 24
<p>Division of non-native insects according to their origin.</p> "> Figure 25
<p><span class="html-italic">Ovalisia festiva</span> (Linnaeus, 1767) (Cypress Jewel Beetle) had double colonization: natural and introduction with ornamental plants (photo: György Csóka).</p> "> Figure 26
<p>Timeline of the influx of Mediterranean insect species.</p> "> Figure 27
<p>Long-term trend of wild bees in Belgium’s aboundances (after Duchenne et al. [<a href="#B202-ecologies-06-00016" class="html-bibr">202</a>]).</p> "> Figure 28
<p>The <span class="html-italic">Parnassius mnemosyne</span> (Linnaeus, 1758) (Clouded Apollo) appears stable in our region (photo: Gábor Glemba).</p> "> Figure 29
<p>Different types of increase of insect populations in abundance as a response to climate change (yellow: exponential growth of invasive insect, red: moderate population growth after the temperature optimum, blue: continuous growth of abundance of xerotherm insect).</p> "> Figure 30
<p>Different types of decline of insect abundances as a response to climate change (yellow: exponential decline of highly sensitive insects of climate change, red: gradual decline of population in abundance of hylophilous insects, blue: disappearance of climate change-sensitive butterfly species).</p> ">
Abstract
:1. Introduction
“If you put a frog in a pot and slowly turn up the heat, it won’t jump out. Instead, it will enjoy a nice warm bath until it is cooked to death. We humans seem to be doing pretty much the same thing”.(Jeff Goodell (The Water Will Come, 2010)
2. Materials and Methods
2.1. Diptera, Hymenoptera
2.2. Lepidoptera
2.2.1. Rhopalocera, Butterflies
2.2.2. Nocturnal Macrolepidoptera
2.3. Mathematical Methods and Data Standardization
2.4. Non Native and Invasive Insect Species, Mediterranean Influx
3. Results
3.1. Diptera
3.1.1. Horse-Flies, Tabanidae
3.1.2. Hoverflies, Syrphidae
3.1.3. Bee Flies, Bombyliidae
3.1.4. Tachinidae
3.2. Hymenoptera
3.2.1. Bumblebees
3.2.2. Aculeata
3.2.3. Sawflies, Symphyta
3.3. Lepidoptera
3.3.1. Butterflies, Rhopalocera
3.3.2. Nocturnal Macrolepidoptera
3.4. Non Native Insects and Mediterranean Influx
3.4.1. Non Native Species
3.4.2. Mediterranean Influx
4. Discussion
4.1. Diptera
4.1.1. Bombyliidae
4.1.2. Horse-Flies, Tabanidae
4.1.3. Hoverflies, Syrphidae
4.1.4. Tachinid Flies, Tachinidae
4.2. Hymenoptera
4.2.1. Bumblebees
4.2.2. Aculeata
4.2.3. Sawflies, Symphyta
4.3. Lepidoptera
4.3.1. Butterflies, Rhopalocera
4.3.2. Moths, Nocturnal Macrolepidoptera
4.4. Alien and Invasive Species, Mediterranean Influx
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Roy, D.B.; Sparks, T.H. Phenology of British butterflies and climate change. Glob. Change Biol. 2000, 6, 407–416. [Google Scholar] [CrossRef]
- Shuman, E.K. Global Climate Change and Infectious Diseases. Int. J. Occup. Environ. Med. 2010, 2, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Epstein, P.R.; Burke, T.A.; Balbus, J.M. Global climate change and emerging infectious diseases. JAMA 1996, 275, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Team eBird European Bee-eaters Expand Their Range Northwards. 10 June 2022. Available online: https://ebird.org/news/ebird-impacts-european-bee-eaters-expand-their-range-northwards (accessed on 11 October 2024).
- Haris, A.; Józan, Z.; Roller, L.; Šima, P.; Tóth, S. Changes in Population Densities and Species Richness of Pollinators in the Carpathian Basin during the Last 50 Years (Hymenoptera, Diptera, Lepidoptera). Diversity 2024, 16, 328. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Biogeographical Regions in Europe. Available online: https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2 (accessed on 19 November 2024).
- Haris, A. Hymenoptera Research in the Carpathian Basin (Hymenoptera: Aculeata). Nat. Somogyiensis 2016, 29, 1–246. [Google Scholar] [CrossRef]
- Führer, E. A klímaváltozáshoz alkalmazkodó erdõgazdálkodás kihívásai—III. (Challenges for forest management adapting to climate change–III.). Erdészeti Lapok 2017, 152, 173–177. [Google Scholar]
- Gálos, B.; Jacob, D.; Mátyás, C. Effects of Simulated Forest Cover Change on Projected Climate Change—A Case Study of Hungary. Acta Silv. Lignaria Hung. 2011, 7, 49–62. [Google Scholar] [CrossRef]
- Sharma, H.C. Biological Consequences of Climate Change on Arthropod Biodiversity and Pest Management. In Proceedings of the International Conference on Insect Science, Bangalore, India, 14–17 February 2013. [Google Scholar]
- Karuppaiah, V.; Sujayanad, G.K. Impact of Climate Change on Population Dynamics of Insect Pests. World J. Agric. Sci. 2012, 8, 240–246. [Google Scholar]
- Helmholtz-Zentrum für Umweltforschung—UFZ Klimawandel und Biodiversität. Available online: https://www.ufz.de/index.php?de=37140 (accessed on 12 October 2024).
- Bauer, T.; Wiblishauser, M.; Gerlach, T. Wärmeliebende Insekten als Zeiger des Klimawandels–Beispiele und Potenziale bürgerwissenschaftlicher Arterfassungen. Anleigen Nat. 2022, 44, 141–148. [Google Scholar]
- Bebber, D.; Ramotowski, M.; Gurr, S. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Rannow, S.; Neubert, M. Advances in Global Change Research. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Beniston, M., Ed.; Springer: Dordrecht, Germany, 2013; Volume 58, pp. 1–305. [Google Scholar]
- Szabics, A. Hová Folynak el Vizeink—A Vízhiány okai Magyarországon (Where Does Our Water Go—The Causes of Water Shortages in Hungary). Available online: https://www.mnb.hu/letoltes/szabics-andras-zsolt-hova-folynak-el-vizeink-a-vizhiany-okai-magyarorszagon.pdf (accessed on 14 October 2024).
- Reich, G. Nemzeti Vízstratégia (Kvassay Jenő terv) (National Water Strategy, J. Kvassay Plan); Ludovika University of Public Service: Budapest, Hungary, 2019; pp. 1–57. [Google Scholar]
- World Bank Group (WBG). Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 24 October 2024).
- Pittioni, B. Die klimaökologische Formel als Hilfsmittel der biogeographischen Forschung. Wetter Leben 1949, 2, 161–167. [Google Scholar]
- Pittioni, B. Das Problem der Formenbildung. Ein Deutungsversuch mit Hilfe der klimaökologischen Formel. Bonn. Zool. Beitr. 1950, 1, 254–261. [Google Scholar]
- Hagen, M.D. Zur Schwebfliegenfauna des Raumes Hagen (Diptera, Syrphidae). Westfälisches Mus. Naturkunde 1997, 59, 1–63. [Google Scholar]
- Rasmont, P.; Franzén, M.; Lecocq, T.; Harpke, A.; Roberts, S.P.M.; Biesmeijer, J.C.; Castro, L.; Cederberg, B.; Dvořák, L.; Fitzpatrick, Ú.; et al. Climatic Risk and Distribution Atlas of European Bumblebees. Biorisk 2015, 10, 1–246. [Google Scholar] [CrossRef]
- Lukáš, J.; Tyrner, P. Zlatěnky (Hymenoptera: Chrysididae) Státní přírodní reservace Devínská Kobyla. Klapalekiana 2000, 36, 113–123. [Google Scholar]
- Vepřek, D. První doplněk Check list of Czechoslovak Insects III (Hymenoptera: Sphecidae). Sbor. Pri. Kubu Uher. Hrad. 2000, 5, 233–239. [Google Scholar]
- Bogusch, J.; Straka, J.; Kment, P. Annotated checklist of the Aculeata (Hymenoptera) of the Czech Republic and Slovakia. Acta Suppl. 2007, 11, 1–300. [Google Scholar]
- Deván, P. Kutavky (Sphecidae), hrabavky (Pompilidae), zlatenky (Chrysididae) NPR Tematínska lesostep na lokalite Lúka a v PR Kňaží vrch (Považský Inovec, západné Slovensko) získané Malaiseho pascou v rokoch 1999–2000. Nat. Tut. 2004, 8, 143–151. [Google Scholar]
- Smetana, V. Čmele a spoločenské osy (Hymenoptera: Bombini, Polistinae et Vespinae) v poľnohospodárskej krajine Poľany a Podpoľania. Nat. Tut. 2009, 13, 107–114. [Google Scholar]
- Smetana, V. Výsledky prieskumu vybraných skupín blanokrídlovcov (Hymenoptera: Aculeata) na Ramsarskej lokalite Poiplie. Acta Mus. Tek. 2010, 8, 71–77. [Google Scholar]
- Smetana, V.; Roller, L.; Beneš, K.; Bogusch, P.; Dvořák, L.; Holý, K.; Karas, Z.; Macek, J.; Straka, J.; Šima, P.; et al. Blanokrídlovce (Hymenoptera) na vybraných, lokalitách Borskej nížiny. Acta Mus. Tek. 2010, 8, 78–111. [Google Scholar]
- Smetana, V.; Šima, P.; Bogusch, P.; Erhart, J.; Holý, K.; Macek, J.; Roller, L.; Straka, J. Blanokrídlovce (Hymenoptera) na vybraných lokalitách v okolí Levíc a Kremnice. Act. Mus. Tek. 2015, 10, 44–68. [Google Scholar]
- Šima, P.; Straka, J. First records of Heriades rubicola Pérez, 1890 (Hymenoptera: Megachilidae) and Nomada moeschleri Alfken, 1913 (Hymenoptera: Apidae) from Slovakia. Entomofauna Carpath. 2016, 28, 14–18. [Google Scholar]
- Tyrner, P.; Majzlan, O. Zlatěnkovití (Hymenoptera: Chrysididae) Pohoří Burda a jeho okolí. Ochr. Prírody 2016, 27, 39–44. [Google Scholar]
- Smetana, V.; Roller, L.; Benda, D.; Bogusch, P.; Holý, K.; Karas, Z.; Purkart, Z.; Říha, M.; Straka, J.; Šima, P.; et al. Blanokrídlovce (Hymenoptera) na vybraných lokalitách v CHKO Malé Karpaty. Act. Mus. Tek. 2020, 12, 75–141. [Google Scholar]
- Tóth, S. Magyarország zengőlégy faunája (Diptera, Syrphidae). Hoverflies of Hungary (Diptera, Syrphidae). e-Acta Nat. Pannonica Suppl. 2011, 1, 5–408. [Google Scholar]
- Tóth, S. Magyarország fürkészlégy faunája (Diptera, Tachinidae). Tachinid flies of Hungary (Diptera, Tachinidae). e-Acta Nat. Pannonica Suppl. 2013, 5, 1–321. [Google Scholar]
- Fazekas, I.; Tóth, S. A hazai Bögölyök Nyomában (Diptera, Tabanidae). Horse-Flies of Hungary (Diptera, Tabanidae); Pannon Intézet: Pécs, Hungary, 2023; pp. 1–124. [Google Scholar]
- Zombori, L. Sawflies from Fertő-Hanság National Park (Hymenoptera, Symphyta). In The Fauna of the Fertő-Hanság National Park; Mahunka, S., Ed.; Hungarian Natural History Museum: Budapest, Hungary, 2002; pp. 545–552. [Google Scholar]
- Haris, A. Sawflies of the Zselic Hills, SW Hungary Hymenoptera, Symphyta. Nat. Somogyiensis 2009, 15, 127–158. [Google Scholar] [CrossRef]
- Haris, A. Sawflies of the Vértes Mountains Hymenoptera, Symphyta. Nat. Somogyiensis 2010, 17, 209–238. [Google Scholar] [CrossRef]
- Haris, A. Sawflies of the Börzsöny Mountains North Hungary Hymenoptera, Symphyta. Nat. Somogyiensis 2011, 19, 149–176. [Google Scholar] [CrossRef]
- Haris, A. Sawflies of Belső-Somogy (Hymenoptera, Symphyta). Nat. Somogyiensis 2012, 22, 141–162. [Google Scholar] [CrossRef]
- Haris, A. Second contribution to the sawflies of Belső Somogy Hymenoptera, Symphyta. Nat. Somogyiensis 2018, 31, 45–62. [Google Scholar] [CrossRef]
- Haris, A. Sawflies from Külső-Somogy, South-West Hungary (Hymenoptera, Symphyta). Nat. Somogyiensis 2018, 32, 147–164. [Google Scholar] [CrossRef]
- Haris, A. Sawflies of the Keszthely Hills and its surroundings. Nat. Somogyiensis 2019, 33, 107–128. [Google Scholar] [CrossRef]
- Haris, A. Sawflies of Southern part of Somogy county Hymenoptera, Symphyta. Nat. Somogyiensis 2020, 35, 51–70. [Google Scholar] [CrossRef]
- Haris, A. Sawflies of the Cserhát Mountains Hymenoptera, Symphyta. Nat. Somogyiensis 2021, 37, 25–42. [Google Scholar] [CrossRef]
- Haris, A. Second contribution to the knowledge of sawflies of the Zselic Hills (Hymenoptera, Symphyta). Kaposvári Rippl-Rónai Múzeum Közleményei (Commun. Rippl-Rónai Mus. Kaposvár) 2022, 8, 65–80. [Google Scholar] [CrossRef]
- Zombori, L. A Bakonyi Természettudományi Múzeum levéldarázs-gyűjteménye (Hymenoptera, Symphyta) I. (The collection of sawflies (Hymenoptera, Symphyta) of the Bakony Natural History Museum I.). Veszprém Múz. Közl. 1973, 12, 467–475. [Google Scholar]
- Zombori, L. A Bakonyi Természettudományi Múzeum levéldarázs-gyűjteménye (Hymenoptera, Symphyta) II. (The collection of sawflies (Hymenoptera, Symphyta) of the Bakony Natural History Museum II.). Veszprém Múz. Közl. 1979, 14, 211–220. [Google Scholar]
- Zombori, L. A Bakonyi Természettudományi Múzeum levéldarázs-gyűjteménye (Hymenoptera, Symphyta) III. (The collection of sawflies (Hymenoptera, Symphyta) of the Bakony Natural History Museum III.). Veszprém Múz. Közl. 1980, 15, 181–188. [Google Scholar]
- Zombori, L. A Bakonyi Természettudományi Múzeum levéldarázs-gyűjteménye (Hymenoptera, Symphyta) IV. (The collection of sawflies (Hymenoptera, Symphyta) of the Bakony Natural History Museum IV.). Fol. Mus. Hist. Nat. Bakony. 1982, 1, 165–170. [Google Scholar]
- Józan, Z. A Zselic darázsfaunájának (Hymenoptera, Aculeata) állatföldrajzi és ökofaunisztikai vizsgálata. Zoologeographic and ecofaunistic study of the Aculeata fauna (Hymenoptera, Aculeata) of Zselic. Somogyi Múzeumok Közleményei 1992, 9, 279–292. [Google Scholar]
- Józan, Z. A Béda-Karapancsa Tájvédelmi Körzet fullánkos hártyásszárnyú (Hymenoptera, Aculeata) faunájának alapvetése. Aculeata (Hymenoptera, Aculeata) fauna of the Béda-Karapancsa Landscape Protection Area. Dunántúli Dolg. Természettudományi Sor. 1992, 6, 219–246. [Google Scholar]
- Józan, Z. A Baláta környék fullánkos hártyásszárnyú faunájának (Hym., Aculeata) alapvetése. Aculeata fauna of Lake Baláta (Hym., Aculeata). Somogyi Múzeumok Közleményei 1996, 12, 271–297. [Google Scholar]
- Józan, Z. A Mecsek kaparódarázs faunájának (Hymenoptera, Sphecoidea) faunisztikai, állatföldrajzi és ökofunisztikai vizsgálata. Faunistical, zoogeographical and ecofaunistical investigation on the Sphecoids fauna of the Mecsek Montains (Hymenoptera, Sphecoidea). Nat. Somogyiensis 2002, 3, 45–56. [Google Scholar] [CrossRef]
- Józan, Z. A Barcsi borókás fullánkos faunája, III. (Hymenoptera, Aculeata). Aculeata fauna of Barcs Juniper Woodland (Hymenoptera, Aculeata). Nat. Somogyiensis 2015, 26, 95–108. [Google Scholar] [CrossRef]
- Sage, W.; Utschick, H. Nachtfalter (Lepidoptera, Macroheterocera) im NSG “Untere Alz” und ihre Bedeutung für die Pflege- und Entwicklungsplanung. Berichte ANL 1997, 21, 149–177. [Google Scholar]
- Kanarskyi, Y.; Geriak, Y.; Lashenko, E. Ecogeographic structure of the Moth fauna in upper Tisa River basin. Transylv. Rev. Syst. Ecol. Res. 2011, 11, 143–168. [Google Scholar]
- Moore, J.L.; McCollin, D. The value of museum and other uncollated data in reconstructing the decline of the chequered skipper butterfly Carterocephalus palaemon (Pallas, 1771). J. Nat. Sci. Coll. 2022, 10, 31–44. [Google Scholar]
- Davis, C.L.; Guralnick, R.P.; Zipkin, E.F. Challenges and opportunities for using natural history collections to estimate insect population trends. J. Anim. Ecol. 2023, 92, 237–249. [Google Scholar] [CrossRef]
- McGie, H. Museum Collections and Biodiversity Conservation; Curating Tomorrow: Liverpool, UK, 2019; pp. 1–104. [Google Scholar]
- McDermott, A. To understand the plight of insects, entomologists look to the past. Proc. Natl. Acad. Sci. USA 2020, 118, e2018499117. [Google Scholar] [CrossRef] [PubMed]
- Jeppsson, T.; Lindhe, A.; Gardenfors, U.; Forslund, P. The use of historical collections to estimate population trends, A case study using Swedish longhorn beetles (Coleoptera, Cerambycidae). Biol. Conserv. 2010, 143, 1940–1950. [Google Scholar] [CrossRef]
- McCarthy, M.A. Identifying declining and threatened species with museum data. Biol. Conserv. 1998, 83, 9–17. [Google Scholar] [CrossRef]
- Williams, K.A. Museum Collections—Resources for Biological Monitoring. Afr. Invertebr. 2010, 51, 219–221. [Google Scholar] [CrossRef]
- Nowicki, P.; Settele, J.; Henry, P.Y.; Woyciechowskia, M. Butterfly Monitoring Methods, The ideal and the Real World. Isr. J. Ecol. Evol. 2008, 54, 69–88. [Google Scholar] [CrossRef]
- Settele, J.; Kudrna, O.; Harpke, A.; Kühn, I.; van Swaay, C.; Verovnik, R.; Warren, M.; Wiemers, M.; Hanspach, J.; Hickler, T.; et al. Climatic Risk Atlas of European Butterflies. Biorisk 2008, 1, 1–710. [Google Scholar] [CrossRef]
- Schweiger, O.; Harpke, A.; Wiemers, M.; Settele, J. Climber, climatic niche characteristics of the butterflies in Europe. ZooKeys 2014, 367, 65–84. [Google Scholar] [CrossRef]
- Mora, A.; Wilby, A.; Menéndez, R. South European mountain butterflies at a high risk from land abandonment and amplified effects of climate change. Insect Conserv. Divers. 2023, 16, 838–852. [Google Scholar] [CrossRef]
- Kudrna, O.; Harpke, A.; Lux, K.; Pennerstorfer, J.; Schweiger, O.; Settele, J.; Wiemers, M. Distribution Atlas of Butterflies in Europe; Gesellschaft für Schmetterlingschutz: Halle, Germany, 2011; pp. 1–576. [Google Scholar]
- Infusino, M.; Brehm, G.; Di Marco, C.; Scalercio, S. Assessing the efficiency of UV LEDs as light sources for sampling the diversity of macro-moths (Lepidoptera). Eur. J. Entomol. 2017, 114, 25–33. [Google Scholar] [CrossRef]
- Pan, H.; Liang, G.; Lu, Y. Response of Different Insect Groups to Various Wavelengths of Light under Field Conditions. Insects 2021, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- van Langevelde, F.; Ettema, J.A.; Donners, M.; Wallis De Vries, M.F.; Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 2011, 144, 2274–2281. [Google Scholar] [CrossRef]
- Roques, A.; Marc Kenis, M.; Lees, D.; Lopez-Vaamonde, C.; Rabitsch, W.; Rasplus, J.-Y.; Roy, D.B. Alien terrestrial arthropods of Europe. Biorisk 2010, 4, 1–1028. [Google Scholar]
- Brewer, S.; Cheddadi, R.; de Beaulieu, J.L.; Reille, M. The spread of deciduous Quercus throughout Europe since the last glacial period. For. Ecol. Manag. 2022, 156, 27–48. [Google Scholar] [CrossRef]
- Global Biodiversity Information Facility (GBIF). Available online: https://www.gbif.org (accessed on 26 November 2024).
- Panagiotakopulu, E.; Buckland, P.C. Early invaders—Farmers, the granary weevil and other uninvited guests in the Neolithic. Biol. Invasions 2018, 20, 219–233. [Google Scholar] [CrossRef]
- Ripka, G. Checklist of the Aphidoidea and Phylloxeroidea of Hungary (Hemiptera, Sternorrhyncha). Folia Entomol. Hung. 2008, 69, 19–157. [Google Scholar]
- Zahradnik, P. A Check-list of Ptinidae (Coleoptera, Bostrichoidea) of the Balkan Peninsula. Folia Heyrovskyana Ser. A 2016, 24, 91–140. [Google Scholar]
- Soós, A. Über die Sepsiden, Piophiliden und Drosophiliden des Karpatenbeckens. Fragm. Faun. Hung. 1945, 8, 18–29. [Google Scholar]
- Ripka, G. Jövevény kártevő ízeltlábúak áttekintése Magyarországon I. (Overview of non-native insect pest arthropods in Hungary I.). Növényvédelem 2010, 46, 45–58. [Google Scholar]
- Skuhrava, M.; Skuhrava, V. Gall midges (Diptera, Cecidomyiidae) of Hungary. Ann. Hist.-Nat. Mus. Natl. Hung. 1999, 91, 105–139. [Google Scholar]
- Lienhard, C. Beitrag zur Kenntnis der Psocopteren-Fauna Ungarns (Insecta). Ann. Hist.-Nat. Mus. Natl. Hung. 1986, 78, 73–78. [Google Scholar]
- Fazekas, I. Dr. Kuthy Béla entomológiai gyűjteménye II. Microlepidoptera (Lepidoptera). Nat. Somogyiensis 2016, 28, 75–88. [Google Scholar] [CrossRef]
- Jenser, G. Behurcolt kártevő Thysanoptera fajok. (Introduced Thysanoptera pests). Növényvédelem 2012, 48, 173–175. [Google Scholar]
- László, M.; Katona, G.P.; Péntek, L.A.; Nagy, A.V. Spread of the invasive Giant Asian Mantis Hierodula tenuidentata Saussure, 1869 (Mantodea, Mantidae) in Europe with new Hungarian data. Bonn Zool. Bull. 2023, 72, 133–144. [Google Scholar]
- Teodorescu, I. Contribution to Database of Alien/Invasive Homoptera Insects in Romania. Rom. J. Biol. Zool. 2018, 63, 29–68. [Google Scholar]
- Kóbor, P. Magyarország invaziv cimerespoloskái (Heteroptera, Pentatomidae). (Invasive stink bugs of Hungary (Heteroptera, Pentatomidae)). Növényvédelem 2014, 78, 491–496. [Google Scholar]
- Jelinek, J.; Audisio, P.; Hajek, J.; Baviera, C.; Moncourtier, B.; Barnouin, T. Epuraea imperialis (Reitter, 1877). New invasive species of (Coleoptera) in Europe, with a checklist of sap beetles introduced to Europe and Mediterranean areas. Phys. Math. Nat. Sci. 2016, 94, 1–24. [Google Scholar]
- Szinetár, C.; Kenyeres, Z. Introducing of Ameles spallanzania (Rossi, 1792) (Insecta, Mantodea) to Hungary raising questions of fauna-changes. Nat. Somogyiensis 2020, 35, 133–138. [Google Scholar] [CrossRef]
- Nitzui, E.; Dobrin, I.; Dumbrava, M.; Gutue, M. The Range Expansion of Ovalisia festiva (Linnaeus, 1767) (Coleoptera, Buprestidae) in Eastern Europe and Its Damaging Potential for Cupressaceae. Trav. Mus. Nat. Hist. Grigore Antipa 2016, 58, 51–57. [Google Scholar] [CrossRef]
- Merkl, O.; Hegyessy, G. Negyvenkét bogárcsalád adatai a sátoraljaújhelyi PIM—Kazinczy Ferenc Múzeum gyűjteményéből (Coleoptera, Polyphaga, Bostrichiformia, Cucujiformia, Elateriformia, Staphyliniformia). (Data on forty-two beetle families from the collection of the PIM—Kazinczy Ferenc Museum at Sátoraljaújhely). Folia Hist. Nat. Mus. Matraensis 2022, 46, 45–134. [Google Scholar]
- Vas, Z.; Rékási, J.; Rózsa, L. A checklist of lice of Hungary (Insecta, Phthiraptera). Ann. Hist.-Nat. Mus. Nat. Hung. 2012, 104, 1–105. [Google Scholar]
- Adam, C.; Constantinescu, I.C.; Drăghici, A.C.; Fusu, M.M.; Gheoca, V.; Iancu, L.; Iorgu, I.Ș.; Irimia, A.G.; Maican, S.; Manu, M.; et al. Lista Preliminară a Speciilor Alogene Invazive și Potențial Invazive de Nevertebrate Terestre din ROMÂNIA (Preliminary List of Invasive and Potentially Invasive Alien Species of Terrestrial Invertebrates in Romania); Ministerul Mediului, Apelor şi Pădurilor & Universitatea din Bucureşti: Bucureşti, Romania, 2020; pp. 1–40. [Google Scholar]
- Bednár, F.; Hemala, V.; Čejka, T. First records of two new silverfish species (Ctenolepisma longicaudatum and Ctenolepisma calvum) in Slovakia, with checklist and identification key of Slovak Zygentoma. Biologia 2023, 79, 1–11. [Google Scholar] [CrossRef]
- Papp, L.; Pecsenye, K. Drosophilidae (Diptera) of Hungary. Acta Biol. Debrecina 1987, 19, 55–90. [Google Scholar]
- Schwarz, C.J.; Ehrmann, R. Invasive Mantodea species in Europe. Articulata 2018, 33, 73–90. [Google Scholar]
- Tóth, J. A fajspektrum változásának lehetséges okai. Behurcolt új erdészeti kártevõk Magyarországon. (Possible causes of the change in the species spectrum. New introduced forest pests in Hungary.). Mag. Kut. Termesztés Keresk. 2001, 6, 9–17. [Google Scholar]
- Kontschán, J.; Kiss, E.; Ripka, G. Új adatok a hazai levélbolhák (Insecta, Psylloidea) előfordulásaihoz II. (New Data to Occurrences of the Hungarian Jumping Plant Lice (Insecta, Psylloidea) II.). Növényvédelem 2020, 81, 197–202. [Google Scholar]
- Kontschán, J.; Ripka, G. Új adatok a hazai levélbolhák (Insecta, Psylloidea) előfordulásaihoz II.(New Data to Occurrences of the Hungarian Jumping Plant Lice (Insecta, Psylloidea) II.). Növényvédelem 2021, 82, 336–341. [Google Scholar]
- CABI, Centre for Agriculture and Bioscience International, Exotic Insect Biocontrol Agents Released in Europe. By 80.98.245.128. Available online: https://cabidigitallibrary.org (accessed on 16 October 2024).
- Szeőke, K.; Csóka, G. Jövevény kártevő ízeltlábúak Magyarországon—Lepkék (Lepidoptera). (An overview of the alien arthropods in Hungary Lepidoptera). Növényvédelem 2012, 48, 105–115. [Google Scholar]
- Merkl, O. New beetle species in the Hungarian fauna (Coleoptera). Folia Entomol. Hung. 2006, 67, 19–36. [Google Scholar]
- Kinál, F.; Puskás, G. Occurrence of Ectobius vittiventris (Costa, 1847) (Blattellidae, Ectobiinae) in Hungary. Állattani Közlemények 2019, 104, 3–15. [Google Scholar] [CrossRef]
- Vas, Z.; Kőszegi, K.; Takács, A. First record of the Nearctic blue mud-dauber wasp Chalybion californicum (de Saussure, 1867) from Hungary (Hymenoptera, Sphecidae). Folia Entomol. Hung. 2024, 85, 35–39. [Google Scholar] [CrossRef]
- OEPP/EPPO. PM 6/3 (5) Biological Control Agents Safely Used in the EPPO Region; OEPP/EPPO: Luxembourg, 2021; pp. 1–36. [Google Scholar]
- Schlitt, B.P.; Lajtár, L.; Orosz, A. New grape-feeding leafhoppers in Hungary—First records of Erasmoneura vulnerata (Fitch, 1851) and Arboridia kakogawana (Matsumura, 1931) (Hemiptera, Clypeorrhyncha, Cicadellidae). Folia Entomol. Hung. 2024, 85, 41–52. [Google Scholar] [CrossRef]
- Kondorosy, E. Adventív poloskafajok Magyarországon (Invasive alien bugs (Heteroptera) in Hungary). Növényvédelem 2012, 48, 97–104. [Google Scholar]
- Kohútová, M.; Obona, J. Príspevok k poznaniu inváznych druhov hmyzu z územia Slovenska. Contribution to the knowledge of invasive insect species from Slovakia. Folia Oec. 2016, 8, 14–36. [Google Scholar]
- Groot, M. An overview of alien Diptera in Slovenia. Acta Entomol. Slov. 2013, 21, 5–15. [Google Scholar]
- Kontschán, J.; Bodnár, D.; Ripka, G. Új adatok a hazai levélbolhák (Insecta, Psylloidea) előfordulásaihoz III. (New Data to Occurrences of the Hungarian Jumping Plant Lice (Insecta, Psylloidea) III.). Növényvédelem 2022, 83, 394–397. [Google Scholar]
- Kozár, F.; Benedicty, Z.; Fetykó, K.; Kiss, B.; Szita, É. An annotated update of the scale insect checklist of Hungary (Hemiptera, Coccoidea). ZooKeys 2013, 309, 49–66. [Google Scholar]
- Józan, Z. Új kaparódarázs fajok (Hymenoptera, Sphecidae) Magyarország faunájában. New sphecid wasps (Hymenoptera, Sphecidae) in the fauna of Hungary. Somogyi Múzeumok Közleményei 2008, 18, 81–83. [Google Scholar]
- Báldi, A.; Csányi, B.; Csorba, G.; Erős, T.; Hornung, E.; Merkl, O.; Orosz, A.; Papp, L.; Szinetár, C.; Varga, A.; et al. Behurcolt és invazív állatok Magyarországon. (Introduced and invasive animals in Hungary). Magy. Tudomány 2017, 4, 399–437. [Google Scholar]
- Radac, I.A. Expansion of Some Native or Alien Species of Seed Beetles and True Bugs in Romania (Insecta, Coleoptera, Heteroptera). Ph.D. Thesis, Babeș-Bolyai University, Faculty of Biology and Geology, Kolozsvár, Romania, 2022; pp. 1–146. [Google Scholar]
- Kiss, A. A sáskajárások néhány területi és tájtörténeti vonatkozása a Kárpát-medencében. (Some territorial and landscape historical aspects of locust migrations in the Carpathian Basin). In Proceedings of the 9th Conference on Landscape History, Keszthely, Hungary, 21 June 2012. [Google Scholar]
- Merkl, O. Hívatlan bogárvendégek Magyarországon. (Uninvited beetle guests in Hungary). Természettudományi Közlöny 2016, 147, 401–403. [Google Scholar]
- Havasréti, B. A filoxérától a kígyóaknás szőlőmolyig. Few Words about the Phylloxera and the Grape Leaf Miner Moth. Légkör 2016, 61, 161–163. [Google Scholar]
- Zikic, V.; Stankovic, S.; Ilic, M.; Kavallieratos, N.G. Braconid parasitoids (Hymenoptera, Braconidae) on poplars and aspen (Populus spp.) in Serbia and Montenegro. North-West. J. Zool. 2013, 9, 264–275. [Google Scholar]
- Hári, K.; Fail, J.; Streito, J.C.; Fetykó, K.G.; Szita, É.; Haltrich, A.; Vikár, D.; Radácsi, P.; Vétek, G. First record of Aleuroclava aucubae (Hemiptera Aleyrodidae) in Hungary, with a checklist of whiteflies occurring in the country. Redia 2021, 104, 3–7. [Google Scholar] [CrossRef]
- Csősz, S.; Báthori, F.; Gallé, L.; Lőrinczi, G.; Maák, I.; Tartally, A.; Kovács, É.; Somogyi, A.Á.; Markó, B. The Myrmecofauna (Hymenoptera, Formicidae) of Hungary, Survey of Ant Species with an Annotated Synonymic Inventory. Insects 2021, 12, 78. [Google Scholar] [CrossRef]
- Tóth, J. Behurcolt és új erdészeti kártevők Magyarországon. (Introduced and new forest pests in Hungary). Erdészeti Lapok 1997, 132, 327–328. [Google Scholar]
- Csóka, G. Recent Invasions of Five Species of Leafmining Lepidoptera in Hungary. 31–36. In Proceedings, Integrated Management and Dynamics of Forest Insects; Liebhold, A.M., McManus, M.L., Otvos, I.S., Fosbroke, S.L.C., Eds.; Department of Agriculture, Forest Service, Northeastern Research Station: Madison, WI, USA, 2001; pp. 31–36. [Google Scholar]
- Szőke, V. First records of two spongillafly species from Hungary (Neuroptera, Sisyridae). Folia Entomol. Hung. 2024, 85, 1–6. [Google Scholar] [CrossRef]
- Winkler, D.; Korda, M.; Traser, G. Two species of Collembola new for the fauna of Hungary. Opusc. Zool. 2011, 42, 199–206. [Google Scholar]
- Szabóky, C. New data to the Microlepidoptera fauna of Hungary, part XX (Lepidoptera, Autostichidae, Batrachedridae, Elachistidae, Sesiidae, Tineidae, Tortricidae). Folia Entomol. Hung. 2023, 84, 113–119. [Google Scholar] [CrossRef]
- Szeőke, K.; Avar, K. Athetis hospes (Freyer, 1831) Nyugat-Magyarországon (Lepidoptera, Noctuidae). (Athetis hospes (Freyer, 1831) in West-Hungary (Lepidoptera, Noctuidae). Nat. Somogyiensis 2019, 33, 21–24. [Google Scholar] [CrossRef]
- Kóbor, P. Platycranus metriorrhynchus, A new Mediterranean plant bug in Hungary (Heteroptera, Cimicomorpha, Miridae, Orthotylinae). Acta Phytopathol. Entomol. Hung. 2023, 58, 131–138. [Google Scholar] [CrossRef]
- Koczor, S.; Kiss, B.; Szita, É.; Fetykó, K. Two Leafhopper Species New o the Fauna of Hungary (Hemiptera, Cicadomorpha, Cicadellidae). Acta Phytopathol. Entomol. Hung. 2012, 47, 71–76. [Google Scholar] [CrossRef]
- Balázs, K.; Rédey, D. Acrosternum heegeri Fieber, 1861 (Hemiptera, Heteroptera, Pentatomidae), another Mediterranean bug expanding to the north. Zootaxa 2017, 4347, 392–400. [Google Scholar]
- Katona, G.; Balázs, S.; Dombi, O.; Tóth, B. First record of Spodoptera littoralis in Hungary (Lepidoptera, Noctuidae). Folia Entomol. Hung. 2020, 81, 119–122. [Google Scholar] [CrossRef]
- Nagy, Z. First record of Geocoris pallidipennis from Hungary (Hemiptera, Geocoridae). Folia Entomol. Hung. 2020, 81, 17–20. [Google Scholar] [CrossRef]
- Móra, A.; Sebteoui, K. Trithemis arteriosa (Burmeister, 1839) (Odonata, Libellulidae) in Hungary, can aquarium trade speed up the area expansion of Mediterranean species? North-West. J. Zool. 2020, 16, 237–238. [Google Scholar]
- Juhász, E.; Németh, Z.; Gór, Á.; Végvári, Z. Multilevel climatic responses in migratory insects. Ecol. Entomol. 2023, 48, 755–764. [Google Scholar] [CrossRef]
- Takács, A.; Kőszegi, K. New records of Coleophoridae and Crambidae from Hungary (Lepidoptera). Folia Entomol. Hung. 2024, 85, 93–100. [Google Scholar] [CrossRef]
- Fiam, J.; Németh, T. An uninvited guest, the fifth species of silverfish in Hungary (Zygentoma, Lepismatidae). Folia Entomol. Hung. 2024, 85, 53–60. [Google Scholar] [CrossRef]
- De Ketelaere, A.; Magyar, B. First report of Ecclitura primoris Kokujev, 1902 in Hungary (Hymenoptera, Braconidae). Folia Entomol. Hung. 2024, 85, 81–84. [Google Scholar] [CrossRef]
- Schlitt, B.P.; Székely, Á.; Orosz, A. First records of Ziczacella heptapotamica (Kusnezov, 1928) and Asymmetrasca decedens (Paoli, 1932) from Hungary (Hemiptera, Clypeorrhyncha, Cicadellidae). Folia Entomol. Hung. 2024, 85, 85–92. [Google Scholar] [CrossRef]
- Lukátsi, M.; Horváth, D. Natural enemy of Ambrosia artemisiifolia L. is spreading in Central Europe, first records of the ragweed leaf beetle (Ophraella communa LeSage, 1986) from Austria and Slovakia (Coleoptera, Chrysomelidae). Folia Entomol. Hung. 2024, 85, 101–106. [Google Scholar] [CrossRef]
- Tóth, B.; Dombi, O.; Takács, A. Coleophora texanella Chambers, 1878, a new alien species in Hungary (Lepidoptera, Coleophoridae). Folia Entomol. Hung. 2024, 85, 107–114. [Google Scholar] [CrossRef]
- Tóth, B.; Balogh, B. Occurrence of Grammodes bifasciata (Petagna, 1786) in Hungary (Lepidoptera, Erebidae). Folia Entomol. Hung. 2024, 85, 133–136. [Google Scholar] [CrossRef]
- Balogh, B.; Tóth, B. First occurrence of Hypena lividalis (Hübner, 1796) in Hungary (Lepidoptera, Erebidae). Folia Entomol. Hung. 2024, 85, 147–151. [Google Scholar] [CrossRef]
- Schlitt, B.P.; Horváth, Á.; Orosz, A. A Mediterranean gatecrasher, Neoaliturus inscriptus (Haupt, 1927) new to the Carpathian Basin (Hemiptera, Auchenorrhyncha, Cicadellidae). Folia Entomol. Hung. 2024, 85, 159–165. [Google Scholar] [CrossRef]
- Bertelsmeier, C.; Bonnamour, A.; Brockerhoff, E.G.; Pyšek, P.; Skuhrovec, J.; Richardson, D.M.; Liebhold, A.M. Global proliferation of nonnative plants is a major driver of insect invasions. BioScience 2024, 74, 770–781. [Google Scholar] [CrossRef]
- Csóka, G. A gyapottok bagolylepke (Helicoverpa armigera) terjedése Magyarországon. (The spread of the cotton bollworm (Helicoverpa armigera) in Hungary). In Magyarország Környezeti Állapota; Riesz, L., Ed.; Hermannn Ottó Nonprofit Intézet: Budapest, Hungary, 2016; pp. 62–64. [Google Scholar]
- Csóka, G.; Hirka, A.; Szőcs, L. Rovarglobalizáció a magyar erdőkben. (Insect globalization in Hungarian forests). Erdészettudományi Közlemények 2012, 2, 187–198. [Google Scholar]
- Csóka, G.; Stone, G.N.; Melika, G. Non-native gall-inducing insects on forest trees, a global review. Biol. Invasions 2017, 19, 3161–3181. [Google Scholar] [CrossRef]
- Kriston, É.; Bozsó, M.; Krizbai, L.; Csóka, G.; Melika, G. Klasszikus biológiai védekezés Magyarországon a szelídgesztenye gubacsdarázs, Dryocosmus kuriphilus (Yasumatsu, 1951) ellen, előzetes eredmények. (Classical biological control against the chestnut gall wasp, Dryocosmus kuriphilus (Yasumatsu, 1951), preliminary results). Növényvédelem 2015, 51, 445–450. [Google Scholar]
- Duhay, G. Behurcolt bogárfajok Magyarországon. (Introduced beetles in Hungary). In Tények könyve; Kereszty, A., Ed.; Greger-Delacroix Kiadó: Budapest, Hungary, 1998; pp. 1–464. [Google Scholar]
- García-Morales, M.; Denno, B.D.; Miller, D.R.; Miller, G.L.; Ben-Dov, Y.; Hardy, N.B. ScaleNet, A Literature-Based Model of Scale Insect Biology and Systematics. Database. 2016. Available online: https://scalenet.info (accessed on 15 November 2024).
- Ellis, W.N. Plant Parasites of Europe, Leafminers, Galls and Fungi. Available online: https://bladmineerders.nl (accessed on 23 September 2024).
- Bourgoin, T. FLOW (Fulgoromorpha Lists on The Web), a World Knowledge Base Dedicated to Fulgoromorpha. Version 8. Available online: https://flow.hemiptera-databases.org/flow/ (accessed on 8 October 2024).
- Blackman, R.; Eastop, V. Blackman & Eastop’s Aphids on the World’s Plants. Available online: https://aphidsonworldsplants.info/ (accessed on 19 November 2024).
- Szénási, V. Two new weevil species in Hungary (Coleoptera, Curculionidae, Entiminae). Folia Entomol. Hung. 2016, 77, 53–55. [Google Scholar] [CrossRef]
- European Commission: Joint Research Centre. European Alien Species Information Network (EASIN). Available online: https://easin.jrc.ec.europa.eu/ (accessed on 24 November 2024).
- Sáfián, S.; Katona, G.; Tóth, B. First report of the palm borer moth, Paysandisia archon (Burmeister, 1879), in Hungary (Lepidoptera, Castniidae). Folia Entomol. Hung. 2023, 84, 137–143. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1–2391. [Google Scholar]
- Ditlevsen, P.; Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 2023, 14, 4254. [Google Scholar] [CrossRef] [PubMed]
- Gagosian, R.B. Abrupt Climate Change. Woods Hole Oceanographic Institution; World Economic Forum: Davos, Switzerland, 2003; Available online: https://www.whoi.edu/ocean-topics (accessed on 18 September 2023).
- Ziska, L.H.; Blumenthal, D.M.; Runion, G.B.; Raymond Hunt, R.E.; Diaz-Soltero, H. Invasive species and climate change, an agronomic perspective. Clim. Change 2011, 105, 13–42. [Google Scholar] [CrossRef]
- iNaturalist. Available online: https://www.inaturalist.org/places/romania (accessed on 27 November 2024).
- Calmasur, Ö. New records and some new distribution data for the Turkish Nematinae (Hymenoptera: Symphyta: Tenthredinidae) fauna. Türk. Entomol. Derg. 2020, 44, 413–422. [Google Scholar] [CrossRef]
- Strumia, F.; Yildirim, E. Contribution to the knowledge of Chrysididae fauna of Turkey (Hymenoptera, Aculeata). Frustula Entomol. 2007, 30, 55–92. [Google Scholar]
- John, A.; John, P. World Bee Diversity Interactive Checklists of World Bees by Country. Available online: https://www.discoverlife.org/nh/cl/counts/Apoidea_species.html (accessed on 7 November 2024).
- Juho, P. Sawflies, Wasps, Ants and Bees—Hymenoptera. Available online: https://laji.fi/en/taxon/MX.43122 (accessed on 3 August 2024).
- Yildirim, E. The distribution and biogeography of Pompilidae in Turkey (Hymenoptera: Aculeata). Frustula Entomol. 2011, 63, 23–34. [Google Scholar]
- Yildirim, E.; Özbek, H. An Evaluation on The Fauna of Vespoidea (Hymenoptera, Aculeata) of Turkey, Along with New Records and New Localities for Some Species. Turk. J. Zool. 1999, 23, 591–604. [Google Scholar]
- Haris, A.; Vidlička, L.; Majzlan, O.; Roller, L. Effectiveness of Malaise trap and sweep net sampling in sawfly research (Hymenoptera: Symphyta). Biologia 2024, 79, 1705–1714. [Google Scholar] [CrossRef]
- Evenhuis, N.L.; Greathead, D.J. World Catalog of Bee Flies (Diptera: Bombyliidae); Backhuys Publishers: Leiden, The Netherlands, 1999; p. 756. [Google Scholar]
- Roberts, H.; El-Hawagry, M.S.A. New records of bee flies (Bombyliidae, Diptera) from the United Arab Emirates. Egypt. J. Biol. Pest Control 2024, 34, 29. [Google Scholar] [CrossRef]
- Yeates, D.K. The evolutionary pattern of host use in the Bombyliidae (Diptera): A diverse family of parasitoid flies. Biol. J. Linn. Soc. Lond. 1997, 60, 149–185. [Google Scholar] [CrossRef]
- Herrera, C.M. Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecol. Monogr. 2018, 89, e01338. [Google Scholar] [CrossRef]
- Havkenberget, K.; Jaric, D.; Krcmar, S. Distribution of Tabanids (Diptera: Tabanidae) Along a Two-Sided Altitudinal Transect. Environ. Entomol. 2009, 38, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Herczeg, T.; Száz, D.; Blahó, M.; Barta, A.; Gyurkovszky, M.; Farkas, R.; Horváth, G. The effect of weather variables on the flight activity of horseflies (Diptera: Tabanidae) in the continental climate of Hungary. Parasitol. Res. 2015, 114, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, B.; Brightwell, B. InfluentialPoints.com Biology, Images, Analysis, Design. Available online: https://influentialpoints.com/Gallery/Tabanus_bromius_band-eyed_brown_horsefly.htm (accessed on 23 September 2024).
- Hallmann, C.A.; Ssymank, A.; Sorg, M.; de Kroon, H.; Jongejans, E. Insect biomass decline scaled to species diversity: General patterns derived from a hoverfly community. Proc. Natl. Acad. Sci. USA 2021, 118, e2002554117. [Google Scholar] [CrossRef]
- Barendregt, A.; Zeegers, T.; van Steenis, W.; Jongejans, E. Forest hoverfly community collapse: Abundance and species richness drop over four decades. Insect Conserv. Divers. 2022, 15, 510–521. [Google Scholar] [CrossRef]
- Gatter, W.; Ebenhöhm, H.; Kimam, R.; Scherer, F. 50-jährige Unterschungen an migrierenden Schwebfliegen, Waffenfliegen und Schlupfwespen belegen extreme Rückgänge (Diptera: Syrphidae, Stratiomyidae; Hymenoptera: Ichneumonidae). Entomol. Z. 2020, 130, 131–142. [Google Scholar]
- Reemer, M.; Smit, J.T.; Zeegers, T. Basisrapport voor de Rode Lijst Zweefvliegen. EIS Kenniscentrum Insecten. EIS 2024–03. Available online: https://www.eis-nederland.nl/rapporten (accessed on 19 September 2024).
- Zeegers, T.; van Steenis, W.; Reemer, M.; Smit, J.T. Drastic acceleration of the extinction rate of hoverflies (Diptera: Syrphidae) in the Netherlands in recent decades, contrary to wild bees (Hymenoptera: Anthophila). J. Van Syrphidae 2024, 3, 1–11. [Google Scholar] [CrossRef]
- IUCN SSC HSG/CPSG. European Hoverflies: Moving from Assessment to Conservation Planning. A Report to the European Commission by the IUCN SSC Conservation Planning Specialist Group (CPSG) and the IUCN SSC Hoverfly Specialist Group (HSG); Conservation Planning Specialist Group: Apple Valley, MN, USA, 2022; pp. 1–84. [Google Scholar]
- Zeegers, T. Second addition to the checklist of Dutch tachinid flies (Diptera: Tachinidae). Ned. Faun. Meded. 2010, 34, 55–66. [Google Scholar]
- Ziegler, J. Recent range extensions of tachinid flies (Diptera: Tachinidae, Phasiinae) in north-east Germany and a review of the overall distribution of five species. Stud. Dipt. 2011, 18, 29–54. [Google Scholar]
- Stireman, J.; Dyer, L.A.; Janzen, D.H.; Singer, M.S.; Lill, J.T.; Marquis, R.J.; Ricklefs, R.E.; Gentry, G.L.; Hallwachs, W.; Coley, P.D.; et al. Climatic unpredictability and parasitism of caterpillars: Implications of global warming. Proc. Natl. Acad. Sci. USA 2005, 102, 17384–17387. [Google Scholar] [CrossRef]
- Biella, P.; Cornalba, M.; Rasmont, P.; Neumayer, J.; Mei, M.; Brambilla, M. Climate tracking by mountain bumblebees across a century: Distribution retreats, small refugia and elevational shifts. Glob. Ecol. Conserv. 2023, 54, 03163. [Google Scholar] [CrossRef]
- Manino, A.; Patetta, A.; Porporato, M.; Quaranta, M.; Intoppa, F.; Piazza, M.G.; Frilli, F. Bumblebee (Bombus Latreille, 1802) distribution in high mountains and global warming. Redia 2007, 90, 125–129. [Google Scholar]
- Kerr, J.T.; Pindar, A.; Galpern, P.; Packer, L.; Potts, S.G.; Roberts, S.M.; Rasmont, P.; Schweiger, O.; Colla, S.R.; Richardson, L.L.; et al. Climate change impacts on bumblebees converge across continents. Science 2015, 349, 177–180. [Google Scholar] [CrossRef]
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumble bees. Ann. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Arnóczkyné Jakab, D.; Tóth, M.; Szarukán, I.; Szanyi, S.; Józan, Z.; Sárospataki, M.; Nagy, A. Long-term changes in the composition and distribution of the Hungarian bumble bee fauna (Hymenoptera, Apidae, Bombus). J. Hym. Res. 2023, 96, 207–237. [Google Scholar] [CrossRef]
- Ban-Calefariu, C.; Sárospataki, M. Contributions to the knowledge of Bombus and Psithyrus Genera (Apoidea: Apidae) in Romania. Trav. Mus. Nat. Hist. Grigore Antipa 2007, 50, 239–258. [Google Scholar]
- Šima, P.; Smetana, V. Current distribution of the bumble bee Bombus haematurus (Hymenoptera: Apidae, Bombini) in Slovakia. Klapalekiana 2009, 45, 209–212. [Google Scholar]
- Šima, P.; Smetana, V. Quo vadis Bombus haematurus? An outline of the ecology and biology of a species expanding in Slovakia. Acta Mus. Tek. 2018, 11, 41–65. [Google Scholar]
- Biella, P.; Ćetković, A.; Gogala, A.; Neumayer, J.; Sárospataki, M.; Šima, P.; Smetana, V. Northwestward range expansion of the bumblebee Bombus haematurus into Central Europe is associated with warmer winters and niche conservatism. Insect Sci. 2021, 28, 861–872. [Google Scholar] [CrossRef]
- Manole, T. Biodiversity of insect populations from Apoidea superfamily in agricultural ecosystems. Rom. J. Plant Prot. 2014, 7, 111–128. [Google Scholar]
- Czyżewski, S.; Kierat, J.; Zapotoczny, K. First record of Bombus haematurus Kriechbaumer, 1870 (Hymenoptera: Apidae) in Poland. Acta Zool. Cracoviensia 2023, 67, 7–10. [Google Scholar] [CrossRef]
- Kosior, A.; Celary, W.; Olejniczak, P.; Fijał, J.; Król, W.; Solarz, W.; Płonka, P. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 2007, 41, 79–88. [Google Scholar] [CrossRef]
- Šima, P.; Smetana, V. Čmele (Hymenoptera: Bombini) Liptovskej kotliny a Tatranského podhoria. (Bumble bees (Hymenoptera: Bombini) at selected localities of the Liptovská kotlina basin and the Tatranské podhorie foothill). Nat. Tut. 2020, 24, 227–239. [Google Scholar]
- Šima, P.; Smetana, V. Bombus (Cullumanobombus) semenoviellus (Hymenoptera: Apidae: Bombini) new species for the bumble bee fauna of Slovakia. Klapalekiana 2012, 48, 141–147. [Google Scholar]
- Rahimi, E.; Barghjelveh, S.; Dong, P. Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran. J. Ecol. Environ. 2021, 45, 14. [Google Scholar] [CrossRef]
- Raider, R.; Reilly, J.; Bartomeus, I.; Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Change Biol. 2013, 19, 3103–3110. [Google Scholar] [CrossRef]
- Duchenne, F.; Thébault, E.; Michez, D.; Gérard, M.; Devaux, C.; Rasmont, P.; Vereecken, N.J.; Fontaine, C. Long-term effects of global change on occupancy and flight period of wild bees in Belgium. Glob. Change Biol. 2020, 26, 6753–6766. [Google Scholar] [CrossRef]
- Okely, M.; Engel, M.S.; Shebl, M.A. Climate Change Influence on the Potential Distribution of Some Cavity-Nesting Bees (Hymenoptera: Megachilidae). Diversity 2023, 15, 1172. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Pawlikowski, T.; Pawlikowski, K.; Banaszak-Cibicka, W.; Sparks, T.H. Does climate influence phenological trends in social wasps (Hymenoptera: Vespinae) in Poland? Eur. J. Entomol. 2010, 107, 203–208. [Google Scholar] [CrossRef]
- Pawlikowski, T.; Pawlikowski, K. Phenology of Social Wasps (Hymenoptera: Vespinae) in the Kujawy Region (Northern Poland) under the the influence of climatic changes 1981–2000. Bull. Geog. Ser. Phys. Geogr. 2009, 1, 125–134. [Google Scholar] [CrossRef]
- Verheyde, F.; Vertommen, W.; Rhebergen, F.; De Ketelaere, A.; Doggen, K.; van Loon, M. Notes on the population dynamics of Euodynerus dantici (Rossi, 1790) and first records of its associated parasitoid Chrysis sexdentata Christ, 1791 in the Low Countries. Bull. Soc. R. Belg. D’etomologie 2023, 159, 166–172. [Google Scholar]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Laczó, F. Pesticide Use, Issues and How to Promote Sustainable Agriculture in Hungary; PAN Germany & Center for Environmental Studies Foundation, CES: Brussels, Belgium, 2004; pp. 1–4. Available online: https://www.pan-germany.org/download/fs_hu_eng.pdf (accessed on 15 November 2024).
- Goulet, H.; Huber, J.T. Hymenoptera of the World: An Identification Guide to Families; Canada Communication Group: Ottawa, Canada, 1993; p. 668. [Google Scholar]
- Benson, R.B. Hymenoptera from Turkey, Symphyta. Bull. Brit. Mus. Nat. Hist. Ser. Ent. 1968, 22, 111–207. [Google Scholar] [CrossRef]
- Barbir, J.; Martín, L.O.; Lloveras, X.R. Impact of Climate Change on Sawfly (Suborder: Symphyta) Polinators in Andalusia Region, Spain. In Handbook of Climate Change and Biodiversity; Filho, W.L., Barbir, J., Preziosi, R., Eds.; Climate Change Management; Springer Nature Switzerland AG: Cham, Switzerland, 2018; 323p. [Google Scholar]
- Sánchez-Martínez, G.; González-Gaona, E.; López-Martínez, V.; Espinosa-Zaragoza, S.; López-Baez, O.; Sanzón-Gómez, D.; Pérez-De la O, N.B. Climatic Suitability and Distribution Overlap of Sawflies (Hymenoptera: Diprionidae) and Threatened Populations of Pinaceae. Forests 2022, 13, 1067. [Google Scholar] [CrossRef]
- Nemer, N. Forest Pests Outbreaks and Climate Change. In Proceedings of the Second Thematic Workshop on Climate Change and Preparedness for Pandemic Situations, Beirut, Lebanon, 28 September 2021; Available online: https://civil-protection-knowledge-network.europa.eu/system/files/2022-08/Forest-Insects-and-Climate-Change-Sept-28.pdf (accessed on 21 October 2024).
- Balázs, A.; Haris, A. Sawflies (Hymenoptera: Symphyta) of Cerová vrchovina Upland (South Slovakia). Nat. Somogyiensis 2019, 33, 61–74. [Google Scholar] [CrossRef]
- Environmental Statistics and Reporting Team, Department for Environment Food & Rural Affairs. Butterflies in the United Kingdom and in England: 2023. Available online: https://www.gov.uk/government/statistics/butterflies-in-the-wider-countryside-uk (accessed on 19 September 2024).
- Panigaj, L.; Panigaj, M. Changes in lepidopteran assemblages in Temnosmrečinská dolina valley (the High Tatra Mts, Slovakia) over the last 55 years. Biologia 2008, 63, 582–587. [Google Scholar] [CrossRef]
- Birch, R.J.; Markl, G.; Gottschalk, T.K. Aestivation as a response to climate change: The Great Banded Grayling Brintesia circe in Central Europe. Ecol. Entomol. 2021, 46, 1342–1352. [Google Scholar] [CrossRef]
- Schwarz, C.; Fartmann, T. Conservation of a strongly declining butterfy species depends on traditionally managed grasslands. J. Ins. Cons. 2021, 25, 255–271. [Google Scholar] [CrossRef]
- Hudák, T. A nappali lepkefauna vizsgálata Székesfehérváron (Lepidoptera: Rhopalocera). Investigation on the butterfly fauna of Székesfehérvár (Lepidoptera: Rhopalocera). Nat. Somogyiensis 2018, 31, 113–136. [Google Scholar] [CrossRef]
- Fox, R.; Dennis, E.B.; Purdy, K.; Middlebrook, I.; Roy, D.B.; Noble, D.; Bothham, M.S.; Bourn, N.A.D. The State of the UK’s Butterflies 2022; Butterfly Conservation: Wareham, UK, 2023; pp. 1–28. Available online: https://eidc.ac.uk/ (accessed on 22 October 2024).
- Uhl, B.; Wölfing, M.; Bässler, C. Mediterranean moth diversity is sensitive to increasing temperatures and drought under climate change. Sci. Rep. 2022, 12, 14473. [Google Scholar] [CrossRef]
- Betzholtz, P.-E.; Forsman, A.; Franzén, M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. Insects 2023, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.H.; Dennis, L.R.H.; Croxton, P.J.; Cade, M. Increased migration of Lepidoptera linked to climate change. Eur. J. Entomol. 2007, 104, 139–143. [Google Scholar] [CrossRef]
- Közösen a Természetért Alapítvány (Together for the Nature Foundation): Ízeltlábúak (Arthropodes). Available online: https://www.izeltlabuak.hu/ (accessed on 14 October 2024).
- Szabó, S.; Árnyas, E.; Varga, Z. Long-term light trap study on the macro-moth (Lepidoptera: Macroheterocera) fauna of the Aggtelek National Park. Acta Zool. Acad. Sci. Hung. 2007, 53, 257–269. [Google Scholar]
- Varga, J.; Korompai, T.; Horokán, K.; Hirka, A.; Gáspár, C.; Kozma, P.; Csóka, G.; Csuzdi, C. Analysis of the Macrolepidoptera fauna in Répáshuta based on the catches of a light-trap between 2014–2019. Acta Univ. Esterházy Sect. Biol. 2022, 47, 59–75. [Google Scholar]
- Szentkirályi, F.; Leskó, K.; Kádár, F. Hosszú távú rovarmonitorozás a várgesztesi erdészeti fénycsapdával. 2. A nagylepke együttes diverzitási mintázatának változásai. (Long-term insect monitoring with forestry light trap of Várgesztes. 2. Changes of pattern of species diversity of Macrolepidopteran assemblages). Erdészeti Kut. 2002, 91, 131–143. [Google Scholar]
- Uherkovich, Á. Long-term monitoring of biodiversity by the study of butterflies and larger moths (Lepidoptera) in Sellye region (South Hungary, co. Baranya) in the years 1967–2022. Nat. Somogyiensis 2022, 9, 95–138. [Google Scholar] [CrossRef]
- Szentkirályi, F.; Leskó, K.; Kádár, F. Climatic effects on long-term fluctuations in species richness and abundance level of forest macrolepidopteran assesmblages in a Hungarian mountainous region. Carpth. J. Earth Environ. Sci. 2007, 2, 73–82. [Google Scholar]
- Hufnagel, L.; Sipkay, C. A klímaváltozás Hatása Ökológiai Folyamatokra és Közösségekre. (The Impact of Climate Change on Ecological Processes and Communities); Budapesti Corvinus University: Budapest, Hungary, 2012; pp. 1–530. [Google Scholar]
- Fox, R.; Dennis, E.B.; Harrower, C.A.; Blumgart, D.; Bell, J.R.; Cook, P.; Davis, A.M.; Evans-Hill, L.J.; Haynes, F.; Hill, D.; et al. The State of Britain’s Larger Moths 2021; Butterfly Conservation, Rothamsted Research and UK Centre for Ecology & Hydrology: Wareham, UK, 2021; pp. 1–43. [Google Scholar]
- Solarz, W.; Najberek, K.; Tokarska-Guzik, B.; Pietrzyk-Kaszyńska, A. Climate change as a factor enhancing the invasiveness of alien species. Environ. Socio-Econ. Stud. 2023, 11, 36–48. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L. Analysis of invasive insects: Links to climate change. In Invasive Species and Global Climate Change; Ziska, L.H., Dukes, J.S., Eds.; CABI Publishing: Wallingford, UK, 2014; pp. 45–61. [Google Scholar]
- IUCN (International Union for Conservation of Nature). Invasive Alien Species and Climate Change. Available online: https://iucn.org/resources/issues-brief/invasive-alien-species-and-climate-change (accessed on 12 September 2024).
- Petrosyan, V.; Osipov, F.; Feniova, I.; Dergunova, N.; Warshavsky, A.; Khlyap, L.; Dzialowski, A. The TOP100 most dangerous invasive alien species in Northern Eurasia: Invasion trends and species distribution modelling. NeoBiota 2023, 82, 23–56. [Google Scholar] [CrossRef]
- Lin, W.; Zhou, G.; Cheng, X.; Xu, R. Fast Economic Development Accelerates Biological Invasions in China. Fast Economic Development Accelerates Biological Invasions in China. PLoS ONE 2007, 2, e1208. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Lambdon, P.W.; Pyšek, P.; Basnou, C.; Hejda, M.; Arianoutsou, M.; Essl, F.; Jarošík, V.; Pergl, J.; Winter, M.; Anastasiu, P.; et al. Alien flora of Europe: Species diversity, temporal trends, geographical patterns and research needs. Preslia 2008, 80, 101–149. [Google Scholar]
Tabanidae (Horse-Flies) | 1980–84 | 1985–89 | 1990–94 | 1995–99 | 2005–09 | 2010–14 | lin. x coeff. | r2 | diff. | Ecotype |
---|---|---|---|---|---|---|---|---|---|---|
Hybomitra pilosa (Loew, 1858) | 2 | 8 | 6 | 9 | 38 | 16 | 4.66 | 0.45 | 8.00 | hy |
Haematopota scutellata (Olsufje et al., 1964) | 13 | 6 | 9 | 14 | 25 | 17 | 2.34 | 0.44 | 1.31 | xe |
Philipomyia graeca (Fabricius, 1794) | 1 | 4 | 5 | 4 | 39 | 15 | 4.97 | 0.42 | 15.00 | xe |
Tabanus bovinus (Linnaeus, 1758) | 8 | 13 | 20 | 14 | 81 | 40 | 10.23 | 0.38 | 5.00 | xe |
Tabanus autumnalis (Linnaeus, 1761) | 29 | 18 | 14 | 28 | 67 | 41 | 6.31 | 0.38 | 1.41 | xe |
Heptatoma pellucens (Fabricius, 1777) | 16 | 4 | 4 | 11 | 42 | 21 | 4.17 | 0.30 | 1.31 | xe |
Therioplectes gigas (Herbst, 1787) | 5 | 1 | 3 | 5 | 34 | 14 | 4.17 | 0.30 | 2.80 | xe |
Silvius alpinus (Scopoli, 1763) | 5 | 0 | 1 | 1 | 31 | 9 | 3.22 | 0.26 | 1.80 | hy |
Hybomitra solstitialis (Meigen, 1820) | 0 | 1 | 1 | 5 | 30 | 2 | 2.89 | 0.22 | NA | xe |
Philipomyia aprica (Meigen, 1820) | 17 | 4 | 3 | 16 | 34 | 15 | 2.66 | 0.20 | 0.88 | xe |
Hybomitra confiformis (Chvála & Moucha, 1971) | 4 | 3 | 2 | 7 | 35 | 0 | 2.31 | 0.11 | 0.00 | xe |
Chrysops caecutiens (Linnaeus, 1758) | 14 | 16 | 13 | 33 | 83 | 41 | 10.17 | 0.05 | 2.93 | si |
Chrysops viduatus (Fabricius, 1794) | 74 | 20 | 29 | 59 | 90 | 48 | 3.24 | 0.05 | 0.65 | si |
Haematopota italica Meigen, 1804 | 19 | 114 | 227 | 42 | 85 | 58 | −2.2 | 0.00 | 3.05 | hy |
Atylotus rusticus (Linnaeus, 1767) | 116 | 13 | 13 | 40 | 72 | 61 | −2.03 | 0.01 | 0.53 | xe |
Haematopota pluvialis (Linnaeus, 1758) | 189 | 228 | 205 | 760 | 161 | 70 | −6.88 | 0.03 | 0.37 | hy |
Chrysops relictus (Meigen, 1820) | 62 | 35 | 94 | 67 | 55 | 23 | −4.63 | 0.12 | 0.37 | si |
Haematopota subcylindrica (Pandellé, 1883) | 14 | 8 | 34 | 7 | 4 | 1 | −2.97 | 0.22 | 0.07 | hy |
Tabanus bromius (Linnaeus, 1758) | 212 | 128 | 187 | 134 | 116 | 62 | −23.97 | 0.71 | 0.29 | xe |
Syrphidae (Hoverflies) | 1980–1984 | 1985–1989 | 1990–1994 | 1995–1999 | 2000–2004 | 2005–2010 | lin. x coeff. | r2 | diff. | Ecotype |
---|---|---|---|---|---|---|---|---|---|---|
Sphaerophoria scripta (Linnaeus, 1758) | 5421 | 2681 | 600 | 916 | 107 | 341 | −937.31 | 0.73 | 0.06 | eur |
Episyrphus balteatus (De Geer, 1776) | 3289 | 2432 | 928 | 2446 | 198 | 341 | −569.26 | 0.68 | 0.10 | eur |
Melanostoma mellina (Linnaeus, 1758) | 2016 | 1694 | 527 | 555 | 129 | 238 | −387.34 | 0.83 | 0.12 | eur |
Syrphus torvus (Osten Sacken, 1875) | 640 | 185 | 91 | 86 | 42 | 78 | −92.68 | 0.58 | 0.12 | sil |
Eristalis arbustorum (Linnaeus, 1758) | 2043 | 801 | 548 | 536 | 150 | 296 | −305.71 | 0.70 | 0.14 | eur |
Pipizella viduata (Linnaeus, 1758) | 724 | 866 | 141 | 315 | 91 | 117 | −148.17 | 0.68 | 0.16 | eur/sil |
Syrphus vitripennis Meigen, 1822) | 1842 | 673 | 740 | 393 | 62 | 336 | −277.43 | 0.70 | 0.18 | eur |
Eristalis tenax (Linnaeus, 1758) | 2990 | 1539 | 422 | 422 | 202 | 559 | −461.89 | 0.65 | 0.19 | eur |
Scaeva pyrastri (Linnaeus, 1758) | 531 | 151 | 165 | 129 | 33 | 112 | −71 | 0.58 | 0.21 | eur |
Syrphus ribesii (Linnaeus, 1758) | 895 | 329 | 88 | 282 | 54 | 190 | −118.74 | 0.52 | 0.21 | eur |
Myathropa florea (Linnaeus, 1758) | 237 | 230 | 82 | 96 | 27 | 58 | −42.57 | 0.79 | 0.24 | eur/sil |
Syritta pipiens (Linnaeus, 1758) | 1096 | 982 | 679 | 460 | 99 | 290 | −197.09 | 0.89 | 0.26 | eur |
Cheilosia variabilis (Panzer, 1798) | 810 | 243 | 128 | 252 | 63 | 218 | −96.46 | 0.46 | 0.27 | sil |
Eristalis pertinax (Scopoli, 1763) | 356 | 354 | 110 | 165 | 52 | 101 | −60.74 | 0.73 | 0.28 | eur |
Cheilosia impressa (Loew, 1840) | 270 | 273 | 106 | 175 | 53 | 95 | −40.89 | 0.70 | 0.35 | eur |
Cheilosia soror (Zetterstedt, 1843) | 170 | 160 | 88 | 71 | 28 | 69 | −26.23 | 0.77 | 0.41 | sil/xer |
Eupeodes luniger (Meigen, 1822) | 111 | 54 | 56 | 142 | 22 | 49 | −9.14 | 0.15 | 0.44 | eur |
Volucella pellucens (Linnaeus, 1758) | 159 | 32 | 49 | 52 | 33 | 78 | −11.4 | 0.20 | 0.49 | sil |
Platycheirus albimanus (Fabricius, 1781) | 373 | 226 | 189 | 274 | 75 | 190 | −36.66 | 0.48 | 0.51 | eur |
Chrysotoxum cautum (Harris, 1776) | 135 | 66 | 293 | 229 | 78 | 81 | −8.51 | 0.03 | 0.60 | sil |
Eristalis interrupta (Poda, 1761) | 248 | 206 | 109 | 123 | 88 | 158 | −22.57 | 0.47 | 0.64 | eur |
Eumerus tricolor (Fabricius, 1798) | 42 | 6 | 32 | 11 | 19 | 30 | −1.2 | 0.03 | 0.71 | sil |
Volucella zonaria (Poda, 1761) | 25 | 0 | 16 | 8 | 93 | 22 | 7.31 | 0,17 | 0.88 | sil |
Baccha elongata (Fabricius, 1775) | 67 | 35 | 79 | 66 | 60 | 59 | 0.63 | 0.01 | 0.88 | sil |
Xylota segnis (Linnaeus, 1758) | 104 | 102 | 150 | 152 | 31 | 96 | −7.17 | 0.09 | 0.92 | sil |
Cheilosia scutellata (Fallén, 1817) | 46 | 96 | 71 | 68 | 36 | 45 | −5.37 | 0.20 | 0.98 | sil |
Epistrophe nitidicollis (Meigen, 1822) | 59 | 79 | 134 | 163 | 47 | 61 | −1.63 | 0.00 | 1.03 | sil |
Helophilus pendulus (Linnaeus, 1758) | 195 | 192 | 241 | 654 | 107 | 211 | 6.8 | 0.00 | 1.08 | hyg |
Epistrophe eligans (Harris, 1780) | 80 | 48 | 143 | 189 | 31 | 91 | 1.43 | 0.00 | 1.14 | sil |
Baccha perexilis (Harris, 1776) | 65 | 34 | 38 | 49 | 43 | 79 | 3.08 | 0.11 | 1.22 | sil/hyg |
Lejops vittatus (Meigen, 1822) | 118 | 40 | 49 | 29 | 76 | 152 | 7.37 | 0.08 | 1.29 | hyg |
Paragus tibialis (Fallén, 1817) | 16 | 6 | 23 | 3 | 12 | 22 | 0.8 | 0.03 | 1.38 | xer |
Merodon constans (Rossi, 1794) | 29 | 32 | 52 | 45 | 19 | 40 | 0.26 | 0.00 | 1.38 | xer |
Paragus finitimus (de Tiefenau, 1971) | 18 | 9 | 45 | 16 | 20 | 44 | 3.83 | 0.22 | 2.44 | xer |
Anasimyia contracta (Claussen & Torp, 1980) | 13 | 24 | 19 | 66 | 30 | 52 | 7.43 | 0.46 | 4.00 | hyg |
Anasimyia lineata (Fabricius, 1787) | 33 | 167 | 74 | 178 | 76 | 135 | 9.74 | 0.10 | 4.09 | hyg |
Merodon nigritarsis (Rondani, 1845) | 5 | 28 | 166 | 110 | 33 | 51 | 5.4 | 0.03 | 10.20 | xer |
Bombyliidae (Bee Flies) | 1980–84 | 1985–89 | 1990–94 | 1995–99 | 2000–04 | 2005–09 | 2010–14 | 2016–20 | lin. x coeff. | r2 | diff. |
---|---|---|---|---|---|---|---|---|---|---|---|
Hemipenthes velutina (Meigen, 1820) | 4 | 2 | 9 | 8 | 8 | 12 | 13 | 14 | 1.6 | 0.86 | 3.50 |
Conophorus virescens (Fabricius, 1787) | 9 | 32 | 19 | 45 | 38 | 57 | 72 | 60 | 7.9 | 0.83 | 6.67 |
Bombylius nubilus (Mikan, 1796) | 1 | 1 | 0 | 6 | 9 | 6 | 13 | 11 | 1.8 | 0.8 | 11.00 |
Bombylius medius (Linnaeus, 1758) | 7 | 7 | 9 | 14 | 10 | 34 | 34 | 70 | 7.7 | 0.73 | 10.00 |
Lomatia sabaea (Fabricius, 1781) | 3 | 0 | 15 | 3 | 18 | 13 | 23 | 38 | 4.39 | 0.73 | 12.67 |
Exoprosopa jacchus (Fabricius, 1805) | 1 | 2 | 7 | 1 | 8 | 27 | 23 | 18 | 3.46 | 0.67 | 18.00 |
Exoprosopa minos (Meigen, 1804) | 2 | 0 | 0 | 1 | 3 | 13 | 19 | 12 | 2.45 | 0.67 | 6.00 |
Villa hottentotta (Linnaeus, 1758) | 20 | 6 | 72 | 33 | 36 | 70 | 73 | 99 | 10.54 | 0.65 | 4.95 |
Anthrax ricardoi (Greathead, 2003) | 0 | 0 | 0 | 0 | 3 | 2 | 4 | 2 | 0.51 | 0.62 | NA |
Bombylius canescens (Mikan, 1796) | 8 | 6 | 15 | 27 | 13 | 32 | 19 | 33 | 3.29 | 0.59 | 4.13 |
Bombylius discolor (Mikan, 1796) | 13 | 14 | 8 | 41 | 41 | 23 | 31 | 91 | 8.04 | 0.55 | 7.00 |
Bombylius cinerascens (Mikan, 1796) | 13 | 33 | 19 | 24 | 28 | 51 | 27 | 79 | 6.33 | 0.53 | 6.08 |
Bombylius fulvescens (Meigen & Wiedemann, 1820) | 7 | 20 | 15 | 21 | 9 | 23 | 27 | 27 | 2.23 | 0.51 | 3.86 |
Exoprosopa capucina (Fabricius, 1781) | 3 | 0 | 3 | 1 | 6 | 3 | 10 | 6 | 0.9 | 0.48 | 2.00 |
Anthrax trifasciatus (Meigen, 1804) | 5 | 2 | 12 | 20 | 6 | 21 | 15 | 17 | 1.93 | 0.43 | 3.40 |
Anthrax anthrax (Schrank, 1781) | 5 | 1 | 9 | 0 | 1 | 9 | 10 | 18 | 1.63 | 0.43 | 3.60 |
Exhyalanthrax muscarius (Pallas & Wiedemann, 1818) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0.19 | 0.38 | NA |
Bombylius analis (Olivier, 1789 | 0 | 5 | 8 | 4 | 1 | 5 | 2 | 31 | 2.26 | 0.31 | NA |
Bombylius fimbriatus (Meigen, 1820) | 8 | 31 | 18 | 40 | 41 | 13 | 26 | 52 | 3.2 | 0.27 | 6.50 |
Triplasius pictus (Panzer, 1794) | 2 | 5 | 3 | 4 | 3 | 10 | 21 | 4 | 1.36 | 0.27 | 2.00 |
Bombylisoma nigriceps (Loew, 1862) | 2 | 1 | 0 | 4 | 3 | 4 | 14 | 2 | 0.9 | 0.26 | 1.00 |
Micomitra stupida (Rossi, 1790) | 1 | 0 | 0 | 2 | 0 | 0 | 8 | 1 | 0.45 | 0.17 | 1.00 |
Phthiria pulicaria (Mikan, 1796) | 5 | 1 | 11 | 4 | 1 | 8 | 35 | 4 | 1.8 | 0.16 | 0.80 |
Apolysis szappanosi (Papp, 2005) | 0 | 1 | 0 | 0 | 1 | 0 | 5 | 0 | 0.25 | 0.13 | NA |
Bombylius posticus (Fabricius, 1805) | 6 | 4 | 30 | 24 | 9 | 19 | 20 | 15 | 1.13 | 0.09 | 2.50 |
Hemipenthes morio (Linnaeus, 1758) | 67 | 42 | 90 | 254 | 31 | 78 | 89 | 124 | 4.46 | 0.02 | 1.85 |
Bombylius major (Linnaeus, 1758) | 54 | 156 | 105 | 160 | 63 | 26 | 28 | 199 | 0.49 | 0 | 3.69 |
Bombylella atra (Scopoli, 1763) | 23 | 39 | 22 | 53 | 3 | 45 | 36 | 7 | −1.28 | 0.03 | 0.30 |
Hemipenthes maura (Linnaeus, 1758) | 12 | 3 | 1 | 7 | 4 | 3 | 11 | 1 | −0.4 | 0.05 | 0.08 |
Bombylius venosus (Mikan, 1796) | 27 | 2 | 3 | 13 | 9 | 1 | 6 | 11 | −1.21 | 0.12 | 0.41 |
Tachinidae (Tachinids) | 1980–84 | 1985–89 | 1990–94 | 1995–99 | 2000–04 | 2005–09 | 2010–2014 | lin. x coeff. | r2 | Change | Exotype |
---|---|---|---|---|---|---|---|---|---|---|---|
Linnaemya frater (Rondani, 1859) | 39 | 234 | 17 | 22 | 16 | 75 | NA | −13.40 | 0.09 | 1.92 | sil |
Meigenia dorsalis (Meigen, 1824) | 31 | 120 | 21 | 21 | 7 | 54 | NA | −6.40 | 0.09 | 1.74 | eur |
Exorista larvarum (Linnaeus, 1758) | 59 | 228 | 82 | 31 | 35 | 100 | NA | −12.00 | 0.12 | 1.69 | sil |
Tachina fera (Linnaeus, 1761) | 135 | 346 | 299 | 117 | 59 | 201 | NA | −20.37 | 0.12 | 1.49 | sil |
Blondelia nigripes (Fallén, 1810) | 83 | 283 | 85 | 63 | 18 | 111 | NA | −19.34 | 0.16 | 1.34 | xer |
Gymnosoma dolycoridis (Dupuis, 1961) | 78 | 195 | 82 | 49 | 52 | 93 | NA | −11.06 | 0.15 | 1.19 | eur |
Actia crassicornis (Meigen, 1824) | 73 | 569 | 152 | 57 | 9 | 83 | NA | −39.29 | 0.22 | 1.14 | sil |
Peleteria varia (Fabricius, 1794) | 72 | 111 | 69 | 17 | 40 | 75 | NA | −7.14 | 0.17 | 1.04 | sil |
Gymnosoma clavatum (Rohdendorf, 1947) | 33 | 69 | 31 | 34 | 11 | 32 | NA | −5.02 | 0.25 | 0.97 | sil |
Gymnosoma rotundatum (Linnaeus, 1758) | 106 | 208 | 153 | 42 | 56 | 95 | NA | −17.80 | 0.29 | 0.90 | sil |
Athrycia trepida (Meigen, 1824) | 81 | 80 | 33 | 44 | 18 | 62 | NA | −7.71 | 0.32 | 0.77 | eur |
Nemoraea pellucida (Meigen, 1824) | 86 | 246 | 125 | 26 | 32 | 57 | NA | −25.31 | 0.33 | 0.66 | sil |
Thelaira solivaga (Harris, 1780) | 14 | 36 | 3 | 4 | 12 | 8 | NA | −2.88 | 0.20 | 0.57 | sil |
Phryno vetula (Meigen, 1824) | 47 | 97 | 43 | 51 | 8 | 26 | NA | −10.40 | 0.42 | 0.55 | eur |
Phasia pusilla (Meigen, 1824) | 88 | 121 | 42 | 24 | 14 | 39 | NA | −16.69 | 0.57 | 0.44 | sil |
Phasia hemiptera (Fabricius, 1794) | 138 | 124 | 87 | 7 | 22 | 57 | NA | −22.60 | 0.63 | 0.41 | sil |
Chetogena filipalpis (Rondani, 1859) | 17 | 18 | 18 | 5 | 8 | 6 | NA | −2.80 | 0.69 | 0.35 | eur |
Compsilura concinnata (Meigen, 1824) | 135 | 50 | 231 | 44 | 31 | 47 | NA | −19.54 | 0.22 | 0.35 | eur |
Solieria vacua (Rondani, 1861) | 44 | 53 | 31 | 3 | 13 | 7 | NA | −9.51 | 0.74 | 0.16 | sil |
1980–84 | 1985–89 | 1990–94 | 1995–99 | 2000–04 | 2005–09 | 2010–14 | 2014–19 | lin. x coeff. | r2 | Change | |
---|---|---|---|---|---|---|---|---|---|---|---|
Syrphidae | 35,119 | 22,381 | 11,520 | 18,504 | 5694 | 11,755 | NA | NA | −1812.49 | 0.86 | 0.2 |
Bombilidae | 530 | 533 | 569 | 615 | 452 | 701 | 928 | 980 | 63.79 | 0.65 | 1.8 |
Tabanidae | 978 | 1046 | 977 | 1387 | 1387 | 1614 | 968 | NA | 136.93 | 0.84 | 0.6 |
Tachinidae | 6145 | 14,339 | 6701 | 3479 | 1906 | 6793 | NA | NA | −523.31 | 0.37 | 0.2 |
Species | High alt. | Species | High alt. |
---|---|---|---|
Bombyliidae | Callicera rufa (Schummel, 1842) | ||
Bombylius trichurus (Wiedemann, 1818) | Callicera spinolae (Rondani, 1844) | ||
Bombylius quadrifarius (Loew, 1855) | Chalcosyrphus curvipes (Loew, 1854) | ||
Bombylius ambustus (Pallas & Wiedemann, 1818) | Cheilosia bracusi (Vujic & Claussen, 1994) | ||
Cheilosia brunnipennis (Becker, 1894) | |||
Tabanidae | Cheilosia hypena (Becker, 1894) | ||
Pangonius pyritosus (Loew, 1859) | x | Cheilosia insignis (Loew, 1857) | |
Hybomitra arpadi (Szilády, 1923) | Cheilosia melanopa (Zetterstedt, 1843) | x | |
Hybomitra aterrima (Meigen, 1820) | x | Cheilosia melanura (Becker, 1894) | x |
Hybomitra expollicata (Pandellé, 1883) | Cheilosia pictipennis (Egger, 1860) | ||
Hybomitra montana (Meigen, 1820) | x | Cheilosia sahlbergi (Becker, 1894) | x |
Hybomitra nigricornis (Zetterstedt, 1842) | Cheilosia subpictipennis (Claussen, 1898) | ||
Hybomitra tarandina (Linnaeus, 1758) | Chrysogaster basalis (Loew, 1857) | x | |
Cliorhina pachymera (Egger, 1858) | x | ||
Tachinidae | Epistrophe obscuripes (Strobl, 1910) | ||
Amelibaea tultschensis (Brauer & Bergenstamm, 1891) | Eristalis vitripennis (Strobl, 1893) | ||
Anthomyiopsis nigrisquamata (Zetterstedt, 1838) | x | Eumerus hungaricus (Szilády, 1940) | |
Anthomyiopsis plagioderae (Mesnil, 1972) | Eumerus longicornis (Loew, 1855) | ||
Aphria xyphias (Pandellé, 1896) | Eumerus ruficornis (Meigen, 1822) | ||
Besseria dimidiata (Zetterstedt, 1844) | x | Eumerus sabulosum (Fallén, 1817) | x |
Besseria melanura (Meigen, 1824) | x | Eumerus tauricus (Stackelberg, 1952) | |
Bithia acanthophora (Rondani, 1861) | Eupeodes lucasi (Marcos-García & Láska, 1983) | ||
Blepharomyia pagana (Meigen, 1824) | x | Hammersmidtia ferruginea (Schummel, 1834) | |
Cadurciella tritaeniata (Rondani, 1859) | Helophilus affinis (Wahlberg, 1844) | ||
Campylocheta latigena (Mesnil, 1974) | Lejota ruficornis (Zetterstedt, 1843) | ||
Catharosia albisquama (Villeneuve, 1932) | Melanogaster curvistylus (Vujić-Stuke, 1998) | ||
Ceranthia tristella (Herting, 1966) | Melanostoma dubium (Zetterstedt, 1837) | ||
Chetoptilia puella (Rondani, 1862) | Milesia crabroniformis (Fabricius, 1775) | X | |
Conogaster pruinosa (Meigen, 1824) | Orthonevra tristis (Loew, 1871) | ||
Phytomyptera abnormis (Stein, 1924) | Paragus medeae (Stanescu, 1991 | ||
Eloceria delecta (Meigen, 1824) | Paragus punctulatus (Zetterstedt, 1938) | ||
Estheria acuta (Portschinsky, 1881) | Pipiza fenestrata (Meigen, 1822) | ||
Gonia bimaculata (Wiedemann, 1819) | Pipizella pennina (Goeldlin de Tiefenau, 1974) | ||
Heraultia albipennis (Villeneuve, 1920) | Platycheirus complicatus (Becker, 1889) | ||
Ligeriella aristata (Villeneuve, 1911) | Platycheirus immarginatus (Zetterstedt, 1849) | ||
Minthodes pictipennis (Brauer & Bergenstamm, 1889) | Platycheirus jaerensis (Nielsen, 1971) | ||
Psalidoxena transsylvanica (Villeneuve, 1929) | Platycheirus nielseni (Vockeroth, 1990) | ||
Siphona confusa (Mesnil, 1961) | x | Platycheirus perpallidus (Verrall, 1901) | |
Siphona ingerae (Andersen, 1982) | x | Rhingia austriaca (Meigen, 1830) | |
Therobia leonidei (Mesnil, 1965) | x | Scaeva albomaculata (Macquart, 1842) | |
Vibrissina debilitata (Pandellé, 1896) | Sphaerophoria shirchan (Violovitsh, 1957 | x | |
Winthemia bohemani (Zetterstedt, 1844) | Sphiximorpha binominata (Verrall, 1901) | ||
Syrphidae | Syrphus nitidifrons (Becker, 1921) | ||
Brachyopa panzeri (Goffe, 1945) | Syrphus sexmaculatus (Zetterstedt, 1838) | x | |
Brachyopa vittata (Shummel, 1834) | Trichopsomyia joratensis (Goeldlin de Tiefenau, 1997) | ||
Brachypalpus chrysites (Egger, 1859) | x | Xylota coeruleiventris (Zetterstedt, 1838) | |
Callicera macquarti (Rondani, 1944) |
Taxon/Data from the Low Altitudes | 2005–2009 | 2010–2014 | 2015–2019 | 2020–2023 | lin. x coeff. | r2 | CRC |
Bombus confusus (Schenck, 1861) | 2 | 0 | 0 | 0 | NA | NA | HHHR |
Bombus subterraneus (Linnaeus, 1758) | 0 | 0 | 0 | 0 | NA | NA | HHHR |
Bombus pomorum (Panzer, 1805) | 0 | 0 | 0 | 0 | NA | NA | HHHR |
Bombus terrestris (Linnaeus, 1758) | 944 | 888 | 479 | 205 | −262.6 | 0.94 | HR |
Bombus lapidarius (Linnaeus, 1758) | 835 | 291 | 481 | 45 | −218.0 | 0.71 | HHR |
Bombus pascuorum (Scopoli, 1763) | 692 | 944 | 401 | 284 | −176.7 | 0.59 | R |
Bombus hortorum (Linnaeus, 1761) | 173 | 357 | 106 | 11 | −73.7 | 0.42 | HR |
Bombus ruderarius (Müller, 1776) | 174 | 151 | 56 | 13 | −57.8 | 0.95 | HHR |
Bombus humilis (Illiger, 1806) | 75 | 7 | 32 | 16 | −15.2 | 0.42 | HHR |
Bombus lucorum (Linnaeus, 1761) | 41 | 104 | 31 | 7 | −17.5 | 0.30 | HR |
Bombus hypnorum (Linnaeus, 1758) | 31 | 18 | 12 | 7 | −7.8 | 0.94 | HR |
Bombus ruderatus (Fabricius, 1775) | 18 | 11 | 0 | 0 | −6.5 | 0.90 | HR |
Bombus sylvarum (Linnaeus, 1761) | 77 | 98 | 24 | 65 | −11.0 | 0.21 | HHHR |
Bombus muscorum (Linnaeus, 1758) | 6 | 1 | 1 | 2 | −1.2 | 0.42 | HHR |
Bombus pratorum (Linnaeus, 1761) | 1 | 28 | 18 | 2 | −0.7 | 0.00 | HR |
Bombus haematurus (Kriechbaumer, 1870) | 80 | 93 | 103 | 116 | 11.8 | 0.99 | HR |
Bombus argillaceus (Scopoli, 1763) | 4 | 28 | 8 | 31 | 6.1 | 0.33 | LR |
Bombus vestalis (Geoffroy, 1785) | 60 | 49 | 55 | 13 | −13.5 | 0.67 | HR |
Bombus rupestris (Fabricius, 1793) | 12 | 56 | 6 | 0 | −8.6 | 0.19 | HHR |
Bombus bohemicus (Seidl, 1838) | 3 | 29 | 21 | 0 | −1.7 | 0.02 | HHR |
Bombus barbutellus (Kirby, 1802) | 5 | 1 | 0 | 0 | −1.3 | 0.79 | HHR |
Bombus campestris (Panzer, 1801) | 2 | 4 | 1 | 0 | −0.9 | 0.46 | HHR |
Total specimens | 3235 | 3158 | 1835 | 817 | −857.7 | 0.91 | NA |
Total species | 20 | 19 | 18 | 14 | −1.9 | 0.87 | NA |
Taxon Data from the High Altitudes | 2005–2009 | 2010–2014 | 2015–2019 | 2020–2023 | lin. x coeff. | r2 | CRC |
Bombus lucorum (Linnaeus, 1761) | 357 | 80 | 210 | 63 | −75.2 | 0.51 | HR |
Bombus pascuorum (Scopoli, 1763) | 210 | 115 | 167 | 54 | −41.6 | 0.64 | R |
Bombus hortorum (Linnaeus, 1761) | 86 | 48 | 19 | 32 | −19.1 | 0.72 | HR |
Bombus pratorum (Linnaeus, 1761) | 71 | 27 | 34 | 20 | −14.6 | 0.69 | HR |
Bombus lapidarius (Linnaeus, 1758) | 87 | 42 | 50 | 44 | −12 | 0.55 | HHR |
Bombus terrestris (Linnaeus, 1758) | 44 | 20 | 12 | 9 | −11.3 | 0.85 | HR |
Bombus sylvarum (Linnaeus, 1761) | 35 | 27 | 11 | 7 | −10 | 0.95 | HHHR |
Bombus ruderarius (Müller, 1776) | 30 | 22 | 8 | 10 | −7.4 | 0.85 | HHR |
Bombus humilis (Illiger, 1806) | 21 | 13 | 15 | 5 | −4.6 | 0.81 | HHR |
Bombus confusus (Schenck, 1861) | 12 | 0 | 3 | 1 | −3 | 0.5 | HHHR |
Bombus ruderatus (Fabricius, 1775) | 10 | 5 | 0 | 2 | −2.9 | 0.74 | HR |
Bombus subterraneus (Linnaeus, 1758) | 11 | 5 | 7 | 2 | −2.5 | 0.73 | HHHR |
Bombus pomorum (Panzer, 1805) | 8 | 2 | 0 | 1 | −2.3 | 0.68 | HHHR |
Bombus hypnorum (Linnaeus, 1758) | 14 | 12 | 10 | 8 | −2 | 1 | HR |
Bombus argillaceus (Scopoli, 1763) | 0 | 0 | 0 | 0 | NA | NA | LR |
Bombus muscorum (Linnaeus, 1758) | 0 | 0 | 0 | 0 | NA | NA | HHR |
Bombus haematurus (Kriechbaumer, 1870) | 0 | 0 | 0 | 0 | NA | NA | HR |
Bombus rupestris (Fabricius, 1793) | 41 | 53 | 23 | 35 | −4.8 | 0.75 | HHR |
Bombus campestris (Panzer, 1801) | 101 | 85 | 55 | 25 | −25.8 | 0.98 | HHR |
Bombus vestalis (Geoffroy, 1785) | 9 | 3 | 5 | 2 | −1.9 | 0.63 | HR |
Bombus bohemicus (Seidl, 1838) | 157 | 34 | 70 | 40 | −31.5 | 0.51 | HHR |
Bombus barbutellus (Kirby, 1802) | 46 | 28 | 14 | 22 | −8.6 | 0.67 | HHR |
Total specimens | 1350 | 621 | 713 | 382 | −281.2 | 0.77 | NA |
Total species | 19 | 18 | 17 | 19 | −0.1 | 0.02 | NA |
Genera | 1988–93 | 1994–99 | 2003–08 | 2012–17 | 2018–23 | lin. x coef. | r2 | Changes |
Sceliphron | 15 | 18 | 28 | 17 | 64 | 9.7 | 0.56 | 4.3 |
Cerceris | 287 | 367 | 536 | 548 | 1084 | 177.5 | 0.81 | 3.8 |
Gorytes | 72 | 74 | 180 | 247 | 209 | 44.7 | 0.78 | 2.9 |
Oxybelus | 245 | 250 | 348 | 447 | 659 | 102.5 | 0.89 | 2.7 |
Priocnemis | 33 | 33 | 127 | 68 | 83 | 13.5 | 0.26 | 2.5 |
Hedychrum | 157 | 162 | 207 | 287 | 372 | 56.5 | 0.91 | 2.4 |
Crossocerus | 195 | 1430 | 1064 | 288 | 370 | −79.2 | 0.06 | 1.9 |
Chrysis | 481 | 496 | 758 | 1089 | 903 | 143.7 | 0.75 | 1.9 |
Scolia | 68 | 65 | 49 | 107 | 126 | 15.8 | 0.60 | 1.9 |
Diodontus | 316 | 541 | 883 | 503 | 552 | 43.4 | 0.11 | 1.7 |
Ectemnius | 241 | 245 | 540 | 305 | 255 | 8.8 | 0.01 | 1.1 |
Crabro | 32 | 32 | 35 | 17 | 34 | −1.1 | 0.07 | 1.1 |
Ammophila | 87 | 78 | 101 | 106 | 82 | 1.8 | 0.06 | 0.9 |
Megascolia | 0 | 0 | 0 | 1 | 3 | 0.7 | 0.72 | NA |
Families | 1988–93 | 1994–99 | 2003–08 | 2012–17 | 2018–23 | lin. x coef. | r2 | Changes |
Chrysididae | 612 | 954 | 1454 | 1824 | 1707 | 306.0 | 0.89 | 2.8 |
Bembicidae | 82 | 124 | 250 | 324 | 278 | 59.2 | 0.82 | 3.4 |
Psenidae | 89 | 357 | 280 | 196 | 274 | 20.9 | 0.11 | 3.1 |
Philanthidae | 338 | 419 | 581 | 600 | 1163 | 183.1 | 0.80 | 3.4 |
Sphecidae | 130 | 157 | 220 | 308 | 345 | 58.1 | 0.97 | 2.7 |
Crabronidae | 2110 | 5235 | 5503 | 3698 | 4405 | 305.3 | 0.13 | 2.1 |
Pemphredonidae | 190 | 441 | 396 | 232 | 309 | 2.9 | 0.00 | 1.6 |
Halictidae | 2225 | 3320 | 4524 | 4122 | 6633 | 961.8 | 0.86 | 3.0 |
Colletidae | 1132 | 1538 | 1817 | 1834 | 2660 | 335.2 | 0.89 | 2.3 |
Andrenidae | 1447 | 1518 | 2615 | 1573 | 2295 | 175.1 | 0.27 | 1.6 |
Megachilidae | 1234 | 1421 | 1237 | 1522 | 1860 | 135.3 | 0.69 | 1.5 |
Apidae | 1148 | 1143 | 1489 | 1354 | 2066 | 168.7 | 0.76 | 0.7 |
Aculeata total | 10,681 | 18,010 | 22,516 | 19,167 | 25,740 | 3127.5 | 0.77 | 2.4 |
Family | Species | H. alt. | Family | Species | H. alt. |
---|---|---|---|---|---|
Chrys. | Cleptes semicyaneus (Tournier, 1879) | And. | Andrena fuscipes (Kirby, 1802) | ||
Chrys. | Elampus constrictus (Förster, 1853) | And. | Andrena gallica (Schmiedeknecht, 1883) | ||
Chrys. | Hedychrum chalybaeum (Dahlbom, 1854) | And. | Andrena nuptialis (Pérez, 1902) | x | |
Chrys. | Chrysis immaculata (Du Buysson, 1898) | And. | Andrena tridentata (Kirby, 1802) | ||
Chrys. | Chrysura rufiventris (Dahlbom, 1854) | x | And. | Bombus mesomelas (Gerstäcker, 1869) | x |
Chrys. | Stilbum cyanurum (Förster, 1771) | x | And. | Bombus cullumanus (Kirby, 1802) | x |
Vesp. | Polistes semenowi (Morawitz, 1889) | x | Apid. | Bombus wurflenii (Radoszkowski, 1860) | x |
Vesp. | Dolichovespula norwegica (Fabricius, 1781) | x | Apid. | Bombus quadricolor (Lepeletier, 1832) | x |
Vesp. | Ancistrocerus ichneumonideus (Ratzeburg, 1844) | Apid. | Habropoda zonatula (Smith, 1854) | x | |
Vesp. | Ancistrocerus scoticus (Curtis, 1826) | x | Apid. | Thyreus orbatus (Lepeletier, 1841) | |
Vesp. | Delta unguiculatum (Villers, 1789) | x | Apid. | Thyreus truncatus (Pérez, 1883) | x |
Vesp. | Microdynerus exilis (Herrich-Schäffer, 1839) | x | Apid. | Nomada baccata (Smith, 1844) | |
Pomp. | Priocnemis cordivalvata (Haupt, 1926) | x | Apid. | Nomada conjungens (Herrich-Schäffer, 1839) | x |
Pomp. | Agenioideus apicalis (Vander Linden, 1827) | Apid. | Nomada moeschleri (Alfken, 1913) | x | |
Pomp. | Arachnospila alvarabnormis (Wolf, 1965) | Apid. | Nomada mutica (Morawitz, 1872) | x | |
Pomp. | Arachnospila rufa (Haupt, 1927) | Apid. | Nomada noskiewiczi (Schwarz, 1966) | x | |
Pomp. | Arachnospila sogdianoides (Wolf, 1964) | Apid. | Nomada obscura (Zetterstedt, 1838) | ||
Pomp. | Episyron rufipes (Linnaeus, 1758) | Apid. | Nomada obtusifrons (Nylander, 1848) | x | |
Pomp. | Evagetes alamannicus (Blüthgen, 1944) | Apid. | Nomada opaca (Alfken, 1913) | ||
Pomp. | Evagetes subglaber (Haupt, 1941) | Apid. | Nomada pulchra (Arnold, 1888) | x | |
Pomp. | Ferreola diffinis (Lepeletier, 1845) | Coll. | Colletes floralis (Eversmann, 1852) | ||
Crab. | Diodontus medius (Dahlbom, 1844) | Hal. | Lasioglossum kussariense (Blüthgen, 1925) | x | |
Crab. | Mimesa crassipes (A. Costa, 1871) | Hal. | Lasioglossum damascenum (Pérez, 1910) | x | |
Crab. | Mimumesa beaumonti (van Lith, 1949) | Hal. | Lasioglossum intermedium (Schenck, 1870) | ||
Crab. | Passaloecus brevilabris (Wolf, 1958) | Hal. | Lasioglossum podolicum (Noskiewicz, 1925) | x | |
Crab. | Passaloecus borealis (Dahlbom, 1844) | x | Hal. | Lasioglossum rufitarse (Zetterstedt, 1838) | |
Crab. | Pemphredon montana (Dahlbom, 1845) | x | Meg. | Pseudoanthidium alpinum (Morawitz, 1874) | x |
Crab. | Pemphredon morio (Vander Linden, 1829) | x | Meg. | Coelioxys alatus (Förster, 1853) | x |
Crab. | Psenulus chevrieri (Tournier, 1889) | Meg. | Megachile nigriventris (Schenck, 1870 | x | |
Crab. | Psenulus fulvicornis (Schenck, 1857) | Meg. | Megachile pyrenaea (Pérez, 1890) | x | |
Crab. | Harpactus tumidus (Panzer, 1801) | Meg. | Hoplitis lepeletieri (Pérez, 1879) | ||
Crab. | Crossocerus heydeni (Kohl, 1880) | Meg. | Hoplitis loti (Morawitz, 1867) | ||
Crab. | Crossocerus walkeri (Shuckard, 1837) | Meg. | Hoplitis mitis (Nylander, 1852) | x | |
Crab. | Ectemnius borealis (Zetterstedt, 1838) | x | Meg. | Hoplitis papaveris (Latreille, 1799) | x |
Meg. | Hoplosmia scutellaris (Morawitz, 1868) | x | |||
Meg. | Osmia mustelina (Gerstäcker, 1869) | x | |||
Meg. | Melitta wankowiczi (Radoszkowski, 1891) | x |
Taxon | 1960–66 | 1967–73 | 1971–75 | 1986–98 | 1990–92 | 1996–99 | 2009–12 | 2019–22 | lin x coef. | r2 |
---|---|---|---|---|---|---|---|---|---|---|
Tenthredo mesomela (Linnaeus, 1758) | 59 | 35 | 27 | 32 | 11 | 2 | 9 | 0 | −7.61 | 0.88 |
Athalia glabricollis (Thomson, 1870 | 35 | 44 | 20 | 0 | 0 | 0 | 3 | 0 | −6.07 | 0.68 |
Dolerus haematodes (Schrank, 1781) | 4 | 7 | 3 | 2 | 0 | 0 | 1 | 0 | −0.82 | 0.66 |
Tenthredo „arcuata” spec.gr. | 84 | 99 | 2 | 4 | 7 | 0 | 22 | 1 | −11.54 | 0.49 |
Tenthredopsis tarsata (Fabricius, 1804) | 25 | 11 | 29 | 7 | 2 | 0 | 18 | 1 | −2.68 | 0.34 |
Tenthredopsis nassata (Linnaeus, 1767) | 21 | 8 | 24 | 0 | 6 | 10 | 11 | 1 | −1.92 | 0.3 |
Cephus pygmeus (Linnaeus, 1767) | 57 | 23 | 49 | 11 | 4 | 14 | 23 | 31 | −3.50 | 0.22 |
Tenthredopsis litterata (Geoffroy, 1785) | 20 | 5 | 3 | 0 | 6 | 2 | 8 | 4 | −1.12 | 0.2 |
Tenthredo omissa (Foerster, 1844) | 6 | 4 | 3 | 0 | 8 | 1 | 5 | 0 | −0.42 | 0.12 |
Tenthredo zonula (Klug, 1817) | 46 | 9 | 1 | 21 | 9 | 0 | 34 | 2 | −2.36 | 0.11 |
Pachyprotasis rapae (Linnaeus, 1767) | 34 | 32 | 25 | 39 | 16 | 10 | 47 | 13 | −1.67 | 0.1 |
Macrophya blanda (Fabricius, 1775) | 10 | 3 | 21 | 20 | 0 | 0 | 17 | 1 | −0.90 | 0.06 |
Arge pagana (Panzer, 1798) | 19 | 0 | 1 | 1 | 3 | 0 | 16 | 3 | −0.39 | 0.05 |
Tenthredo atra (Linnaeus, 1758) | 13 | 16 | 57 | 0 | 7 | 0 | 32 | 5 | −1.67 | 0.04 |
Tenthredo vespa (Retzius, 1783) | 19 | 11 | 0 | 0 | 17 | 0 | 20 | 2 | −0.68 | 0.03 |
Tenthredopsis stigma (Fabricius, 1798) | 33 | 10 | 3 | 4 | 6 | 0 | 19 | 19 | −0.71 | 0.02 |
Tenthredo solitaria (Scopoli, 1763) | 3 | 6 | 28 | 3 | 1 | 2 | 22 | 0 | −0.25 | 0,00 |
Ametastegia glabrata (Fallén, 1808) | 3 | 2 | 0 | 1 | 1 | 8 | 2 | 2 | 0.20 | 0.04 |
Macrophya ribis (Schrank, 1781) | 2 | 0 | 6 | 2 | 18 | 10 | 6 | 0 | 0.52 | 0.04 |
Pachynematus annulatus (Gimmerthal, 1834) | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 0.37 | 0.08 |
Stethomostus fuliginosus (Schrank, 1781) | 10 | 10 | 1 | 6 | 4 | 27 | 17 | 7 | 1.07 | 0.1 |
Pristiphora pallidiventris (Fallén, 1808) | 0 | 0 | 0 | 4 | 0 | 0 | 7 | 4 | 0.82 | 0.27 |
Allantus cinctus (Linnaeus, 1758) | 5 | 1 | 4 | 3 | 2 | 7 | 8 | 6 | 0.60 | 0.35 |
Tenthredopsis ornata (Serville, 1823) | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 4 | 0.81 | 0.44 |
Tenthredo amoena (Gravenhorst, 1807) | 10 | 13 | 0 | 0 | 4 | 0 | 30 | 0 | 0.23 | 0.00 |
Tenthredo marginella (Fabricius, 1793) | 13 | 18 | 0 | 2 | 9 | 0 | 14 | 19 | 0.35 | 0.01 |
Dolerus gonager (Fabricius, 1771) | 14 | 6 | 18 | 23 | 1 | 3 | 21 | 17 | 0.35 | 0.01 |
Tenthredo temula Scopoli, 1763 | 21 | 10 | 16 | 10 | 6 | 0 | 44 | 14 | 0.82 | 0.02 |
Athalia lugens (Klug, 1815) | 3 | 3 | 1 | 0 | 4 | 21 | 4 | 1 | 0.65 | 0.06 |
Tenthredo campestris (Linnaeus, 1758) | 0 | 0 | 0 | 23 | 9 | 0 | 11 | 5 | 0.90 | 0.07 |
Arge nigripes (Retzius, 1783) | 10 | 1 | 1 | 6 | 2 | 0 | 12 | 10 | 0.57 | 0.08 |
Tenthredo bifasciata rossii (Panzer, 1803) | 13 | 10 | 9 | 5 | 12 | 0 | 31 | 13 | 1.01 | 0.08 |
Arge ochropus (Gmelin, 1790) | 7 | 5 | 2 | 0 | 0 | 0 | 16 | 9 | 0.75 | 0,11 |
Arge berberidis Schrank, 1802 | 5 | 2 | 1 | 2 | 2 | 0 | 12 | 5 | 0.56 | 0,13 |
Arge melanochra (Gmelin, 1790) | 37 | 19 | 9 | 8 | 12 | 0 | 101 | 40 | 4.86 | 0.13 |
Megalodontes plagiocephalus (Fabricius, 1804) | 4 | 0 | 1 | 4 | 0 | 1 | 18 | 5 | 1.11 | 0.21 |
Macrophya duodecimpunctata (Linnaeus, 1758) | 2 | 4 | 18 | 8 | 18 | 13 | 46 | 5 | 2.69 | 0.21 |
Tenthredo distinguenda (R.Stein, 1885) | 4 | 0 | 0 | 0 | 4 | 0 | 21 | 8 | 1.63 | 0.31 |
Monophadnus pallescens (Gmelin, 1790) | 6 | 7 | 1 | 36 | 6 | 8 | 41 | 25 | 3.50 | 0.31 |
Tenthredopsis sordida (Klug, 1817) | 9 | 10 | 19 | 9 | 12 | 2 | 37 | 42 | 3.79 | 0.41 |
Arge enodis (Linnaeus, 1767) | 7 | 1 | 2 | 0 | 15 | 8 | 56 | 26 | 5.25 | 0.46 |
Arge cyanocrocea (Forster, 1771) | 10 | 4 | 6 | 3 | 6 | 0 | 37 | 58 | 5.79 | 0.47 |
Eutomostethus ephippium (Panzer, 1798) | 32 | 20 | 31 | 34 | 31 | 18 | 62 | 82 | 6.17 | 0.47 |
Athalia rosae (Linnaeus, 1758) | 9 | 22 | 21 | 47 | 12 | 18 | 93 | 247 | 23.54 | 0.51 |
Aglaostigma aucupariae (Klug, 1817) | 9 | 16 | 5 | 13 | 12 | 10 | 56 | 49 | 5.88 | 0.54 |
Dolerus puncticollis (Thomson, 1871) | 1 | 5 | 7 | 27 | 3 | 10 | 40 | 35 | 4.74 | 0.56 |
Dolerus nigratus (O.F. Müller, 1776) | 11 | 8 | 2 | 54 | 15 | 28 | 75 | 101 | 11.95 | 0.66 |
Aglaostigma fulvipes (Scopoli, 1763) | 10 | 15 | 6 | 28 | 11 | 68 | 74 | 113 | 14.11 | 0.76 |
Species | 1990–94 | 1995–99 | 2000–04 | 2005–09 | lin. x coeff. | r2 | STI | SPI | HSI | CRC | SD | MEAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Euphydryas maturna (Linnaeus, 1758) | 8 | 17 | 28 | 23 | 3.94 | 0.68 | 7.64 | 715.62 | 0.046 | LR | 8.96 | 15 |
Boloria selene (Denis & Schiffermüller, 1775) | 13 | 0 | 12 | 27 | 3.2 | 0.41 | 6.93 | 793.83 | 0.577 | PR | 9.31 | 11 |
Carcharodus flocciferus (Zeller, 1847) | 2 | 2 | 3 | 4 | 0.31 | 0.31 | 9.92 | 844.02 | 0.174 | R | 1.05 | 3 |
Phengaris nausithous (Bergstrasser, 1779) | 1 | 5 | 17 | 27 | 2.66 | 0.25 | 8.39 | 771.69 | 1.000 | HHHR | 9.81 | 13 |
Iphiclides podalirius (Linnaeus, 1758) | 4 | 1 | 1 | 9 | 0.66 | 0.17 | 10.87 | 780.33 | 0.105 | LR | 3.08 | 4 |
Euphydryas aurinia (Rottemburg, 1775) | 13 | 3 | 14 | 18 | 1.62 | 0.15 | 9.53 | 853.12 | 0.102 | PR | 7.82 | 12 |
Lycaena dispar (Haworth, 1803) | 9 | 10 | 6 | 16 | 0.69 | 0.09 | 9.34 | 706.61 | 0.408 | R | 4.32 | 10 |
Parnassius mnemosyne (Linnaeus, 1758) | 29 | 25 | 5 | 33 | 1.57 | 0.06 | 8.79 | 803.6 | 0.354 | HR | 11.70 | 21 |
Pieris ergane (Geyer, 1828) | 3 | 0 | 16 | 8 | 0.63 | 0.04 | 11.69 | 826.43 | 0.408 | HHR | 5.72 | 7 |
Lycaena virgaureae (Linnaeus, 1758) | 7 | 0 | 6 | 7 | 0.16 | 0.03 | 7.27 | 757.44 | 0.408 | HR | 2.64 | 5 |
Libythea celtis (Füssly, 1782) | 3 | 0 | 3 | 1 | 0.09 | 0.02 | 12.19 | 814.02 | 0.707 | HHR | 1.22 | 2 |
Neptis sappho (Pallas, 1771) | 12 | 14 | 6 | 6 | 0.03 | 0 | 9.4 | 741.16 | 0.408 | HHR | 4.83 | 9 |
Limenitis reducta (Staudinger, 1901) | 0 | 3 | 2 | 0 | −0.06 | 0.01 | 11.07 | 863.96 | 0.577 | R | 1.21 | 1 |
Chazara briseis (Linnaeus, 1764) | 2 | 0 | 6 | 1 | −0.11 | 0.01 | 10.29 | 782.68 | 0.333 | HR | 2.58 | 2 |
Papilio machaon (Linnaeus, 1758) | 6 | 3 | 2 | 9 | −0.31 | 0.04 | 9.28 | 737.43 | 0.053 | PR | 2.79 | 6 |
Maculinea teleius (Bergstrasser, 1779) | 19 | 21 | 38 | 25 | −1.17 | 0.05 | 8.6 | 798.04 | 1.000 | HHR | 9.85 | 30 |
Argynnis niobe (Linnaeus, 1761) | 0 | 0 | 2 | 2 | −0.2 | 0.06 | 8.5 | 782.2 | NA | PR | 1.52 | 2 |
Scolitantides orion (Pallas, 1771) | 27 | 16 | 2 | 0 | −1.48 | 0.07 | 8.98 | 796.79 | NA | HHR | 10.25 | 10 |
Spialia orbifer (Hübner, 1823) | 6 | 3 | 9 | 6 | −0.37 | 0.09 | 12.1 | 710.83 | NA | HR | 2.32 | 7 |
Brenthis ino (von Rottemburg, 1775) | 0 | 0 | 18 | 1 | −1.88 | 0.13 | 6.86 | 741.56 | NA | HR | 9.81 | 8 |
Colias chrysotheme (Esper, 1777) | 23 | 1 | 4 | 3 | −2 | 0.16 | 9.42 | 642.2 | NA | HHHR | 9.24 | 8 |
Glaucopsyche alexis (Poda, 1761) | 3 | 3 | 1 | 7 | −0.97 | 0.21 | 9.59 | 763.99 | 0.065 | PR | 3.95 | 5 |
Phengaris arion (Linné, 1758) | 11 | 2 | 0 | 0 | −1.46 | 0.34 | 8.64 | 802.03 | 0.500 | R | 4.71 | 4 |
Zerynthia polyxena (Denis & Schiffermüller, 1775) | 3 | 4 | 0 | 12 | −3.34 | 0.36 | 10.67 | 777.33 | 0.500 | HR | 10.40 | 11 |
Melitaea diamina (Lang, 1789) | 2 | 1 | 11 | 3 | −4.4 | 0.47 | 8.03 | 817.02 | 0.126 | HR | 12.06 | 10 |
Heteropterus morpheus (Pallas, 1771) | 3 | 1 | 2 | 4 | −2.4 | 0.53 | 9.52 | 764.79 | 0.250 | HR | 6.15 | 6 |
Iolana iolas (Ochsenheimer 1816) | 5 | 0 | 0 | 0 | −1.09 | 0.54 | 11.18 | 777.18 | 0.707 | HHHR | 2.76 | 2 |
Apatura iris (Linnaeus, 1758) | 0 | 1 | 4 | 0 | −1.77 | 0.54 | 8.51 | 774.96 | 0.316 | HHR | 4.52 | 4 |
Brenthis hecate (Denis & Schiffermüller, 1775) | 14 | 0 | 9 | 1 | −2.51 | 0.55 | 10.62 | 794.77 | 0.408 | HHR | 6.35 | 8 |
Lycaena hippothoe (Linnaeus, 1761) | 3 | 4 | 0 | 4 | −4.03 | 0.59 | 6.45 | 761.59 | 0.289 | R | 9.83 | 8 |
Nymphalis antiopa (Linnaeus, 1758) | 0 | 0 | 1 | 1 | −1.82 | 0.6 | 7.61 | 742.04 | 0.192 | LR | 4.41 | 3 |
Polyommatus daphnis (Denis & Schiffermüller, 1776) | 5 | 9 | 0 | 0 | −2.71 | 0.74 | 9.58 | 773.06 | 0.129 | HR | 6.05 | 6 |
Aglais urticae (Linnaeus, 1758) | 6 | 2 | 3 | 2 | −2.71 | 0.77 | 8.12 | 781.52 | 0.707 | R | 5.78 | 7 |
Total | 242 | 151 | 231 | 260 | −21.89 | 0.35 | NA | NA | NA | NA | 69.28 | 259 |
Species | 2016–19 | 2020–21 | 2022–23 | lin. x coeff. | r2 | STI | SPI | HSI | CRC | SD | MEAN |
---|---|---|---|---|---|---|---|---|---|---|---|
Maniola jurtina (Linnaeus, 1758) | 109 | 225 | 351 | 121 | 0.99 | 9.85 | 797.53 | 0.289 | PR | 121.03 | 228 |
Minois dryas (Scopoli, 1763) | 20 | 101 | 168 | 74 | 0.99 | 9.52 | 807.1 | 0.200 | HR | 74.11 | 96 |
Aphantopus hyperantus (Linnaeus, 1758) | 7 | 56 | 133 | 63 | 0.98 | 7.9 | 770.27 | 0.063 | HR | 63.52 | 65 |
Pieris brassicae (Linnaeus, 1758) | 12 | 15 | 20 | 4 | 0.97 | NA | NA | NA | PR | 4.04 | 16 |
Parnassius mnemosyne (Linnaeus, 1758) | 6 | 23 | 63 | 28.5 | 0.95 | 8.79 | 803.60 | 0.354 | HR | 29.26 | 31 |
Polyommatus coridon (Poda, 1761) | 11 | 32 | 89 | 39 | 0.93 | 9.31 | 801.21 | 1.000 | HR | 40.36 | 44 |
Melanargia galathea (Linnaeus, 1758) | 61 | 122 | 394 | 166.5 | 0.88 | 9.71 | 782.60 | 0.107 | R | 177.29 | 192 |
Brintesia circe (Fabricius, 1775) | 11 | 25 | 157 | 73 | 0.82 | 11.07 | 796.98 | 0.204 | HR | 80.56 | 64 |
Plebejus argus (Linnaeus, 1758) | 63 | 100 | 101 | 19 | 0.77 | 8.61 | 778.56 | 0.069 | PR | 21.66 | 88 |
Polyommatus icarus (Rottemburg, 1775) | 168 | 170 | 352 | 92 | 0.76 | 9.07 | 789.28 | 0.144 | PR | 105.66 | 230 |
Apatura iris (Linnaeus, 1758) | 0 | 0 | 2 | 1 | 0.75 | 8.51 | 774.96 | 0.316 | HHR | 1.15 | 1 |
Aricia agestis (Denis & Schiffermüller, 1775) | 10 | 7 | 228 | 109 | 0.74 | 10.16 | 773.49 | 0.102 | PR | 126.74 | 82 |
Coenonympha glycerion (Borkhausen, 1788) | 80 | 188 | 186 | 53 | 0.74 | 8.06 | 736.54 | 0.258 | R | 61.78 | 151 |
Scolitantides orion (Pallas, 1771) | 2 | 0 | 33 | 15.5 | 0.7 | 8.98 | 796.79 | 0.333 | HHR | 18.50 | 12 |
Lasiommata megera (Linnaeus, 1767) | 61 | 51 | 138 | 38.5 | 0.65 | 10.39 | 775.99 | 0.120 | PR | 47.61 | 83 |
Plebejus argyrognomon (Bergstrasser, 1779) | 57 | 117 | 106 | 24.5 | 0.59 | 9.51 | 766.48 | 0.224 | HHR | 31.94 | 93 |
Vanessa atalanta (Linnaeus, 1758) | 18 | 9 | 44 | 13 | 0.51 | 9.07 | 785.78 | 0.316 | PR | 18.18 | 24 |
Colias croceus (Geoffroy, 1785) | 4 | 2 | 8 | 2 | 0.43 | 10.69 | 798.28 | 0.041 | LR | 3.06 | 5 |
Issoria lathonia (Linnaeus, 1758) | 138 | 46 | 272 | 67 | 0.35 | 9.33 | 748.91 | 0.408 | HR | 113.65 | 152 |
Cupido alcetas (Hoffmannsegg, 1804) | 3 | 0 | 7 | 2 | 0.32 | 10.81 | 844.04 | 0.183 | HR | 3.51 | 3 |
Plebeius idas (Linnaeus, 1761) | 30 | 135 | 66 | 18 | 0.11 | 6.68 | 789.00 | 0.041 | PR | 53.36 | 77 |
Glaucopsyche alexis (Poda, 1761) | 5 | 3 | 6 | 0.5 | 0.11 | 9.59 | 763.99 | 0.065 | PR | 1.53 | 5 |
Pieris rapae (Linnaeus, 1758) | 73 | 42 | 86 | 6.5 | 0.08 | NA | NA | NA | PR | 22.61 | 67 |
Coenonympha pamphilus (Linnaeus, 1758) | 138 | 69 | 165 | 13.5 | 0.07 | 8.96 | 793.06 | 0.096 | PR | 49.51 | 124 |
Coenonympha arcania (Linnaeus, 1761) | 105 | 194 | 119 | 7 | 0.02 | 9.04 | 772.28 | 0.169 | R | 47.86 | 139 |
Spialia orbifer (Hübner, 1823) | 1 | 32 | 4 | 1.5 | 0.01 | 12.1 | 710.83 | 0.224 | HR | 17.10 | 12 |
Maculinea teleius (Bergstrasser, 1779) | 0 | 6 | 0 | 0 | 0 | 8.6 | 798.04 | 1.000 | HHR | 3.46 | 2 |
Polyommatus daphnis (Denis & Schiffermüller, 1776) | 0 | 1 | 0 | 0 | 0 | 9.58 | 773.06 | 0.129 | HR | 0.58 | 0 |
Vanessa cardui (Linnaeus, 1758) | 17 | 1 | 14 | −1.5 | 0.03 | 9.04 | 770.51 | 0.083 | PR | 8.50 | 11 |
Lycaena dispar (Haworth, 1803) | 5 | 0 | 4 | −0.5 | 0.04 | 9.34 | 706.61 | 0.408 | R | 2.65 | 3 |
Colias hyale (Linnaeus, 1758) | 36 | 77 | 10 | −13 | 0.15 | 8.37 | 730.95 | 0.204 | HR | 33.78 | 41 |
Papilio machaon (Linnaeus, 1758) | 36 | 7 | 22 | −7 | 0.23 | 9.28 | 737.43 | 0.053 | PR | 14.50 | 22 |
Brenthis hecate (Denis & Schiffermüller, 1775) | 4 | 0 | 2 | −1 | 0.25 | 10.62 | 794.77 | 0.408 | HHR | 2.00 | 2 |
Leptidea sinapis (Linnaeus, 1758) | 91 | 149 | 31 | −30 | 0.26 | 9.11 | 770.01 | 0.144 | PR | 59.00 | 90 |
Anthocharis cardamines (Linnaeus, 1758) | 231 | 87 | 136 | −47.5 | 0.42 | 8.3 | 778.77 | 0.101 | PR | 73.21 | 151 |
Neptis sappho (Pallas, 1771) | 9 | 13 | 0 | −4.5 | 0.46 | 9.4 | 741.16 | 0.408 | HHR | 6.66 | 7 |
Aglais io (Linnaeus, 1758) | 37 | 9 | 15 | −11 | 0.56 | 8.84 | 787.83 | 0.236 | R | 14.74 | 20 |
Zerynthia polyxena (Denis & Schiffermüller, 1775) | 20 | 1 | 2 | −9 | 0.71 | 10.67 | 777.33 | 0.500 | HR | 10.69 | 8 |
Colias chrysotheme (Esper, 1777) | 1 | 1 | 0 | −0.5 | 0.75 | 9.42 | 642.20 | 0.408 | HHHR | 0.58 | 1 |
Melitaea diamina (Lang, 1789) | 1 | 0 | 0 | −0.5 | 0.75 | 8.03 | 817.02 | 0.126 | HR | 0.58 | 0 |
Lycaena hippothoe (Linnaeus, 1761) | 1 | 0 | 0 | −0.5 | 0.75 | 6.45 | 761.59 | 0.289 | R | 0.58 | 0 |
Cupido minimus (Füssly, 1775) | 9 | 0 | 0 | −4.5 | 0.75 | 8.76 | 817.26 | 0.105 | R | 5.20 | 3 |
Iphiclides podalirius (Linnaeus, 1758) | 61 | 41 | 41 | −10 | 0.75 | 10.87 | 780.33 | 0.105 | LR | 11.55 | 48 |
Libythea celtis (Füssly, 1782) | 99 | 44 | 41 | −29 | 0.79 | 12.19 | 814.02 | 0.707 | HHR | 32.65 | 61 |
Pyrgus malvae (Linnaeus, 1758) | 190 | 151 | 80 | −55 | 0.97 | 8.74 | 765.57 | 0.192 | PR | 55.77 | 140 |
Family | 2013–19 (36 Days) | 2020–21 (31 Days) | 2022–23 (35 Days) | lin. x coeff. | r2 | SD | MEAN |
---|---|---|---|---|---|---|---|
Papilionidae | 119 | 72 | 128 | 4.5 | 0.02 | 30.07 | 106 |
Hesperiidae | 325 | 292 | 202 | −61.5 | 0.93 | 63.66 | 273 |
Pieridae | 587 | 543 | 458 | −64.5 | 0.97 | 76.55 | 523 |
Lycaenidae | 545 | 815 | 1265 | 360.0 | 0.98 | 363.73 | 875 |
Nymphalidae | 1294 | 1593 | 2670 | 688.0 | 0.90 | 198.62 | 1519 |
Total | 2870 | 3315 | 4723 | 926.5 | 0.92 | 967.31 | 3636 |
Number of Captured Species (1980–2009) per 100 Days | 1980–84 | 1985–89 | 1990–94 | 1995–99 | 2000–04 | 2005–09 | lin x coeff. | r2 | SD | MEAN |
---|---|---|---|---|---|---|---|---|---|---|
Papilionidae | 4 | 4 | 4 | 4 | 3 | 4 | NA | NA | 0.41 | 4 |
Hesperiidae | 13 | 12 | 13 | 11 | 10 | 13 | −0.23 | 0.11 | 1.26 | 12 |
Pieridae | 12 | 15 | 13 | 10 | 14 | 14 | 0.11 | 0.01 | 1.79 | 13 |
Lycaenidae | 40 | 35 | 37 | 30 | 33 | 29 | −1.94 | 0.62 | 4.20 | 34 |
Nymphalidae | 50 | 52 | 47 | 42 | 49 | 51 | −0.26 | 0.02 | 3.62 | 49 |
Total | 119 | 118 | 114 | 97 | 109 | 111 | −2.40 | 0.31 | 8.02 | 111 |
Family | 2016–19 (30 Days) | 2020–21 (30 Days) | 2022–23 (30 Days) | lin. x coeff. | r2 | SD | MEAN |
---|---|---|---|---|---|---|---|
Papilionidae | 4 | 4 | 4 | NA | NA | 0.00 | 4 |
Hesperiidae | 10 | 10 | 10 | NA | NA | 0.00 | 10 |
Pieridae | 15 | 13 | 12 | −1.50 | 0.96 | 1.53 | 13 |
Lycaenidae | 25 | 23 | 25 | NA | NA | 1.15 | 24 |
Nymphalidae | 37 | 33 | 36 | −0.50 | 0.06 | 2.08 | 35 |
Total | 91 | 83 | 87 | −2.00 | 0.25 | 4.00 | 87 |
Species | High Altitudes | Species | High Altitudes |
---|---|---|---|
Hesperiidae | Lasiocampidae | ||
Carcharodus lavatherae (Esper, 1783) | x | Cosmotriche lobulina (Denis & Schiffermüller, 1775) | x |
Pieridae | Geometridae | ||
Colias myrmidone (Esper, 1781) | x | Eucrostes indigenata (Villers, 1789) | x |
Pieris mannii (Mayer, 1851) | x | Lomaspilis opis (Butler, 1878) | |
Pieris bryoniae (Hübner, 1806) | x | Erebidae | |
Lycaenidae | Eublemma pannonica (Freyer, 1840) | x | |
Lycaena helle (Denis & Schiffermüller, 1775) | x | Noctuidae | |
Polyommatus damon (Denis & Schiffermüller, 1775) | x | Syngrapha ain (Hochenwarth, 1785) | x |
Nymphalidae | Mesotrosta signalis (Treitschke, 1829) | ||
Nymphalis vau-album (Denis & Schiffermüller, 1775) | x | Hyppa rectilinea (Esper, 1788) | x |
Lasiommata petropolitana (Fabricius, 1787) | x | Fabula zollikoferi (Freyer, 1836) | |
Coenonympha tullia (Müller, 1764) | x | Photedes captiuncula (Treitschke, 1825) | x |
Melanargia russiae (Esper, 1783) | Polia serratilinea (Ochsenheimer, 1816) | ||
Divaena haywardi (Tams, 1926) | |||
Oxytripia orbiculosa (Esper, 1800) | |||
Saturniidae | |||
Saturnia spini (Denis & Schiffermüller, 1775) |
Families | 1970a | 1970b | 1970c | 1970d | 1971a | 1971b | 1973a | 1973b | 1975 | 1976a | 1976b | 1977 | 1978a | 1978b | 1979a | 1979b | 1979c | 1980a | 1980b |
Geometridae | 720 | 11,723 | 1409 | 10,538 | 1167 | 1979 | 4513 | 7299 | 901 | 1749 | 1378 | 1013 | 1217 | 3367 | 2853 | 2954 | 2723 | 1669 | 1088 |
Noctuidae | 1913 | 5431 | 1169 | 7987 | 1676 | 1259 | 5897 | 7599 | 3301 | 6560 | 5872 | 3481 | 3077 | 4855 | 1032 | 3560 | 4571 | 1059 | 2488 |
Lasiocampidae | 19 | 15 | 115 | 269 | 45 | 21 | 211 | 393 | 126 | 206 | 81 | 94 | 45 | 93 | 42 | 43 | 55 | 54 | 35 |
Saturniidae | 2 | 0 | 0 | 4 | 0 | 0 | 4 | 12 | 56 | 75 | 16 | 29 | 25 | 23 | 1 | 2 | 44 | 0 | 1 |
Sphingidae | 16 | 5 | 38 | 182 | 2 | 0 | 218 | 161 | 237 | 570 | 205 | 142 | 81 | 167 | 15 | 202 | 142 | 12 | 87 |
Drepanidae | 13 | 7 | 15 | 660 | 42 | 2 | 141 | 674 | 108 | 153 | 119 | 28 | 47 | 129 | 34 | 43 | 49 | 22 | 18 |
Notodontidae | 21 | 321 | 64 | 1828 | 42 | 303 | 485 | 2160 | 319 | 598 | 278 | 99 | 191 | 808 | 50 | 233 | 403 | 22 | 85 |
Erebidae | 580 | 7020 | 785 | 6150 | 1604 | 909 | 4845 | 12,153 | 989 | 2864 | 3259 | 884 | 735 | 3123 | 1501 | 1668 | 2298 | 1498 | 1283 |
Nolidae | 6 | 158 | 153 | 1031 | 12 | 55 | 185 | 529 | 30 | 151 | 142 | 20 | 43 | 41 | 91 | 153 | 68 | 109 | 71 |
Thyatridae | 11 | 545 | 18 | 543 | 29 | 103 | 92 | 502 | 18 | 109 | 151 | 57 | 40 | 415 | 66 | 26 | 166 | 62 | 25 |
Total | 3318 | 25,228 | 3770 | 28,830 | 4683 | 4610 | 16,606 | 31,002 | 6115 | 13,104 | 11,501 | 5847 | 5533 | 13,045 | 5693 | 8901 | 10,681 | 4511 | 5191 |
Families | 1980c | 1981a | 1981b | 1986 | 1987 | 1990 | 1998 | 2000 | 2001 | 2005 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019a | 2019b | 2019c | 2020a |
Geometridae | 862 | 2552 | 1398 | 2573 | 1831 | 2517 | 2809 | 3924 | 2217 | 2265 | 570 | 1073 | 838 | 693 | 1105 | 1021 | 525 | 3578 | 766 |
Noctuidae | 2817 | 1065 | 1990 | 3605 | 4094 | 5060 | 4729 | NA | NA | 6974 | 4619 | 2053 | 2587 | 2359 | 2862 | 5236 | 459 | 1972 | 1276 |
Lasiocampidae | 64 | 42 | 47 | 221 | 55 | 163 | 200 | 364 | 471 | 119 | 18 | 6 | 34 | 60 | 104 | 160 | 3 | 31 | 67 |
Saturniidae | 21 | 8 | 2 | 24 | 11 | 3 | 16 | 1 | 0 | 4 | 2 | 0 | 2 | 6 | 3 | 22 | 0 | 29 | 5 |
Sphingidae | 125 | 10 | 95 | 215 | 85 | 252 | 170 | 288 | 353 | 238 | 78 | 73 | 169 | 193 | 164 | 213 | 2 | 18 | 103 |
Drepanidae | 81 | 31 | 39 | 74 | 29 | 77 | 58 | 158 | 115 | 39 | NA | NA | NA | NA | NA | NA | 36 | 195 | 40 |
Notodontidae | 302 | 35 | 92 | 376 | 96 | 142 | 290 | 102 | 77 | 280 | 197 | 153 | 182 | 134 | 184 | 166 | 36 | 284 | 124 |
Erebidae | 1235 | 1709 | 1409 | 2415 | 1939 | 3245 | 1891 | NA | NA | 1683 | 1313 | 3240 | 2527 | 1899 | 3552 | 2694 | 683 | 3355 | 1330 |
Nolidae | 33 | 135 | 73 | 143 | 110 | 48 | 73 | NA | NA | 37 | 7 | 58 | 52 | 24 | 8 | 14 | 58 | 94 | 18 |
Thyatridae | 139 | 235 | 31 | 76 | 39 | 61 | 74 | 53 | 38 | 61 | NA | NA | NA | NA | NA | NA | 46 | 205 | 36 |
Total | 5688 | 5839 | 5203 | 9786 | 8308 | 11,607 | 10,323 | 12,732 | 11,422 | 11,725 | 6914 | 6876 | 6450 | 5488 | 8121 | 9638 | 1842 | 9761 | 3775 |
Families | 2020b | 2020c | 2020d | 2020e | 2021a | 2021b | 2021c | 2021d | 2022a | 2022b | 2022c | lin. x coeff.1970 | r2 | lin. x coeff.2014 | r2 | AVG | MD | ||
Geometridae | 2050 | 1047 | 1951 | 5336 | 1996 | 1121 | 3838 | 1056 | 2053 | 5916 | 1265 | −79.7 | 0.15 | 113.9 | 0.22 | 1908 | 1749 | ||
Noctuidae | 4842 | 1818 | 1127 | 3142 | 715 | 2597 | 7099 | 1664 | 1103 | 18,135 | 2089 | −45.5 | 0.08 | −26.4 | 0 | 2633 | 3481 | ||
Lasiocampidae | 110 | 56 | 49 | 84 | 34 | 49 | 100 | 23 | 52 | 510 | 81 | −1.8 | 0.04 | 0.76 | 0.01 | 67 | 55 | ||
Saturniidae | 27 | 13 | 28 | 60 | 18 | 5 | 3 | 10 | 5 | 21 | 54 | NA | NA | NA | NA | 16 | 4 | ||
Sphingidae | 130 | 111 | 70 | 18 | 81 | 88 | 147 | 113 | 35 | 417 | 176 | −0.54 | 0 | −3.13 | 0.07 | 99 | 142 | ||
Drepanidae | 69 | 52 | 106 | 152 | 208 | 141 | 43 | 53 | 36 | 132 | 65 | −1.77 | 0.02 | −2.35 | 0.02 | 91 | 43 | ||
Notodontidae | 292 | 208 | 106 | 659 | 208 | 159 | 341 | 226 | 223 | 951 | 490 | −8.64 | 0.06 | 8.06 | 0.11 | 225 | 278 | ||
Erebidae | 6623 | 1271 | 2891 | 3486 | 1402 | 2918 | 5369 | 1423 | 1252 | 14,262 | 1586 | −17.9 | 0.01 | 16.73 | 0 | 2679 | 1604 | ||
Nolidae | 335 | 77 | 195 | 142 | 129 | 35 | 708 | 36 | 56 | 3624 | 42 | −1.91 | 0.01 | 12.47 | 0.15 | 129 | 91 | ||
Thyatridae | 133 | 85 | 113 | 262 | 59 | 33 | 165 | 58 | 104 | 597 | 134 | −2.33 | 0.04 | −0.74 | 0.01 | 108 | 66 | ||
Total | 14,755 | 4757 | 6613 | 13,341 | 4750 | 7146 | 17,911 | 5676 | 5020 | 44,700 | 5982 | −113 | 0.06 | 136.67 | 0.03 | 9424 | 6914 |
Family | 1970a | 1970b | 1970c | 1970d | 1971a | 1971b | 1971c | 1973a | 1973b | 1975 | 1976a | 1976b | 1977 | 1978a | 1978b | 1979a | 1979b | 1979c |
Geometridae | 114 | 107 | 147 | 176 | 120 | 68 | 143 | 132 | 139 | 100 | 122 | 105 | 120 | 124 | 127 | 126 | 134 | 133 |
Noctuidae | 106 | 102 | 120 | 163 | 118 | 61 | 156 | 159 | 151 | 143 | 164 | 133 | 164 | 160 | 153 | 98 | 150 | 162 |
Lasiocampidae | 6 | 3 | 7 | 13 | 5 | 2 | 11 | 10 | 13 | 11 | 12 | 9 | 10 | 10 | 9 | 9 | 9 | 11 |
Saturniidae | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 3 | 2 | 4 | 3 | 2 | 2 | 3 | 1 | 2 | 3 |
Sphingidae | 2 | 1 | 5 | 10 | 2 | 0 | 11 | 8 | 10 | 7 | 10 | 9 | 11 | 9 | 9 | 6 | 10 | 9 |
Drepanidae | 3 | 2 | 4 | 5 | 3 | 1 | 5 | 6 | 5 | 6 | 6 | 13 | 12 | 12 | 6 | 9 | 10 | 6 |
Notodontidae | 11 | 11 | 10 | 25 | 9 | 14 | 24 | 24 | 20 | 27 | 26 | 24 | 25 | 25 | 25 | 9 | 21 | 22 |
Erebidae | 37 | 33 | 39 | 57 | 42 | 24 | 54 | 51 | 54 | 40 | 39 | 49 | 47 | 44 | 52 | 47 | 52 | 48 |
Nolidae | 3 | 8 | 5 | 8 | 4 | 2 | 7 | 5 | 7 | 5 | 7 | 5 | 5 | 4 | 4 | 5 | 6 | 3 |
Thyatiridae | 4 | 4 | 5 | 6 | 4 | 2 | 6 | 7 | 6 | 3 | 6 | 7 | 6 | 7 | 7 | 4 | 6 | 6 |
Moths total | 287 | 271 | 342 | 464 | 307 | 174 | 419 | 403 | 405 | 346 | 399 | 356 | 401 | 396 | 396 | 309 | 393 | 404 |
Family | 1980a | 1980b | 1980c | 1981a | 1981b | 1986 | 1987 | 1990 | 1998 | 2000 | 2001 | 2005 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019a |
Geometridae | 109 | 122 | 103 | 122 | 125 | 148 | 144 | 90 | 120 | 117 | 121 | 136 | 115 | 143 | 127 | 127 | 149 | 134 |
Noctuidae | 103 | 136 | 145 | 96 | 132 | 163 | 165 | 155 | 183 | NA | NA | 207 | 73 | 75 | 72 | 79 | 91 | 89 |
Lasiocampidae | 8 | 7 | 8 | 6 | 9 | 11 | 9 | 9 | 10 | 12 | 9 | 8 | 8 | 3 | 9 | 9 | 10 | 9 |
Saturniidae | 0 | 1 | 2 | 1 | 2 | 4 | 1 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 2 | 2 |
Sphingidae | 5 | 7 | 8 | 5 | 9 | 10 | 8 | 7 | 7 | 10 | 8 | 10 | 9 | 8 | 9 | 9 | 9 | 10 |
Drepanidae | 8 | 10 | 7 | 8 | 11 | 12 | 15 | 6 | 7 | 5 | 5 | 6 | 7 | 11 | 7 | 9 | 10 | 10 |
Notodontidae | 9 | 19 | 20 | 10 | 14 | 23 | 23 | 27 | 27 | 15 | 17 | 27 | 17 | 17 | 17 | 17 | 17 | 19 |
Erebidae | 49 | 44 | 44 | 42 | 44 | 55 | 54 | 53 | 58 | NA | NA | 63 | 29 | 34 | 33 | 33 | 43 | 43 |
Nolidae | 5 | 7 | 4 | 5 | 7 | 9 | 8 | 3 | 5 | NA | NA | 6 | 3 | 3 | 2 | 2 | 3 | 1 |
Thyatiridae | 3 | 5 | 6 | 3 | 5 | 6 | 8 | 4 | 4 | NA | NA | 2 | NA | NA | NA | NA | NA | NA |
Moths total | 294 | 350 | 348 | 293 | 349 | 435 | 428 | 356 | 425 | 377 | 378 | 469 | 266 | 300 | 281 | 288 | 337 | 321 |
Family | 2019b | 2019c | 2020a | 2020b | 2021a | 2021b | 2021c | 2021d | 2022a | 2022b | 2022c | lin. x coeff. 1970 | r2 | lin. x coeff. 2014 | r2 | AVG | MD | |
Geometridae | 61 | 103 | 101 | 113 | 110 | 91 | 74 | 77 | 107 | 66 | 41 | −0.77 | 0.17 | −2.25 | 0.18 | 117 | 121 | |
Noctuidae | 36 | 108 | 86 | 113 | 89 | 153 | 128 | 125 | 95 | 126 | 58 | −0.99 | 0.11 | 2.43 | 0.20 | 124 | 127 | |
Lasiocampidae | 1 | 7 | 7 | 9 | 7 | 8 | 4 | 3 | 6 | 7 | 2 | −0.06 | 0.09 | −0.20 | 0.13 | 8 | 9 | |
Saturniidae | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 4 | 2 | 2 | 3 | NA | NA | NA | NA | NA | NA | |
Sphingidae | 5 | 2 | 6 | 6 | 4 | 9 | 9 | 8 | 3 | 8 | 3 | 0.01 | 0 | −0.22 | 0.18 | 7 | 8 | |
Drepanidae | 1 | 5 | 3 | 5 | 3 | 5 | 2 | 4 | 3 | 2 | 3 | −0.03 | 0.01 | −0.45 | 0.54 | 6 | 6 | |
Notodontidae | 10 | 15 | 11 | 14 | 14 | 16 | 17 | 22 | 14 | 18 | 12 | −0.07 | 0.03 | −0.07 | 0.01 | 18 | 17 | |
Erebidae | 27 | 48 | 42 | 48 | 39 | 50 | 39 | 39 | 52 | 37 | 20 | −0.12 | 0.03 | −0.18 | 0.01 | 44 | 44 | |
Nolidae | 2 | 10 | 10 | 9 | 11 | 5 | 7 | 2 | 6 | 6 | 2 | 0 | 0.00 | 0.20 | 0.09 | 5 | 5 | |
Thyatiridae | 5 | 4 | 5 | 5 | 4 | 5 | 4 | 5 | 4 | 3 | 2 | −0.03 | 0.07 | −0.2 | 0.46 | 5 | 5 | |
Moths total | 142 | 304 | 268 | 324 | 277 | 344 | 285 | 289 | 295 | 276 | 147 | −2.02 | 0.14 | −2.16 | 0.04 | 334 | 342 |
Rank | 1970–1981 | Ecotype [62] | Ecotype [61] | 2005–2022 | Ectype [62] | Ecotype [61] |
---|---|---|---|---|---|---|
1 | Xestia c-nigrum (Linnaeus, 1758) | M2 | 1 | Paracolax tristalis (Fabricius, 1794) | M3 | 6c |
2 | Phragmatobia fuliginosa (Linnaeus, 1758) | M2 | 1 | Eilema sororcula (Hufnagel, 1766) | M3 | 7 |
3 | Miltochrista miniata (Forster, 1771) | M3 | 7 | Miltochrista miniata (Forster, 1771) | M3 | 7 |
4 | Rivula sericealis (Scopoli, 1763) | M1 | 9 | Hypomecis punctinalis (Scopoli, 1763) | M3 | 6a |
5 | Chiasmia clathrata (Linnaeus, 1758) | M1 | 1 | Eilema complana (Linnaeus, 1758) | M2 | 6c |
6 | Orthosia cruda (Denis & Schiffermüller, 1775) | M3 | 4 | Cyclophora annularia (Fabricius, 1775) | M2 | 3 |
7 | Orthosia gothica (Linnaeus, 1758) | U | 3 | Lithosia quadra (Linnaeus, 1758) | M3 | 7 |
8 | Pseudeustrotia candidula (Denis & Schiffermüller, 1775) | M2 | 2 | Orthosia cruda (Denis & Schiffermüller, 1775) | M3 | 4 |
9 | Conistra vaccinii (Linnaeus, 1761) | M2 | 4 | Polypogon tentacularia (Linnaeus, 1758) | H2 | 2 |
10 | Lithosia quadra (Linnaeus, 1758) | M3 | 7 | Pelosia muscerda (Hufnagel, 1767) | H2 | 7 |
11 | Caradrina morpheus (Hufnagel, 1766) | H2 | 9 | Eilema depressa (Esper, 1787) | M3 | 6a |
12 | Lomaspilis marginata (Linnaeus, 1758) | M3 | 5 | Zanclognatha lunalis (Scopoli, 1763) | X2 | 3 |
13 | Timandra comae (Schmidt, 1931) | U | 2 | Eilema lurideola (Zincken, 1817) | M2 | 7 |
14 | Ceramica pisi (Linnaeus, 1758) | M1 | 3 | Idaea aversata (Linnaeus, 1758) | M2 | 3 |
15 | Eilema sororcula (Hufnagel, 1766) | M3 | 7 | Helicoverpa armigera (Hübner, 1808) | U | 1 |
16 | Polypogon tentacularia (Linnaeus, 1758) | H2 | 2 | Euphya biangulata (Haworth, 1809) | M3 | 4 |
17 | Spilosoma lubricipeda (Linnaeus, 1758) | M2 | 2 | Herminia tarsicrinalis (Knoch, 1782) | M3 | 3 |
18 | Tholera decimalis (Poda, 1761) | M1 | 2 | Athetis furvula (Hübner, 1808) | X1 | 0 |
19 | Mythimna pallens (Linnaeus, 1758) | M1 | 1 | Colocasia coryli (Linnaeus, 1758) | M3 | 4 |
20 | Ascotis selenaria ([Denis & Schiffermüller], 1775) | U | 1 | Orthosia cerasi (Fabricius, 1775) | M3 | 6a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, A.; Józan, Z.; Schmidt, P.; Glemba, G.; Tomozii, B.; Csóka, G.; Hirka, A.; Šima, P.; Tóth, S. Climate Change Influences on Central European Insect Fauna over the Last 50 Years: Mediterranean Influx and Non-Native Species. Ecologies 2025, 6, 16. https://doi.org/10.3390/ecologies6010016
Haris A, Józan Z, Schmidt P, Glemba G, Tomozii B, Csóka G, Hirka A, Šima P, Tóth S. Climate Change Influences on Central European Insect Fauna over the Last 50 Years: Mediterranean Influx and Non-Native Species. Ecologies. 2025; 6(1):16. https://doi.org/10.3390/ecologies6010016
Chicago/Turabian StyleHaris, Attila, Zsolt Józan, Péter Schmidt, Gábor Glemba, Bogdan Tomozii, György Csóka, Anikó Hirka, Peter Šima, and Sándor Tóth. 2025. "Climate Change Influences on Central European Insect Fauna over the Last 50 Years: Mediterranean Influx and Non-Native Species" Ecologies 6, no. 1: 16. https://doi.org/10.3390/ecologies6010016
APA StyleHaris, A., Józan, Z., Schmidt, P., Glemba, G., Tomozii, B., Csóka, G., Hirka, A., Šima, P., & Tóth, S. (2025). Climate Change Influences on Central European Insect Fauna over the Last 50 Years: Mediterranean Influx and Non-Native Species. Ecologies, 6(1), 16. https://doi.org/10.3390/ecologies6010016